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Abstract

This paper introduces quasicompact-open topology on C(X) and compares this topology with the
compact-open topology and the topology of uniform convergence. Then it examines submetrizability, metriz-
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1. Introduction and Preliminaries

There are several natural topologies that can be placed on C(X) of all continuous real-valued functions
on space X. The idea of defining a topology on C(X) emerges from the studies of convergence of sequences
of functions. The two major classes of topologies on C(X) are the set-open topologies and the uniform
topologies. The well-known set-open topologies are the point-open topology (or the topology of pointwise
convergence) and the compact-open topology. The compact-open topology was introduced by Fox [6] in
1945 and soon after was developed by Arens in [2] and by Arens and Dugundji in [3]. It is shown in [12]
that this topology is the proper setting to study sequences of functions converging uniformly on compact
subsets. Thus, the compact-open topology is sometimes called the topology of uniform convergence on
compact sets. Therefore, there have been many topologies that lie between the compact-open topology and

∗Corresponding author

Email addresses: dtokat@nevsehir.edu.tr (Deniz Tokat), ismailosmanoglu@yahoo.com (İsmail Osmanoğlu)
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the topology of uniform convergence, such as the σ-compact-open topology [9], the bounded-open topology
[16], the pseudocompact-open topology [15], and the C-compact-open topology [20].

In the present paper, we introduce quasicompact-open topology on C(X) and compare this topology
with the compact-open topology and the topology of uniform convergence. We investigate the properties of
the quasicompact-open topology on C(X) such as submetrizability, metrizability, separability, and second
countability.

A topological space X is called functionally Hausdorff (or completely Hausdorff ) if for any distinct
points x, y ∈ X there exists a continuous real function f on X such that f(x) = 0 and f(y) = 1, equivalently
f(x) 6= f(y). This property lies strictly between the Hausdorffness and the complete regularity.

Unless otherwise stated clearly, throughout this paper, all spaces are assumed to be functionally Haus-
dorff.

If X and Y are any two topological spaces with the same underlying set, then we use the notation
X = Y , X ≤ Y , and X < Y to indicate, respectively, that X and Y have the same topology, that the
topology on Y is finer than or equal to the topology on X, and that the topology on Y is strictly finer than
the topology on X.

We denote Ā and A◦ the closure and the interior of a set A, respectively. If A ⊆ X and f ∈ C(X),
then we use the notation f |A for the restriction of the function f to the set A. As usual, f(A) and f−1(A)
are the image and the preimage of the set A under the mapping f , respectively. We denote by N the set
of natural numbers and by R the real line with the natural topology. Finally, the constant zero function in
C(X) is denoted by f0.

2. The quasicompact-open topology and its comparison with other topologies

In this section, we define the quasicompact-open topology on C(X) and also give some equivalent defini-
tions. Then we compare the quasicompact-open topology with the compact-open topology and the topology
of uniform convergence.

A subset A of X is called a zero-set if there is a continuous real-valued function f defined on X such
that A = {x ∈ X : f(x) = 0}. The complement of a zero-set is called a cozero-set. A space X is said to
be quasicompact [7] if every covering of X by cozero-sets admits a finite subcollection which covers X, also
known as z-compact space. For more information see [7].

We recall that any compact space is quasicompact and the continuous image of a quasicompact space
is quasicompact[4]. We also note that the closure of a quasicompact subset is quasicompact and any
quasicompact space is pseudocompact [4].

Let α be a nonempty collection of subsets of a space X. Then various topologies on C(X) has a subbase
consisting of the sets S(A, V ) = {f ∈ C(X) : f(A) ⊆ V }, where A ∈ α and V is an open subset of real line
R, and the function space C(X) endowed with these topologies is denoted by Cα(X). The topology defined
in this way is called the set-open topology.

Now let QC(X) denote the collection of all quasicompact subsets of X. For the quasicompact-open
topology on C(X), we take as subbase, the collection {S(A, V ) : A ∈ QC(X), V is open in R} and we
denote the corresponding space by Cq(X). Let K(X) denote the collection of all compact subsets of X.
The compact-open topology on C(X) is defined similarly and is denoted by Ck(X).

Let α = QC(X) and α = {A : A ∈ α}. Then note that the quasicompact-open topology is obtained if α
is replaced by α. This is because for each f ∈ C(X) we have f(A) ⊆ f(A) = f(A).

