**Research** Article



Journal of Nonlinear Science and Applications Print: ISSN 2008-1898 Online: ISSN 2008-1901



# Some properties of the quasicompact-open topology on C(X)

Deniz Tokat\*, İsmail Osmanoğlu

Department of Mathematics, Faculty of Arts and Sciences, Nevsehir Hacı Bektaş Veli University, 50300 Nevsehir, Turkey.

Communicated by R. Saadati

## Abstract

This paper introduces quasicompact-open topology on C(X) and compares this topology with the compact-open topology and the topology of uniform convergence. Then it examines submetrizability, metrizability, separability, and second countability of the quasicompact-open topology on C(X). (C)2016 All rights reserved.

*Keywords:* Function space, set-open topology, compact-open topology, quasicompactness, separability, submetrizability, second countability. 2010 MSC: 54C35, 54D65, 54E35.

## 1. Introduction and Preliminaries

There are several natural topologies that can be placed on C(X) of all continuous real-valued functions on space X. The idea of defining a topology on C(X) emerges from the studies of convergence of sequences of functions. The two major classes of topologies on C(X) are the set-open topologies and the uniform topologies. The well-known set-open topologies are the point-open topology (or the topology of pointwise convergence) and the compact-open topology. The compact-open topology was introduced by Fox [6] in 1945 and soon after was developed by Arens in [2] and by Arens and Dugundji in [3]. It is shown in [12]that this topology is the proper setting to study sequences of functions converging uniformly on compact subsets. Thus, the compact-open topology is sometimes called the topology of uniform convergence on compact sets. Therefore, there have been many topologies that lie between the compact-open topology and

<sup>\*</sup>Corresponding author

Email addresses: dtokat@nevsehir.edu.tr (Deniz Tokat), ismailosmanoglu@yahoo.com (İsmail Osmanoğlu)

the topology of uniform convergence, such as the  $\sigma$ -compact-open topology [9], the bounded-open topology [16], the pseudocompact-open topology [15], and the C-compact-open topology [20].

In the present paper, we introduce quasicompact-open topology on C(X) and compare this topology with the compact-open topology and the topology of uniform convergence. We investigate the properties of the quasicompact-open topology on C(X) such as submetrizability, metrizability, separability, and second countability.

A topological space X is called *functionally Hausdorff* (or *completely Hausdorff*) if for any distinct points  $x, y \in X$  there exists a continuous real function f on X such that f(x) = 0 and f(y) = 1, equivalently  $f(x) \neq f(y)$ . This property lies strictly between the Hausdorffness and the complete regularity.

Unless otherwise stated clearly, throughout this paper, all spaces are assumed to be functionally Hausdorff.

If X and Y are any two topological spaces with the same underlying set, then we use the notation X = Y,  $X \leq Y$ , and X < Y to indicate, respectively, that X and Y have the same topology, that the topology on Y is finer than or equal to the topology on X, and that the topology on Y is strictly finer than the topology on X.

We denote  $\overline{A}$  and  $A^{\circ}$  the closure and the interior of a set A, respectively. If  $A \subseteq X$  and  $f \in C(X)$ , then we use the notation  $f|_A$  for the restriction of the function f to the set A. As usual, f(A) and  $f^{-1}(A)$ are the image and the preimage of the set A under the mapping f, respectively. We denote by  $\mathbb{N}$  the set of natural numbers and by  $\mathbb{R}$  the real line with the natural topology. Finally, the constant zero function in C(X) is denoted by  $f_0$ .

#### 2. The quasicompact-open topology and its comparison with other topologies

In this section, we define the quasicompact-open topology on C(X) and also give some equivalent definitions. Then we compare the quasicompact-open topology with the compact-open topology and the topology of uniform convergence.

A subset A of X is called a *zero-set* if there is a continuous real-valued function f defined on X such that  $A = \{x \in X : f(x) = 0\}$ . The complement of a zero-set is called a cozero-set. A space X is said to be *quasicompact* [7] if every covering of X by cozero-sets admits a finite subcollection which covers X, also known as z-compact space. For more information see [7].

We recall that any compact space is quasicompact and the continuous image of a quasicompact space is quasicompact[4]. We also note that the closure of a quasicompact subset is quasicompact and any quasicompact space is pseudocompact [4].

Let  $\alpha$  be a nonempty collection of subsets of a space X. Then various topologies on C(X) has a subbase consisting of the sets  $S(A, V) = \{f \in C(X) : f(A) \subseteq V\}$ , where  $A \in \alpha$  and V is an open subset of real line  $\mathbb{R}$ , and the function space C(X) endowed with these topologies is denoted by  $C_{\alpha}(X)$ . The topology defined in this way is called the *set-open topology*.

