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Abstract

Let X be a compact metric space and f be a continuous map from X into itself. In this paper, we
introduce the concept of the sequence asymptotic average shadowing property, which is a generalization
of the asymptotic average shadowing property. In the sequel, we prove some properties of the sequence
asymptotic average shadowing property and investigate the relationship between the sequence asymptotic
average shadowing property and transitivity. c©2016 All rights reserved.
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1. Introduction

By a dynamical system, we mean a pair (X, f), where X is a compact metric space with metric d and
f : X → X is a continuous map.

Since Blank [1, 2] introduced the notion of average shadowing property and gave some concrete examples
satisfying the average shadowing property, a growing number of authors have concentrated their vigor on the
studies of the relation between average shadowing property and some topologically dynamical properties.
For instance, D. Kwietniak and P. Oprocha [6] gave some equivalent conditions for f to have the average
shadowing property. Niu [8] proved that if f has the average shadowing property and the minimal points of
f are dense in X, then f is weakly mixing and totally strongly ergodic. Readers can refer to [10, 12] for more
results. Also, it is notable that, as a generalization of the limit-shadowing property in random dynamical
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systems, in 2007, Gu [3] introduced another shadowing property which was called the asymptotic average
shadowing property. From then on, there are many results on the asymptotic average shadowing property
appearing in different mathematical journals. For concrete results one can refer to [4, 5, 7, 9]. In this paper,
we introduce the notion of the sequence asymptotic average shadowing property, which is a generalization of
the asymptotic average shadowing property. Besides, we investigate the relationship between the sequence
asymptotic average shadowing property and transitivity and prove that f is weakly mixing if the weakly
almost periodic points of f are dense in X and f has the sequence asymptotic average shadowing property.

The organization of this paper is as follows. In Section 2, we recall some concepts. In Section 3, we
introduce the notion of the sequence asymptotic average shadowing property and investigate some properties
about it. In Section 4, we prove that f is chain mixing if f has the sequence asymptotic average shadowing
property and f is a surjection. In Section 5, we study the relationship between the sequence asymptotic
average shadowing property and weakly mixing.

2. Preliminaries

The set of all nonnegative integers and positive integers are denoted by Z+ and N respectively. Let
(X, f) be a dynamical system. For nonempty open sets U, V of X and x ∈ X, we set

N(U, V ) = {n ∈ N|U ∩ f−n(V ) 6= ∅},

and
N(x, V ) = {n ∈ N|fn(x) ∈ V }.

A subset S of Z+ is said to be of positive lower density (PLD), if

d(S) = lim inf
n→∞

](S ∩ {0, 1, · · · , n− 1})
n

> 0,

and S is said to be of positive upper density (PUD), if

d(S) = lim sup
n→∞

](S ∩ {0, 1, · · · , n− 1})
n

> 0,

where ](·) denotes cardinality. S is said to be syndetic if there is N ∈ Z+ such that [n, n+ N ] ∩ S 6= ∅ for
each n ∈ Z+.

We say that:

(1) f is topologically transitive if for any pair of nonempty open subsets U, V of X, N(U, V ) 6= ∅;

(2) f is weakly mixing if f × f is topologically transitive.

For δ > 0, a finite or infinite sequence {xi}pi=0 of X (p ∈ Z+ ∪ {∞}) is called a δ-pseudo orbit of f from
x0 to xp with length p if d(f(xi), xi+1) < δ for every i < p. x, y ∈ X are called chain related if for every
δ > 0, there exist a finite δ-pseudo orbit (δ-chain) from x to y and a finite δ-pseudo orbit from y to x. The
map f is called:

(1) chain transitive if any pair of points of X are chain related;

(2) chain mixing if for any pair of points x, y ∈ X and δ > 0, there exists N ∈ Z+ such that for any
n ≥ N , there is a finite δ-pseudo orbit from x to y with length n.

A point x in X is called a weakly almost periodic point of f if for any ε > 0, there exists an integer
Nε > 0 such that

]({r|f r(x) ∈ B(x, ε), 0 ≤ r < nNε}) ≥ n,

for all n ≥ 0, where B(x, ε) denotes the ε-spherical neighborhood of x.
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Denote by W (f) the set of weakly almost periodic points of f . It was proved in [14] that

x ∈W (f)⇔ d(N(x,B(x, ε))) > 0 for all ε > 0.