The topology of uniform convergence on members of α has as base at each point f ∈ C(X) the family
of all sets of the form BA(f, ε) = {g ∈ C(X) : sup |f(x)− g(x)| < ε for all x ∈ A}, where A ∈ α and ε > 0.
The space C(X) having the topology of uniform convergence on α is denoted by Cα,u(X). For α = QC(X),
we denote the corresponding space by Cq,u(X). In the case that α = {X}, the topology on C(X) is called
the topology of uniform convergence or uniform topology and denoted by Cu(X).

There is another way to consider the quasicompact-open topology on C(X). For each A ∈ QC(X)
and ε > 0, we define the seminorm pA on C(X) and VA,ε, as follow: pA(f) = sup{|f(x)| : x ∈ A} and
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VA,ε = {f ∈ C(X) : pA(f) < ε}. Let V = {VA,ε : A ∈ QC(X), ε > 0}. Then for each f ∈ C(X),
f + V = {f + V : V ∈ V} forms a neighborhood base at f . This topology is locally convex since it is
generated by a collections of seminorms and it is the same as the quasicompact-open topology on C(X).
It is also easy to see that this topology is Hausdorff. Cq(X), being a locally convex Hausdorff space, is a
Tychonoff space.

Now, we can compare the topologies. We have Ck(X) ≤ Cq(X) since K(X) ⊆ QC(X). But to compare
the quasicompact-open topology and the topology of uniform convergence, we need the following theorem.

Theorem 2.1. For any space X, the quasicompact-open topology on C(X) is the same as the topology of
uniform convergence on the quasicompact subsets of X, that is, Cq(X) = Cq,u(X).

Proof. Assume that S(A, V ) is a subbasic open set in Cq(X) and f ∈ S(A, V ). Recall that compact and
quasicompact subsets of R are equivalent. Since f(A) is compact and f(A) ⊆ V , there exists ε > 0 such that
(f(A)−ε, f(A)+ε) ⊆ V (see [5, Corollay 4.1.14]). If g ∈ BA(f, ε) and x ∈ A, then we obtain g(x) ∈ (f(x)−ε,
f(x) + ε). Hence, we find g(A) ⊆ V , i.e. g ∈ S(A, V ). It follows that BA(f, ε) ⊆ S(A, V ). Consequently,
Cq(X) ≤ Cq,u(X).

Now, let BA(f, ε) be a basic neighborhood of f in Cq,u(X). Then, there exist f(x1), f(x2), . . . , f(xn) in
f(A) such that f(A) ⊆ ∪ni=1(f(xi)− ε

3 , f(xi)+ ε
3) since f(A) is compact. If we take Vi = (f(xi)− ε

3 , f(xi)+ ε
3)

and Wi = (f(xi) − 2ε
3 , f(xi) + 2ε

3 ), we find Vi ⊆ Wi. Also f(A) ⊆ ∪ni=1Vi ⊆ ∪ni=1Vi. Let Ai = A ∩ f−1(Vi),
where clearly each Ai is quasicompact and A = ∪ni=1Ai. We have f(Ai) ⊆ Vi ⊆Wi and so f ∈ ∩ni=1S(Ai,Wi).
Now we need to show that ∩ni=1S(Ai,Wi) ⊆ BA(f, ε). Suppose that g ∈ ∩ni=1S(Ai,Wi) and x ∈ A. Thus,
there exists an i such that x ∈ Ai and consequently, f(x) ∈ Vi and g(x) ∈ Wi. Since |f(x)− g(x)| ≤
|f(x)− f(xi)|+ |f(xi)− g(x)| < ε

3 + 2ε
3 = ε, then g ∈ BA(f, ε). Hence, Cq,u(X) ≤ Cq(X).

Corollary 2.2. For any space X, Cq(X) = Cq,u(X) ≤ Cu(X).

From this result, we obtain the following.

Corollary 2.3. For any space X, Ck(X) ≤ Cq(X) ≤ Cu(X).

Note that in a perfectly normal space, every open set is a cozero-set and consequently, a quasicompact
space is compact. Thus, for a perfectly normal space X, Ck(X) = Cq(X).

Theorem 2.4. For any space X, Cq(X) = Cu(X) if and only if X is quasicompact.