Now let QC(X) denote the collection of all quasicompact subsets of X. For the quasicompact-open topology on C(X), we take as subbase, the collection  $\{S(A, V) : A \in QC(X), V \text{ is open in } \mathbb{R}\}$  and we denote the corresponding space by  $C_q(X)$ . Let K(X) denote the collection of all compact subsets of X. The compact-open topology on C(X) is defined similarly and is denoted by  $C_k(X)$ .

Let  $\alpha = QC(X)$  and  $\overline{\alpha} = \{\overline{A} : A \in \alpha\}$ . Then note that the quasicompact-open topology is obtained if  $\alpha$  is replaced by  $\overline{\alpha}$ . This is because for each  $f \in C(X)$  we have  $f(\overline{A}) \subseteq \overline{f(A)} = f(A)$ .

The topology of uniform convergence on members of  $\alpha$  has as base at each point  $f \in C(X)$  the family of all sets of the form  $B_A(f, \epsilon) = \{g \in C(X) : \sup |f(x) - g(x)| < \epsilon \text{ for all } x \in A\}$ , where  $A \in \alpha$  and  $\epsilon > 0$ . The space C(X) having the topology of uniform convergence on  $\alpha$  is denoted by  $C_{\alpha,u}(X)$ . For  $\alpha = QC(X)$ , we denote the corresponding space by  $C_{q,u}(X)$ . In the case that  $\alpha = \{X\}$ , the topology on C(X) is called the topology of uniform convergence or uniform topology and denoted by  $C_u(X)$ .

There is another way to consider the quasicompact-open topology on C(X). For each  $A \in QC(X)$ and  $\epsilon > 0$ , we define the seminorm  $p_A$  on C(X) and  $V_{A,\epsilon}$ , as follow:  $p_A(f) = \sup\{|f(x)| : x \in A\}$  and  $V_{A,\epsilon} = \{f \in C(X) : p_A(f) < \epsilon\}$ . Let  $\mathcal{V} = \{V_{A,\epsilon} : A \in QC(X), \epsilon > 0\}$ . Then for each  $f \in C(X)$ ,  $f + \mathcal{V} = \{f + V : V \in \mathcal{V}\}$  forms a neighborhood base at f. This topology is locally convex since it is generated by a collections of seminorms and it is the same as the quasicompact-open topology on C(X). It is also easy to see that this topology is Hausdorff.  $C_q(X)$ , being a locally convex Hausdorff space, is a Tychonoff space.

Now, we can compare the topologies. We have  $C_k(X) \leq C_q(X)$  since  $K(X) \subseteq QC(X)$ . But to compare the quasicompact-open topology and the topology of uniform convergence, we need the following theorem.

**Theorem 2.1.** For any space X, the quasicompact-open topology on C(X) is the same as the topology of uniform convergence on the quasicompact subsets of X, that is,  $C_q(X) = C_{q,u}(X)$ .

Proof. Assume that S(A, V) is a subbasic open set in  $C_q(X)$  and  $f \in S(A, V)$ . Recall that compact and quasicompact subsets of  $\mathbb{R}$  are equivalent. Since f(A) is compact and  $f(A) \subseteq V$ , there exists  $\epsilon > 0$  such that  $(f(A)-\epsilon, f(A)+\epsilon) \subseteq V$  (see [5, Corollay 4.1.14]). If  $g \in B_A(f, \epsilon)$  and  $x \in A$ , then we obtain  $g(x) \in (f(x)-\epsilon,$  $f(x) + \epsilon)$ . Hence, we find  $g(A) \subseteq V$ , i.e.  $g \in S(A, V)$ . It follows that  $B_A(f, \epsilon) \subseteq S(A, V)$ . Consequently,  $C_q(X) \leq C_{q,u}(X)$ .