Let (X, f) and (Y, g) be two dynamical systems with metrics d and ρ, respectively. Next we define the
metric on X × Y as follows: for (x1, y1), (x2, y2) ∈ X × Y , let

ϕ((x1, y1), (x2, y2)) = max{d(x1, x2), ρ(y1, y2)},

then ϕ is a metric on X × Y .
Let M(X) be the set of all probability measures on (X,B(X)), where B(X) denotes the Borel σ-algebra

generated by the open sets of X. µ ∈ M(X) is called an invariant measure of f if µ(f−1(A)) = µ(A) for
any A ∈ B(X). Denote by M(X, f) the set of all invariant measures of f . A closed f -invariant subset M
of X is called the measure center of f if µ(M) = 1 for any µ ∈ M(X, f) and there is no proper subset of
M possessing these properties. We denote the measure center of f by M(f). It was proved in [14] that
W (f) = M(f).

Definition 2.1 ([3]). A sequence {xn}∞n=0 of points of X is called an asymptotic-average-pseudo-orbit of
f if limn→∞

1
n

∑n−1
i=0 d(f(xi), xi+1) = 0. A sequence {xn}∞n=0 of points of X is said to be asymptotically

shadowed in average by the point y in X if limn→∞
1
n

∑n−1
i=0 d(f i(y), xi) = 0. A map f is said to have the

asymptotic average shadowing property (Abbrev. AASP) if every asymptotic-average-pseudo-orbit of f is
asymptotically shadowed in average by some point in X.

3. {ni}-AASP and some properties

For a given sequence {ni}i≥1 of positive integers, where n0 = 0, we introduce the concept of {ni}-
asymptotic average shadowing property.

Definition 3.1.

(i) A sequence {xn}∞n=0 of points of X is called an {ni}-asymptotic average pseudo orbit of f if

lim
n→∞

1

n

n−1∑
i=0

d(fni+1(xi), xi+1) = 0.

(ii) A sequence {xn}∞n=0 of points of X is said to be {ni}-asymptotically shadowed in average by the point
y in X if

lim
n→∞

1

n

n−1∑
i=0

d(fn0+n1+···+ni(y), xi) = 0.

(iii) A map f is said to have the {ni}-asymptotic average shadowing property (Abbrev. {ni}-AASP) if
every {ni}-asymptotic average pseudo orbit of f is {ni}-asymptotically shadowed in average by some
point in X.

Remark 3.2. It follows from Definition 2.1 and Definition 3.1 that for any k ≥ 1, fk has the AASP if and
only if f has {k, k, · · · }-AASP.

Lemma 3.3 ([3]). If {ai}∞i=0 is a bounded sequence of non-negative real numbers, then the following state-
ments are equivalent:

(i) limn→∞
1
n

∑n−1
i=0 ai = 0.

(ii) There is a subset J of Z+ of density zero such that limj→∞ aj = 0 provided j /∈ J .
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Proposition 3.4. Let (X, f) be a dynamical system.

(i) Let {ni}i≥1 be a given positive integers sequence, where n0 = 0. For any k ≥ 1, let

mk
i = n(i−1)k+1 + n(i−1)k+2 + · · ·+ nik,

for i ≥ 1 and mk
0 = 0. If f has {ni}-AASP, then f has {mk

i }-AASP.

(ii) For any k ≥ 1, suppose that {mk
i }i≥1 is a given sequence of positive integers satisfying mk

0 = 0 and
k ≤ mk

i ≤Mk for any i ≥ 1, where Mk is a positive integer. Write mk
i = n(i−1)k+1+n(i−1)k+2+· · ·+nik,

where n0 = 0 and ni ≥ 1 for any i ≥ 1. If f has {mk
i }-AASP, then f has {ni}-AASP.

Proof. (i) Suppose that f has {ni}-AASP. Let {xi}∞i=0 be an {mk
i }-asymptotic average pseudo orbit of f ,

namely,

lim
n→∞

1

n

n−1∑
i=0

d(fm
k
i+1(xi), xi+1) = 0.