Proof. Let Cq(X) = Cu(X). We know that Cq(X) = Cq,u(X) by Theorem 2.1. So, Cu(X) = Cq,u(X).
Thus, BX(f, ε) in Cu(X) is also basic neighborhood of f in Cq,u(X) and so X is quasicompact.

Conversely, suppose that X is quasicompact. It follows that for each f ∈ C(X) and each ε > 0, BX(f, ε)
is a basic open set in Cq(X). Consequently, Cq(X) = Cu(X).

We know that for a compact space X, Ck(X) = Cu(X). Then we can give the following example.

Example 2.5. For any compact space X, Ck(X) = Cq(X) = Cu(X).

If X is both realcompact and pseudocompact, then it is compact [8, Problem 5H]. Also every Lindelöf
space is realcompact [8, Theorem 8.2]. Thus, we get the following result.

Theorem 2.6. For any Lindelöf space X, Ck(X) = Cq(X).

Proof. We know that every quasicompact space is pseudocompact. Considering the above description,
Lindelöf quasicompact space is compact and consequently, Ck(X) = Cq(X) by Example 2.5.

Since every countable or second countable space is Lindelöf, we obtain the following result.

Corollary 2.7. For any countable or second countable space X, Ck(X) = Cq(X).
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Example 2.8. Let X denote the set of positive integers endowed with the particular point topology [22,
Example 9]. The space X is a quasicompact, but not compact. Thus, we obtain Ck(X) ≤ Cq(X) = Cu(X).

Example 2.9. Let X be the prime integer topology [22, Example 61]. The space X is a quasicompact, but
not compact [1]. This yields Ck(X) ≤ Cq(X) = Cu(X).

Example 2.10. Let X = R and define a topology on X by requiring that a neighborhood of a point x
is any set containing x which contains all the rationals in an open interval around x [21]. The space X is
quasicompact, but not compact [4]. It follows that Ck(X) ≤ Cq(X) = Cu(X).

Example 2.11. Hewitt’s example [11] of a regular space X on which every continuous real-valued function
is constant is a quasicompact space which is not compact [13]. For this space X, we have Ck(X) ≤ Cq(X) =
Cu(X).

Example 2.12. Let X be the skyline space [10]. The space X is a quasicompact, but not compact [14].
Hence, we obtain Ck(X) ≤ Cq(X) = Cu(X).

Example 2.13. Let X = N and define a topology on X by taking every odd integer to be open and a set
U is open if for every even integer p ∈ U , the predecessor and the successor of p are also in U [14]. From
this it follows that Ck(X) ≤ Cq(X) = Cu(X).

3. Main Results on Cq(X)

In this section, we study the submetrizability, metrizability, separability, and second countability of
Cq(X). First, we provide some natural functions which play a useful role in studying the topological
properties of function spaces.

If f : X → Y is a continuous function, then the induced function of f , denoted by f∗ : C(Y )→ C(X) is
defined by f∗(g) = g ◦ f for all g ∈ C(Y ).

Given a nonempty set X a topological space Y , a function f : X → Y is called almost onto if f(X) is
dense in Y .

Theorem 3.1. Let f : X → Y be a continuous function between two spaces X and Y . Then we have the
following.

1. f∗ : Cq(Y )→ Cq(X) is continuous;

2. for normal space Y , if f is one-to-one, then f∗ : Cq(Y )→ Cq(X) is almost onto;

3. f∗ : C(Y )→ C(X) is one-to-one if and only if f is almost onto [19].

Proof. (1) Let g ∈ Cq(Y ) and S(A, V ) be a basic neighborhood of f∗(g) in Cq(X). It is easily seen that
f∗(g) = g ◦ f ∈ S(A, V ) if and only if g ∈ S(f(A), V ). Then f∗(S(f(A), V )) = S(A, V ) and consequently,
f∗ is continuous.

The proof of (2) is similar to 2(a) in [18].

Another kind of useful function on function spaces is the sum function. Let {Xi : i ∈ I} be a family of
topological spaces. If ⊕Xi denotes their topological sum, then the sum function s is defined by s : C(⊕Xi)→∏
{C(Xi) : i ∈ I} where s(f) = f |Xi for each f ∈ C(⊕Xi).

Theorem 3.2. Let {Xi : i ∈ I} be a family of spaces. Then the sum function s : C(⊕Xi)→
∏
{C(Xi) : i ∈

I} is a homeomorphism.