Now, let  $B_A(f,\epsilon)$  be a basic neighborhood of f in  $C_{q,u}(X)$ . Then, there exist  $f(x_1), f(x_2), \ldots, f(x_n)$  in f(A) such that  $f(A) \subseteq \bigcup_{i=1}^n (f(x_i) - \frac{\epsilon}{3}, f(x_i) + \frac{\epsilon}{3})$  since f(A) is compact. If we take  $V_i = (f(x_i) - \frac{\epsilon}{3}, f(x_i) + \frac{\epsilon}{3})$  and  $W_i = (f(x_i) - \frac{2\epsilon}{3}, f(x_i) + \frac{2\epsilon}{3})$ , we find  $\overline{V_i} \subseteq W_i$ . Also  $f(A) \subseteq \bigcup_{i=1}^n V_i \subseteq \bigcup_{i=1}^n \overline{V_i}$ . Let  $A_i = A \cap f^{-1}(\overline{V_i})$ , where clearly each  $A_i$  is quasicompact and  $A = \bigcup_{i=1}^n A_i$ . We have  $f(A_i) \subseteq \overline{V_i} \subseteq W_i$  and so  $f \in \bigcap_{i=1}^n S(A_i, W_i)$ . Now we need to show that  $\bigcap_{i=1}^n S(A_i, W_i) \subseteq B_A(f, \epsilon)$ . Suppose that  $g \in \bigcap_{i=1}^n S(A_i, W_i)$  and  $x \in A$ . Thus, there exists an i such that  $x \in A_i$  and consequently,  $f(x) \in \overline{V_i}$  and  $g(x) \in W_i$ . Since  $|f(x) - g(x)| \leq |f(x) - f(x_i)| + |f(x_i) - g(x)| < \frac{\epsilon}{3} + \frac{2\epsilon}{3} = \epsilon$ , then  $g \in B_A(f, \epsilon)$ . Hence,  $C_{q,u}(X) \leq C_q(X)$ .

Corollary 2.2. For any space X,  $C_q(X) = C_{q,u}(X) \leq C_u(X)$ .

From this result, we obtain the following.

**Corollary 2.3.** For any space  $X, C_k(X) \leq C_q(X) \leq C_u(X)$ .

Note that in a perfectly normal space, every open set is a cozero-set and consequently, a quasicompact space is compact. Thus, for a perfectly normal space X,  $C_k(X) = C_q(X)$ .

**Theorem 2.4.** For any space X,  $C_q(X) = C_u(X)$  if and only if X is quasicompact.

*Proof.* Let  $C_q(X) = C_u(X)$ . We know that  $C_q(X) = C_{q,u}(X)$  by Theorem 2.1. So,  $C_u(X) = C_{q,u}(X)$ . Thus,  $B_X(f, \epsilon)$  in  $C_u(X)$  is also basic neighborhood of f in  $C_{q,u}(X)$  and so X is quasicompact.

Conversely, suppose that X is quasicompact. It follows that for each  $f \in C(X)$  and each  $\epsilon > 0$ ,  $B_X(f, \epsilon)$  is a basic open set in  $C_q(X)$ . Consequently,  $C_q(X) = C_u(X)$ .

We know that for a compact space  $X, C_k(X) = C_u(X)$ . Then we can give the following example.

**Example 2.5.** For any compact space X,  $C_k(X) = C_q(X) = C_u(X)$ .

If X is both realcompact and pseudocompact, then it is compact [8, Problem 5H]. Also every Lindelöf space is realcompact [8, Theorem 8.2]. Thus, we get the following result.

**Theorem 2.6.** For any Lindelöf space X,  $C_k(X) = C_q(X)$ .

*Proof.* We know that every quasicompact space is pseudocompact. Considering the above description, Lindelöf quasicompact space is compact and consequently,  $C_k(X) = C_q(X)$  by Example 2.5.

Since every countable or second countable space is Lindelöf, we obtain the following result.

**Corollary 2.7.** For any countable or second countable space X,  $C_k(X) = C_q(X)$ .

**Example 2.8.** Let X denote the set of positive integers endowed with the particular point topology [22, Example 9]. The space X is a quasicompact, but not compact. Thus, we obtain  $C_k(X) \leq C_q(X) = C_u(X)$ .

**Example 2.9.** Let X be the prime integer topology [22, Example 61]. The space X is a quasicompact, but not compact [1]. This yields  $C_k(X) \leq C_q(X) = C_u(X)$ .

**Example 2.10.** Let  $X = \mathbb{R}$  and define a topology on X by requiring that a neighborhood of a point x is any set containing x which contains all the rationals in an open interval around x [21]. The space X is quasicompact, but not compact [4]. It follows that  $C_k(X) \leq C_q(X) = C_u(X)$ .

**Example 2.11.** Hewitt's example [11] of a regular space X on which every continuous real-valued function is constant is a quasicompact space which is not compact [13]. For this space X, we have  $C_k(X) \leq C_q(X) = C_u(X)$ .