Let ylk = xl and ylk+j = fnlk+1+nlk+2+···+nlk+j (xl) for all 1 ≤ j < k and l ≥ 0. It is not difficult to get
that

lim
n→∞

1

n

n−1∑
i=0

d(fni+1(yi), yi+1) ≤ lim
l→∞

1

lk + j

l∑
i=0

d(fm
k
i+1(xi), xi+1).

So we can obtain that limn→∞
1
n

∑n−1
i=0 d(fni+1(yi), yi+1) = 0, which implies that {yi}∞i=0 is an {ni}-

asymptotic average pseudo orbit of f . Hence, there exists z ∈ X such that

lim
n→∞

1

n

n−1∑
i=0

d(fn0+n1+···+ni(z), yi) = 0.

On the other hand, we have

lim
l→∞

1

l

l−1∑
i=0

d(fm
k
0+m

k
1 ···+mk

i (z), xi) ≤ lim
l→∞

1

l

l−1∑
s=0

k−1∑
j=0

d(fn0+n1+···+nsk+j (z), ysk+j)

= k lim
l→∞

1

lk

lk−1∑
i=0

d(fn0+n1+···+ni(z), yi).

Therefore, liml→∞
1
l

∑l−1
i=0 d(fm

k
0+m

k
1 ···+mk

i (z), xi) = 0, which implies that f has {mk
i }-AASP.

(ii) Suppose that f has {mk
i }-AASP. By the continuity of f , for any ε > 0, there exists δ ∈ (0, ε/k) such

that d(a, b) < δ implies d(f i(a), f i(b)) < ε/k for all 0 ≤ i ≤Mk.
Let {xi}∞i=0 be an {ni}-asymptotic average pseudo orbit of f , namely,

lim
n→∞

1

n

n−1∑
i=0

d(fni+1(xi), xi+1) = 0.

By Lemma 3.3, there exists a set J0 ⊂ Z+ of zero density such that limj→∞ d(fnj+1(xj), xj+1) = 0
provided j /∈ J0. Write J1 = {j : {jk, jk+1, · · · , jk+k−1}∩J0 6= ∅} and J =

⋃
j∈J1{jk, jk+1, · · · , jk+k−1}.

Then both J1 and J have density zero and limj→∞ d(fnj+1(xj), xj+1) = 0 provided j /∈ J .
For the above δ > 0, there exists N1 > 0 such that d(fnj+1(xj), xj+1) < δ for all j > N1 and j /∈ J .

Hence, we have d(fnjk+s+1(xjk+s), xjk+s+1) < δ for 0 ≤ s < k, j > N1 and j /∈ J1. By the continuity of f ,
we can get that

d(fnjk+1+···+njk+s(xjk), xjk+s) <
s

k
ε for all 1 ≤ s ≤ k, j > N1 and j /∈ J1. (3.1)
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Especially, we have d(fnjk+1+···+njk+k(xjk), x(j+1)k) < ε, for all j > N1 and j /∈ J1. So we have

limj→∞ d(fm
k
j+1(xjk), x(j+1)k) = 0. It follows from Lemma 3.3 that {xik}∞i=0 is an {mk

i }-asymptotic av-

erage pseudo orbit of f . Since f has {mk
i }-AASP, there exists z ∈ X such that

lim
n→∞

1

n

n−1∑
i=0

d(fm
k
0+m

k
1+···+mk

i (z), xik) = 0.

Therefore, it follows from Lemma 3.3 that there exists a set K0 ⊂ Z+ of zero density such that

limj→∞ d(fm
k
0+m

k
1+···+mk

j (z), xjk) = 0 provided j /∈ K0. Let K =
⋃
j∈K0
{jk, jk + 1, · · · , jk + k − 1}.

Then K has density zero.
For the above δ > 0, there exists N2 > 0 such that d(fn0+n1+···+njk(z), xjk) < δ for all j > N2 and

j /∈ K0. According to the continuity of f , we have

d(fn0+n1+···+njk+s(z), fnjk+1+···+njk+s(xjk)) <
ε

k
for all 1 ≤ s ≤ k, j > N2 and j /∈ K0. (3.2)

Write N = max{N1, N2}, A = K ∪ J . Then A has density zero. It follows from (3.1) and (3.2) that

d(fn0+n1+···+njk+s(z), xjk+s) <
ε

k
+
s

k
ε ≤ ε for all 0 ≤ s < k, j > N and j /∈ K0 ∪ J1.