Proof. The proof is similar to Theorem 4.10 in [15].

A space X is said to be submetrizable if it has a weaker metrizable topology, equivalently if there exists
a metrizable space Y and a continuous bijection f : X → Y from the space X onto Y .

In a topological space a Gδ-set is a set which can be written as the intersection of a countable collection
of open sets.
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Remark 3.3.

1. For any space X, if the set {(x, x) : x ∈ X} is a Gδ-set (resp. zero-set) in the product space X ×X,
then X is said to have a Gδ-diagonal (resp. zero-set diagonal). Every submetrizable space X has a
Gδ-diagonal. Consequently, every submetrizable space X has a zero-set diagonal since a zero-set is a
Gδ-set.

2. A space X is called an E0-space if every point in the space is a Gδ-set. The submetrizable spaces are
E0-spaces.

Proposition 3.4. If X is a submetrizable space then all quasicompact subsets of X are Gδ-sets.

Proof. Let X be submetrizable. Then there exists a continuous bijection f : X → Y from the space X onto
a metrizable space Y . Let A be a quasicompact subset of X. Then f(A) is compact in the metric space Y .
Since a closed set in a metric space is a Gδ-set, f(A) is a Gδ-set in Y . In other words, f(A) = ∩∞n=1Gn,
where Gn is an open subset of Y for each n. It follows that A = ∩∞n=1f

−1(Gn) and so A is a Gδ-set.

A space X is called σ-quasicompact if there exists a sequence {An} of quasicompact sets in X such that
X = ∪∞n=1An. By using this fact we obtain the following result.

Theorem 3.5. For any space X, the following are equivalent.

1. Cq(X) is submetrizable.

2. Every quasicompact subset of Cq(X) is a Gδ-set in Cq(X).

3. Every compact subset of Cq(X) is a Gδ-set in Cq(X).

4. Cq(X) is an E0-space.

5. X is σ-quasicompact.

6. Cq(X) has a zero-set-diagonal.

7. Cq(X) has a Gδ-diagonal.

Proof. The implications (1)⇒ (2)⇒ (3)⇒ (4) follow from Proposition 3.4.
(4)⇒ (5) If Cq(X) is an E0-space, then the constant zero function f0 defined on X is a Gδ-set. Suppose

that ∩∞n=1BAn(f0, εn) = {f0} where each An is quasicompact subset in X and εn > 0. We need to show
that X = ∪∞n=1An. Assume that x0 ∈ X \ ∪∞n=1An. Hence there exists a continuous function f1 : X → [0, 1]
such that f1(x) = 0 for all x ∈ ∪∞n=1An and f1(x0) = 1. Since f1(x) = 0 for all x ∈ An, f1 ∈ BAn(f0, εn) for
all n and thus, f1 ∈ ∩∞n=1BAn(f0, εn) = {f0}, that is, f1 is the zero function on X. But f1(x0) = 1. This
contradicts the hypothesis, hence X is σ-quasicompact.

(5) ⇒ (4) Assume that X is σ-quasicompact and f ∈ Cq(X). Now we need to prove that {f} =
∩∞n=1BAn(f, 1n). Let g ∈ ∩∞n=1BAn(f, 1n) and x ∈ X. Then there exists m ∈ N such that x ∈ An for all
n ≥ m. Then we find |g(x)− f(x)| ≤ 1

n for all n ≥ m. Thus g(x) = f(x) and consequently Cq(X) is an
E0-space.

(5) ⇒ (1) Suppose that X = ∪∞n=1An, where each An is quasicompact. Let S = ⊕{An : n ∈ N} be
the topological sum of the An and let φ : S → X be the natural function. Thus, the induced function
φ∗ : Cq(X) → Cq(S) defined by φ∗(f) = f ◦ φ is continuous. We need to show that φ∗ is one-to-one.
Let φ∗(g1) = φ∗(g2). So, g1 and g2 are equal on ∪∞n=1An. So g1 − g2 ∈ ∩∞n=1BAn(f0, εn) = {f0}. Hence,
g1 = g2 and consequently, φ∗ is one-to-one. By Theorem 3.2, Cq(⊕{An : n ∈ N}) is homeomorphic to∏
{Cq(An) : n ∈ N}. But each Cq(An) is metrizable by Theorem 2.4. Since Cq(S) is metrizable and φ∗ is a

continuous injection, Cq(X) is submetrizable.
The implications (1)⇒ (6)⇒ (7)⇒ (4) are immediate from Remark 3.3.