**Example 2.12.** Let X be the skyline space [10]. The space X is a quasicompact, but not compact [14]. Hence, we obtain  $C_k(X) \leq C_q(X) = C_u(X)$ .

**Example 2.13.** Let  $X = \mathbb{N}$  and define a topology on X by taking every odd integer to be open and a set U is open if for every even integer  $p \in U$ , the predecessor and the successor of p are also in U [14]. From this it follows that  $C_k(X) \leq C_q(X) = C_u(X)$ .

### 3. Main Results on $C_q(X)$

In this section, we study the submetrizability, metrizability, separability, and second countability of  $C_q(X)$ . First, we provide some natural functions which play a useful role in studying the topological properties of function spaces.

If  $f: X \to Y$  is a continuous function, then the induced function of f, denoted by  $f^*: C(Y) \to C(X)$  is defined by  $f^*(g) = g \circ f$  for all  $g \in C(Y)$ .

Given a nonempty set X a topological space Y, a function  $f: X \to Y$  is called almost onto if f(X) is dense in Y.

**Theorem 3.1.** Let  $f : X \to Y$  be a continuous function between two spaces X and Y. Then we have the following.

- 1.  $f^*: C_q(Y) \to C_q(X)$  is continuous;
- 2. for normal space Y, if f is one-to-one, then  $f^*: C_q(Y) \to C_q(X)$  is almost onto;
- 3.  $f^*: C(Y) \to C(X)$  is one-to-one if and only if f is almost onto [19].

*Proof.* (1) Let  $g \in C_q(Y)$  and S(A, V) be a basic neighborhood of  $f^*(g)$  in  $C_q(X)$ . It is easily seen that  $f^*(g) = g \circ f \in S(A, V)$  if and only if  $g \in S(f(A), V)$ . Then  $f^*(S(f(A), V)) = S(A, V)$  and consequently,  $f^*$  is continuous.

The proof of (2) is similar to 2(a) in [18].

Another kind of useful function on function spaces is the sum function. Let  $\{X_i : i \in I\}$  be a family of topological spaces. If  $\oplus X_i$  denotes their topological sum, then the sum function s is defined by  $s : C(\oplus X_i) \to \prod \{C(X_i) : i \in I\}$  where  $s(f) = f|_{X_i}$  for each  $f \in C(\oplus X_i)$ .

**Theorem 3.2.** Let  $\{X_i : i \in I\}$  be a family of spaces. Then the sum function  $s : C(\oplus X_i) \to \prod \{C(X_i) : i \in I\}$  is a homeomorphism.

*Proof.* The proof is similar to Theorem 4.10 in [15].

A space X is said to be *submetrizable* if it has a weaker metrizable topology, equivalently if there exists a metrizable space Y and a continuous bijection  $f: X \to Y$  from the space X onto Y.

In a topological space a  $G_{\delta}$ -set is a set which can be written as the intersection of a countable collection of open sets.

Remark 3.3.

- 1. For any space X, if the set  $\{(x, x) : x \in X\}$  is a  $G_{\delta}$ -set (resp. zero-set) in the product space  $X \times X$ , then X is said to have a  $G_{\delta}$ -diagonal (resp. zero-set diagonal). Every submetrizable space X has a  $G_{\delta}$ -diagonal. Consequently, every submetrizable space X has a zero-set diagonal since a zero-set is a  $G_{\delta}$ -set.
- 2. A space X is called an  $E_0$ -space if every point in the space is a  $G_{\delta}$ -set. The submetrizable spaces are  $E_0$ -spaces.

**Proposition 3.4.** If X is a submetrizable space then all quasicompact subsets of X are  $G_{\delta}$ -sets.

*Proof.* Let X be submetrizable. Then there exists a continuous bijection  $f: X \to Y$  from the space X onto a metrizable space Y. Let A be a quasicompact subset of X. Then f(A) is compact in the metric space Y. Since a closed set in a metric space is a  $G_{\delta}$ -set, f(A) is a  $G_{\delta}$ -set in Y. In other words,  $f(A) = \bigcap_{n=1}^{\infty} G_n$ , where  $G_n$  is an open subset of Y for each n. It follows that  $A = \bigcap_{n=1}^{\infty} f^{-1}(G_n)$  and so A is a  $G_{\delta}$ -set.  $\Box$ 

A space X is called  $\sigma$ -quasicompact if there exists a sequence  $\{A_n\}$  of quasicompact sets in X such that  $X = \bigcup_{n=1}^{\infty} A_n$ . By using this fact we obtain the following result.