Hence, we have limj→∞ d(fn0+n1+···+nj (z), xj) = 0 provided j /∈ A. By Lemma 3.3 again, we know that
f has {ni}-AASP.

Remark 3.5. When ni = 1 for all i ≥ 1, mk
i = k for all i ≥ 1. It follows from Proposition 3.4 that f has the

AASP if and only if fk has the AASP for any positive integer k. So Proposition 3.4 generalizes the result
of Proposition 2.2 in [3].

Proposition 3.6. Let (X, f) be a dynamical system and {ni}i≥1 be a given sequence of positive integers,
where n0 = 0. Then f has {ni}-AASP if and only if f × f has {ni}-AASP.

Proof. Suppose that f has {ni}-AASP. Let {xi, yi}∞i=0 be an {ni}-asymptotic average pseudo orbit of f × f ,
namely,

lim
n→∞

1

n

n−1∑
i=0

ϕ((f × f)ni+1(xi, yi), (xi+1, yi+1)) = 0.

In this case, we have limn→∞
1
n

∑n−1
i=0 d(fni+1(xi), xi+1) = 0 and limn→∞

1
n

∑n−1
i=0 d(fni+1(yi), yi+1) = 0.

Hence, {xi}∞i=0 and {yi}∞i=0 are {ni}-asymptotic average pseudo orbit of f . So there exist z1, z2 ∈ X such
that limn→∞

1
n

∑n−1
i=0 d(fn0+···+ni(z1), xi) = 0 and limn→∞

1
n

∑n−1
i=0 d(fn0+···+ni(z2), yi) = 0.

By Lemma 3.3, there exists a set J0 ⊂ Z+ of zero density such that limj→∞ d(fn0+···+nj (z1), xj) = 0
when j /∈ J0. Besides, there exists a set J1 ⊂ Z+ of zero density such that limj→∞ d(fn0+···+nj (z2), yj) = 0
when j /∈ J1. Let J = J0 ∪ J1, then J is a subset of Z+ of zero density and

lim
j→∞

ϕ((f × f)n0+···+nj (z1, z2), (xj , yj)) = 0.

By Lemma 3.3 again, we have

lim
n→∞

1

n

n−1∑
i=0

ϕ((f × f)n0+···+ni(z1, z2), (xi, yi)) = 0.

That is to say, f × f has {ni}-AASP.
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On the other hand, suppose that f × f has {ni}-AASP. Let {xi}∞i=0 be an {ni}-asymptotic average
pseudo orbit of f , namely,

lim
n→∞

1

n

n−1∑
i=0

d(fni+1(xi), xi+1) = 0.

It is easy to see that {xi, xi}∞i=0 is an {ni}-asymptotic average pseudo orbit of f × f . So there exists
(z1, z2) ∈ X ×X such that

lim
n→∞

1

n

n−1∑
i=0

ϕ((f × f)n0+···+ni(z1, z2), (xi, xi)) = 0,

which implies that limn→∞
1
n

∑n−1
i=0 d(fn0+···+ni(z1), xi) = 0. Consequently, f has {ni}-AASP.

4. {ni}-AASP and chain transitivity

In this section, we are going to study the relationship between {ni}-AASP and chain transitivity. We
give our main results as follows:

Theorem 4.1. Let (X, f) be a dynamical system and f be a surjection, {ni}i≥1 be a given sequence of
positive integers, where n0 = 0. If f has {ni}-AASP, then f is chain transitive.