Lemma 3.6. In a completely regular submetrizable space, the notions of compactness and quasicompactness
coincide.
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Proof. Since pseudocompact completely regular submetrizable space is metrizable [17, Corollary 2.7] and
every quasicompact space is pseudocompact, then the notions of compactness and quasicompactness coin-
cide.

Corollary 3.7. Let X be σ-quasicompact. Then compact and quasicompact subsets of Cq(X) are equivalent.

Proof. If X is σ-quasicompact, then Cq(X) is submetrizable by Theorem 3.5. Also we know that Cq(X)
is Tychonoff (completely regular Hausdorff). Hence, compact and quasicompact subsets of Cq(X) are
equivalent by Lemma 3.6.

A space X is called a q-space if for each point x ∈ X, there exists a sequence {Un : n ∈ N} of
neighborhoods of x such that if xn ∈ Un for each n, then {xn : n ∈ N} has a cluster point. This fact yields
the following theorem.

Theorem 3.8. For any space X, the following are equivalent.

1. Cq(X) is metrizable.

2. Cq(X) is first countable.

3. Cq(X) is a q-space.

4. X is hemiquasicompact; that is, there exists a sequence of quasicompact sets {An} in X such that for
any quasicompact subset A of X, A ⊆ An holds for some n.

Proof. (1)⇒ (2)⇒ (3) are all immediate.
(3)⇒ (4) Suppose that Cq(X) is a q-space. Hence, there exists a sequence {Un : n ∈ N} of neighborhoods

of the zero function f0 in Cq(X) such that if gn ∈ Un for each n, then {gn : n ∈ N} has a cluster point in
Cq(X). Now for each n, there exists a quasicompact subset An of X and εn > 0 such that f0 ∈ BAn(f0, εn) ⊆
Un. Let A be a quasicompact subset of X. If possible, suppose that A is not a subset of An for any n ∈ N.
Then for each n ∈ N, there exists an ∈ A \ An. So for each n ∈ N, there exists a continuous function
gn : X → R such that gn(an) = n and gn(x) = 0 for all x ∈ An. It is clear that gn ∈ BAn(f0, εn). Suppose
that this sequence has a cluster point g in Cq(X). Then for each k ∈ N, there exists a positive integer nk > k
such that gnk ∈ BA(g, 1). Thus, g(ank) > gnk(ank)− 1 = nk − 1 ≥ k for all k ∈ N. But this means that g is
unbounded on the quasicompact set A. Hence, the sequence {gn}n∈N cannot have a cluster point in Cq(X)
and consequently, Cq(X) fails to be a q-space. Thus, X must be hemiquasicompact.

(4) ⇒ (1) Here we need the well-known result which says that if the topology of a locally convex
Hausdorff space is generated by a countable family of seminorms, then it is metrizable(see page 119 in [23]).
Now the locally convex topology on C(X) generated by the countable family of seminorms {pAn : n ∈ N}
is metrizable and weaker than the quasicompact-open topology. But since for each quasicompact set A in
X, there exists An such that A ⊆ An, the locally convex topology generated by the family of seminorms
{pA : A ∈ QC(X)}, that is, the quasicompact-open topology is weaker than the topology generated by the
family of seminorms {pAn : n ∈ N}. Hence, Cq(X) is metrizable.

Proposition 3.9. Let X be locally compact and second countable. Then Cq(X) is second countable.

Proof. Since regular second countable space X is metrizable by Urysohn’s Metrization Theorem, then
Ck(X) = Cq(X). We know that Ck(X) is second countable by [18] it follows that Cq(X) is second count-
able.

Theorem 3.10. For any space X, the following are equivalent.

1. Cq(X) is separable.

2. Ck(X) is separable.

3. X has a weaker separable metrizable topology.
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Proof. (1)⇒ (2) is straightforward and proof of (2)⇒ (3) was given in [18].
(3) ⇒ (1). If X has a weaker separable metrizable topology, then X is embeddable into Hilbert cube

Iω (see [5, Theorem 4.2.10]). Let f : X → Iω be a continuous injection. Then the induced function
f∗ : C(Iω) → Cq(X) is almost onto by Theorem 3.1. Since C(Iω) is second countable by Proposition 3.9,
then Cq(X) must be separable.