**Theorem 3.5.** For any space X, the following are equivalent.

- 1.  $C_q(X)$  is submetrizable.
- 2. Every quasicompact subset of  $C_q(X)$  is a  $G_{\delta}$ -set in  $C_q(X)$ .
- 3. Every compact subset of  $C_q(X)$  is a  $G_{\delta}$ -set in  $C_q(X)$ .
- 4.  $C_q(X)$  is an  $E_0$ -space.
- 5. X is  $\sigma$ -quasicompact.
- 6.  $C_q(X)$  has a zero-set-diagonal.
- 7.  $C_q(X)$  has a  $G_{\delta}$ -diagonal.

*Proof.* The implications  $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$  follow from Proposition 3.4.

(4)  $\Rightarrow$  (5) If  $C_q(X)$  is an  $E_0$ -space, then the constant zero function  $f_0$  defined on X is a  $G_{\delta}$ -set. Suppose that  $\bigcap_{n=1}^{\infty} B_{A_n}(f_0, \epsilon_n) = \{f_0\}$  where each  $A_n$  is quasicompact subset in X and  $\epsilon_n > 0$ . We need to show that  $X = \bigcup_{n=1}^{\infty} A_n$ . Assume that  $x_0 \in X \setminus \bigcup_{n=1}^{\infty} A_n$ . Hence there exists a continuous function  $f_1 : X \to [0, 1]$ such that  $f_1(x) = 0$  for all  $x \in \bigcup_{n=1}^{\infty} A_n$  and  $f_1(x_0) = 1$ . Since  $f_1(x) = 0$  for all  $x \in A_n$ ,  $f_1 \in B_{A_n}(f_0, \epsilon_n)$  for all n and thus,  $f_1 \in \bigcap_{n=1}^{\infty} B_{A_n}(f_0, \epsilon_n) = \{f_0\}$ , that is,  $f_1$  is the zero function on X. But  $f_1(x_0) = 1$ . This contradicts the hypothesis, hence X is  $\sigma$ -quasicompact.

(5)  $\Rightarrow$  (4) Assume that X is  $\sigma$ -quasicompact and  $f \in C_q(X)$ . Now we need to prove that  $\{f\} = \bigcap_{n=1}^{\infty} B_{A_n}(f, \frac{1}{n})$ . Let  $g \in \bigcap_{n=1}^{\infty} B_{A_n}(f, \frac{1}{n})$  and  $x \in X$ . Then there exists  $m \in \mathbb{N}$  such that  $x \in A_n$  for all  $n \geq m$ . Then we find  $|g(x) - f(x)| \leq \frac{1}{n}$  for all  $n \geq m$ . Thus g(x) = f(x) and consequently  $C_q(X)$  is an  $E_0$ -space.

 $(5) \Rightarrow (1)$  Suppose that  $X = \bigcup_{n=1}^{\infty} A_n$ , where each  $A_n$  is quasicompact. Let  $S = \bigoplus \{A_n : n \in \mathbb{N}\}$  be the topological sum of the  $A_n$  and let  $\phi : S \to X$  be the natural function. Thus, the induced function  $\phi^* : C_q(X) \to C_q(S)$  defined by  $\phi^*(f) = f \circ \phi$  is continuous. We need to show that  $\phi^*$  is one-to-one. Let  $\phi^*(g_1) = \phi^*(g_2)$ . So,  $g_1$  and  $g_2$  are equal on  $\bigcup_{n=1}^{\infty} A_n$ . So  $g_1 - g_2 \in \bigcap_{n=1}^{\infty} B_{A_n}(f_0, \epsilon_n) = \{f_0\}$ . Hence,  $g_1 = g_2$  and consequently,  $\phi^*$  is one-to-one. By Theorem 3.2,  $C_q(\oplus \{A_n : n \in \mathbb{N}\})$  is homeomorphic to  $\prod \{C_q(A_n) : n \in \mathbb{N}\}$ . But each  $C_q(A_n)$  is metrizable by Theorem 2.4. Since  $C_q(S)$  is metrizable and  $\phi^*$  is a continuous injection,  $C_q(X)$  is submetrizable.

The implications  $(1) \Rightarrow (6) \Rightarrow (7) \Rightarrow (4)$  are immediate from Remark 3.3.

**Lemma 3.6.** In a completely regular submetrizable space, the notions of compactness and quasicompactness coincide.

*Proof.* Since pseudocompact completely regular submetrizable space is metrizable [17, Corollary 2.7] and every quasicompact space is pseudocompact, then the notions of compactness and quasicompactness coincide.  $\Box$ 

**Corollary 3.7.** Let X be  $\sigma$ -quasicompact. Then compact and quasicompact subsets of  $C_q(X)$  are equivalent.

*Proof.* If X is  $\sigma$ -quasicompact, then  $C_q(X)$  is submetrizable by Theorem 3.5. Also we know that  $C_q(X)$  is Tychonoff (completely regular Hausdorff). Hence, compact and quasicompact subsets of  $C_q(X)$  are equivalent by Lemma 3.6.

A space X is called a *q*-space if for each point  $x \in X$ , there exists a sequence  $\{U_n : n \in \mathbb{N}\}$  of neighborhoods of x such that if  $x_n \in U_n$  for each n, then  $\{x_n : n \in \mathbb{N}\}$  has a cluster point. This fact yields the following theorem.

**Theorem 3.8.** For any space X, the following are equivalent.

- 1.  $C_a(X)$  is metrizable.
- 2.  $C_q(X)$  is first countable.
- 3.  $C_q(X)$  is a q-space.
- 4. X is hemiquasicompact; that is, there exists a sequence of quasicompact sets  $\{A_n\}$  in X such that for any quasicompact subset A of X,  $A \subseteq A_n$  holds for some n.

*Proof.*  $(1) \Rightarrow (2) \Rightarrow (3)$  are all immediate.

 $(3) \Rightarrow (4)$  Suppose that  $C_q(X)$  is a q-space. Hence, there exists a sequence  $\{U_n : n \in \mathbb{N}\}$  of neighborhoods of the zero function  $f_0$  in  $C_q(X)$  such that if  $g_n \in U_n$  for each n, then  $\{g_n : n \in \mathbb{N}\}$  has a cluster point in  $C_q(X)$ . Now for each n, there exists a quasicompact subset  $A_n$  of X and  $\epsilon_n > 0$  such that  $f_0 \in B_{A_n}(f_0, \epsilon_n) \subseteq$  $U_n$ . Let A be a quasicompact subset of X. If possible, suppose that A is not a subset of  $A_n$  for any  $n \in \mathbb{N}$ . Then for each  $n \in \mathbb{N}$ , there exists  $a_n \in A \setminus A_n$ . So for each  $n \in \mathbb{N}$ , there exists a continuous function  $g_n : X \to \mathbb{R}$  such that  $g_n(a_n) = n$  and  $g_n(x) = 0$  for all  $x \in A_n$ . It is clear that  $g_n \in B_{A_n}(f_0, \epsilon_n)$ . Suppose that this sequence has a cluster point g in  $C_q(X)$ . Then for each  $k \in \mathbb{N}$ , there exists a positive integer  $n_k > k$ such that  $g_{n_k} \in B_A(g, 1)$ . Thus,  $g(a_{n_k}) > g_{n_k}(a_{n_k}) - 1 = n_k - 1 \ge k$  for all  $k \in \mathbb{N}$ . But this means that g is unbounded on the quasicompact set A. Hence, the sequence  $\{g_n\}_{n \in \mathbb{N}}$  cannot have a cluster point in  $C_q(X)$ and consequently,  $C_q(X)$  fails to be a q-space. Thus, X must be hemiquasicompact.

 $(4) \Rightarrow (1)$  Here we need the well-known result which says that if the topology of a locally convex Hausdorff space is generated by a countable family of seminorms, then it is metrizable (see page 119 in [23]). Now the locally convex topology on C(X) generated by the countable family of seminorms  $\{p_{A_n} : n \in \mathbb{N}\}$ is metrizable and weaker than the quasicompact-open topology. But since for each quasicompact set A in X, there exists  $A_n$  such that  $A \subseteq A_n$ , the locally convex topology generated by the family of seminorms  $\{p_A : A \in QC(X)\}$ , that is, the quasicompact-open topology is weaker than the topology generated by the family of seminorms  $\{p_{A_n} : n \in \mathbb{N}\}$ . Hence,  $C_q(X)$  is metrizable.  $\Box$ 

**Proposition 3.9.** Let X be locally compact and second countable. Then  $C_q(X)$  is second countable.

*Proof.* Since regular second countable space X is metrizable by Urysohn's Metrization Theorem, then  $C_k(X) = C_q(X)$ . We know that  $C_k(X)$  is second countable by [18] it follows that  $C_q(X)$  is second countable.

**Theorem 3.10.** For any space X, the following are equivalent.

- 1.  $C_q(X)$  is separable.
- 2.  $C_k(X)$  is separable.
- 3. X has a weaker separable metrizable topology.