Corollary 3.11. Let X be completely regular space. If Cq(X) is separable, then Ck(X) = Cq(X).

Proof. If Cq(X) is separable, X is submetrizable. Since X is completely regular and submetrizable, compact
and quasicompact subsets of X are equivalent by Lemma 3.6. Consequently, Ck(X) = Cq(X).

Example 3.12. Since R is a separable metric space, Cq(R) is separable. Thus, we have Ck(R) = Cq(R).

Example 3.13. Let X be a countable discrete space. Then Cq(X) is separable and so Ck(X) = Cq(X).

Corollary 3.14. Let X be quasicompact space. If X is metrizable, then Cq(X) is separable.

Proof. If X is metrizable and quasicompact, then X is compact. Since X is compact and metrizable, then
X is separable and consequently, Cq(X) is separable.

Note that converse of Corollary 3.14 is not always true. If Cq(X) is separable, then X is submetrizable.
But a quasicompact submetrizable space need not be metrizable. An example of this, the space E ∩ [0, 1] of
[8, Problem 3J] is quasicompact and submetrizable, but not metrizable. If X is completely regular, then is
metrizable by Corollary 2.7 in [17]. Then we can give the following theorem.

Theorem 3.15. Let X be quasicompact and completely regular space. Cq(X) is separable if and only if X
is compact and metrizable.

Proof. If Cq(X) is separable, then X is submetrizable by Theorem 3.10. Since quasicompact completely
regular submetrizable space is metrizable, X is metrizable and by Lemma 3.6, X is compact.

The sufficiency part follows from Corollary 3.14.

A topological space is said to be hemicompact if it has a sequence of compact subsets such that every
compact subset of the space lies inside some compact set in the sequence.

Theorem 3.16. For a locally compact space X, the following are equivalent.

1. Cq(X) is second countable.

2. Ck(X) is second countable.

3. X is hemicompact and submetrizable.

Proof. (1) ⇔ (2) If either Cq(X) or Ck(X) is second countable, then it is separable and submetrizable by
Theorem 3.10. We know that regular separable space is normal. Consequently, Ck(X) = Cq(X).

(2) ⇒ (3) If Ck(X) is second countable, then it is submetrizable as well as it is separable. Hence, X is
hemicompact and submetrizable.

(3) ⇒ (2) If X is hemicompact, then Ck(X) is metrizable. Note that X, being hemicompact, is Lin-
delöf. Since X is also submetrizable, X has a separable metrizable compression and consequently, Ck(X) is
separable. Thus, Ck(X) is second countable.

Considering Corollary 3.11, we obtain the following result.

Corollary 3.17. Let X be a completely regular space. If Cq(X) is second countable, then Ck(X) = Cq(X).

Note that if X is locally compact, then X is hemicompact if and only if X is either Lindelöf or σ-compact
in [5, Exercises 3.8.C]. Hence, by using Theorem 3.16 and Proposition 3.9, we have the following result.
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Theorem 3.18. For a locally compact space X, the following statements are equivalent.

1. Cq(X) is second countable.

2. Ck(X) is second countable.

3. X is hemicompact and submetrizable.

4. X is σ-compact and submetrizable.

5. X is Lindelöf and submetrizable.

6. X is second countable.

Proof. From Theorem 3.16, we obtain (1)⇔ (2)⇔ (3). Also by [5, Exercises 3.8.C], we get (3)⇔ (4)⇔ (5).
It is easy to see that (6)⇒ (1) from Proposition 3.9.

Now, it is sufficient to show that (5)⇒ (6). Since X is locally compact, for each x ∈ X, there exists an
open set Vx in X such that x ∈ Vx and Vx is compact. Note that {Vx : x ∈ X} is an open cover of X. But
X is Lindelöf and consequently, there exists a countable subset {xn : n ∈ N} of X such that X = ∪∞n=1Vxn .
Since X is separable submetrizable by Theorem 3.10 and each Vxn is compact, each Vxn is metrizable and
so each Vxn is second countable. Consequently, each Vxn is also second countable and X becomes the union
of a countable family of second countable open subsets of X. Hence, X is second countable.
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