*Proof.*  $(1) \Rightarrow (2)$  is straightforward and proof of  $(2) \Rightarrow (3)$  was given in [18].

 $(3) \Rightarrow (1)$ . If X has a weaker separable metrizable topology, then X is embeddable into Hilbert cube  $I^{\omega}$  (see [5, Theorem 4.2.10]). Let  $f : X \to I^{\omega}$  be a continuous injection. Then the induced function  $f^* : C(I^{\omega}) \to C_q(X)$  is almost onto by Theorem 3.1. Since  $C(I^{\omega})$  is second countable by Proposition 3.9, then  $C_q(X)$  must be separable.

**Corollary 3.11.** Let X be completely regular space. If  $C_q(X)$  is separable, then  $C_k(X) = C_q(X)$ .

*Proof.* If  $C_q(X)$  is separable, X is submetrizable. Since X is completely regular and submetrizable, compact and quasicompact subsets of X are equivalent by Lemma 3.6. Consequently,  $C_k(X) = C_q(X)$ .

**Example 3.12.** Since  $\mathbb{R}$  is a separable metric space,  $C_q(\mathbb{R})$  is separable. Thus, we have  $C_k(\mathbb{R}) = C_q(\mathbb{R})$ .

**Example 3.13.** Let X be a countable discrete space. Then  $C_q(X)$  is separable and so  $C_k(X) = C_q(X)$ .

**Corollary 3.14.** Let X be quasicompact space. If X is metrizable, then  $C_q(X)$  is separable.

*Proof.* If X is metrizable and quasicompact, then X is compact. Since X is compact and metrizable, then X is separable and consequently,  $C_q(X)$  is separable.

Note that converse of Corollary 3.14 is not always true. If  $C_q(X)$  is separable, then X is submetrizable. But a quasicompact submetrizable space need not be metrizable. An example of this, the space  $E \cap [0, 1]$  of [8, Problem 3J] is quasicompact and submetrizable, but not metrizable. If X is completely regular, then is metrizable by Corollary 2.7 in [17]. Then we can give the following theorem.

**Theorem 3.15.** Let X be quasicompact and completely regular space.  $C_q(X)$  is separable if and only if X is compact and metrizable.

*Proof.* If  $C_q(X)$  is separable, then X is submetrizable by Theorem 3.10. Since quasicompact completely regular submetrizable space is metrizable, X is metrizable and by Lemma 3.6, X is compact.

The sufficiency part follows from Corollary 3.14.

A topological space is said to be *hemicompact* if it has a sequence of compact subsets such that every compact subset of the space lies inside some compact set in the sequence.

**Theorem 3.16.** For a locally compact space X, the following are equivalent.

- 1.  $C_q(X)$  is second countable.
- 2.  $C_k(X)$  is second countable.
- 3. X is hemicompact and submetrizable.

*Proof.* (1)  $\Leftrightarrow$  (2) If either  $C_q(X)$  or  $C_k(X)$  is second countable, then it is separable and submetrizable by Theorem 3.10. We know that regular separable space is normal. Consequently,  $C_k(X) = C_q(X)$ .

 $(2) \Rightarrow (3)$  If  $C_k(X)$  is second countable, then it is submetrizable as well as it is separable. Hence, X is hemicompact and submetrizable.

 $(3) \Rightarrow (2)$  If X is hemicompact, then  $C_k(X)$  is metrizable. Note that X, being hemicompact, is Lindelöf. Since X is also submetrizable, X has a separable metrizable compression and consequently,  $C_k(X)$  is separable. Thus,  $C_k(X)$  is second countable.

Considering Corollary 3.11, we obtain the following result.

**Corollary 3.17.** Let X be a completely regular space. If  $C_q(X)$  is second countable, then  $C_k(X) = C_q(X)$ .

Note that if X is locally compact, then X is hemicompact if and only if X is either Lindelöf or  $\sigma$ -compact in [5, Exercises 3.8.C]. Hence, by using Theorem 3.16 and Proposition 3.9, we have the following result.

**Theorem 3.18.** For a locally compact space X, the following statements are equivalent.

- 1.  $C_q(X)$  is second countable.
- 2.  $C_k(X)$  is second countable.
- 3. X is hemicompact and submetrizable.
- 4. X is  $\sigma$ -compact and submetrizable.
- 5. X is Lindelöf and submetrizable.
- 6. X is second countable.

*Proof.* From Theorem 3.16, we obtain  $(1) \Leftrightarrow (2) \Leftrightarrow (3)$ . Also by [5, Exercises 3.8.C], we get  $(3) \Leftrightarrow (4) \Leftrightarrow (5)$ . It is easy to see that  $(6) \Rightarrow (1)$  from Proposition 3.9.

Now, it is sufficient to show that  $(5) \Rightarrow (6)$ . Since X is locally compact, for each  $x \in X$ , there exists an open set  $V_x$  in X such that  $x \in V_x$  and  $\overline{V_x}$  is compact. Note that  $\{V_x : x \in X\}$  is an open cover of X. But X is Lindelöf and consequently, there exists a countable subset  $\{x_n : n \in \mathbb{N}\}$  of X such that  $X = \bigcup_{n=1}^{\infty} V_{x_n}$ . Since X is separable submetrizable by Theorem 3.10 and each  $\overline{V_{x_n}}$  is compact, each  $\overline{V_{x_n}}$  is metrizable and so each  $\overline{V_{x_n}}$  is second countable. Consequently, each  $V_{x_n}$  is also second countable and X becomes the union of a countable family of second countable open subsets of X. Hence, X is second countable.

#### Acknowledgement

The authors would like to thank the referee for his (or her) valuable suggestions which greatly improved the paper.

#### References

- [1] A. T. Al-Ani, Countably z-compact spaces, Arch. Math. (Brno), 50 (2014), 97–100.2.9
- [2] R. F. Arens, A topology for spaces of transformations, Ann. of Math., 47 (1946), 480–495.1
- [3] R. Arens, J. Dugundji, Topologies for function spaces, Pacific J. Math., 1 (1951), 5–31.1
- [4] A. J. D'Aristotle, Quasicompactness and functionally Hausdorff spaces, J. Aust. Math. Soc., 15 (1973), 319–324.
  2, 2.10
- [5] R. Engelking, General Topology, revised and completed ed., Heldermann Verlag, Berlin, (1989).2, 3, 3, 3
- [6] R. H. Fox, On topologies for function spaces, Bull. Amer. Math. Soc., 51 (1945), 429–432.1
- [7] Z. Frolik, Generalization of compact and Lindelöf spaces, Czechoslovak Math. J., 13 (1959), 172–217 (Russian).2
- [8] L. Gillman, M. Jerison, Rings of continuous functions, Springer-Verlag, New York, (1960).2, 3
- [9] D. Gulick, The  $\sigma$ -compact-open topology and its relatives, Math. Scand., **30** (1972), 159–176.1
- [10] N. C. Heldermann, Developability and some new regularity axioms, Can. J. Math., 33 (1981), 641-663.2.12
- [11] E. Hewitt, On two problems of Urysohn, Ann. of Math., 47 (1946), 503-509.2.11
- [12] J. R. Jackson, Comparison of topologies on function spaces, Proc. Amer. Math. Soc., 3 (1952), 156–158.1
- [13] J. K. Kohli, A. K. Das, A class of spaces containing all generalized absolutely closed (almost compact) spaces, Appl. Gen. Topol., 7 (2006), 233-244.2.11
- [14] J. K. Kohli, D. Singh, Between compactness and quasicompactness, Acta Math. Hungar., 106 (2005), 317–329. 2.12, 2.13
- [15] S. Kundu, P. Garg, The pseudocompact-open topology on C(X), Topology Proc., 30 (2006), 279–299.1, 3
- [16] S. Kundu, A. B. Raha, The bounded-open topology and its relatives, Rend. Istit. Mat. Univ. Trieste, 27 (1995), 61–77.1
- [17] W. G. McArthur,  $G_{\delta}$ -diagonals and metrization theorems, Pacific J. Math., 44 (1973), 613–617.3, 3
- [18] R. A. McCoy, Second countable and separable function spaces, Amer. Math. Monthly, 85 (1978), 487–489.3, 3, 3
- [19] R. A. McCoy, I. Ntantu, Topological Properties of Spaces of Continuous Functions, Springer-Verlag, Berlin, (1988).3
- [20] A. V. Osipov, The C-compact-open topology on function spaces, Topology Appl., 159 (2012), 3059–3066.1
- [21] W. J. Pervin, Foundations of general topology, Academic Press, New York, (1964).2.10
- [22] L. A. Steen, J. A. Seebach, Counter Examples in Topology, Springer Verlag, New York, (1978).2.8, 2.9
- [23] A. E. Taylor, D. C. Lay, Introduction to Functional Analysis, 2nd ed., John Wiley & Sons, New York, (1980).3