Proof. Let x and y be any pair of X, ε > 0 be a given real number. Set D = diam(X). We define a sequence
{wi}∞i=0 in X as follows:

w0 = x,w1 = y,
w2 = x,w3 = y,
w4 = x,w5 = fn5(x), w6 = y−n7 , w7 = y,
...
w2k = x,w2k+1 = fn2k+1(x), · · · , w2k+2k−1−1 = fn2k+1

+n
2k+2

+···+n
2k+2k−1−1(x),

w2k+2k−1 = y−n
2k+1−1

−n
2k+1−2

−···−n
2k+2k−1+1

, · · · , w2k+2k−2 = y−n
2k+1−1

, w2k+2k−1 = y,

...
where f(y−j) = y−j+1 for every j > 0 and y0 = y. For 2k ≤ n < 2k+1, we have

1

n

n−1∑
i=0

d(fni+1(wi), wi+1) <
2(k + 2)D

2k
.

So limn→∞
1
n

∑n−1
i=0 d(fni+1(wi), wi+1) = 0, which implies that {wi}∞i=0 is an {ni}-asymptotic average

pseudo orbit of f . Since f has {ni}-AASP, there exists z ∈ X such that

lim
n→∞

1

n

n−1∑
i=0

d(fn0+n1+···+ni(z), wi) = 0. (4.1)

For the above ε > 0, by the continuity of f , there exists δ ∈ (0, ε) such that d(a, b) < δ implies
d(f(a), f(b)) < ε for all a, b ∈ X.

Claim 1.

(i) There exist infinitely many positive integers j such that

wlj ∈ {x, f
n
2j+1(x), fn2j+1

+n
2j+2(x), · · · , fn2j+1

+n
2j+2

+···+n
2j+2j−1−1(x)},

and
d(f

n0+n1+···+nlj (z), wlj ) < δ.
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(ii) There exist infinitely many positive integers t such that

wlt ∈ {y−n2t+1−1−n2t+1−2−···−n2t+2t−1+1
, · · · , y−n2t+1−1−n2t+1−2

, y−n2t+1−1
, y},

and
d(fn0+n1+···+nlt (z), wlt) < δ.

Proof of Claim 1. Without loss of generality, we prove only (i).
Suppose on the contrary that there exists a positive integer N such that for all m > N , whenever

wi ∈ {x, fn2m+1(x), fn2m+1+n2m+2(x), · · · , fn2m+1+n2m+2+···+n2m+2m−1−1(x)},

we have d(fn0+n1+···+ni(z), wi) ≥ δ. It follows that

lim inf
n→∞

1

n

n−1∑
i=0

d(fn0+n1+···+ni(z), wi) ≥
δ

2
,

which contradicts with (4.1). So Claim 1 is correct.

According to Claim 1, we can take j0 and t0 such that lj0 < lt0 and d(f
n0+n1+···+nlj0 (z), wlj0 ) < δ,

d(f
n0+n1+···+nlt0 (z), wlt0 ) < δ. We can let wlj0 = f j1(x) for some j1 > 0 and wlt0 = y−t1 for some t1 > 0.

Therefore, we can construct an ε-chain from x to y as follows:

{x, f(x), · · · , f j1(x), f
n0+n1+···+nlj0

+1
(z), · · · , fn0+n1+···+nlt0

−1
(z), y−t1 , y−t1+1, · · · , y}.

So the proof is finished.

Corollary 4.2. Let (X, f) be a dynamical system and f be a surjection. Suppose that {ni}i≥1 is a given
sequence of positive integers, where n0 = 0. If f has {ni}-AASP, then f is chain mixing.

Proof. It is easy to see that f × f is a surjection from X ×X to itself. By Corollary 12 of [11], f is chain
mixing if and only if f × f is chain transitive, thus the proof is evident from Proposition 3.6 and Theorem
4.1.

5. {ni}-AASP and weakly mixing

In this section, we firstly introduce the concept of relative density and then give some properties of
relative densities.

Let M ⊂ Z+ and write M = {m0,m1, · · · ,mi, · · · }, where mi+1 > mi.

Definition 5.1. Let A ⊂ Z+, then the relative upper and lower densities of A to M are defined respectively
as follows:

d(A|M) = lim sup
i→∞

](A ∩ {m0,m1, · · · ,mi−1})
i

,

(d(A|M) = lim inf
i→∞

](A ∩ {m0,m1, · · · ,mi−1})
i

.

If d(A|M) = d(A|M), then the relative density of A to M d(A|M) = d(A|M) = d(A|M).

Remark 5.2. It follows from Definition 5.1 that d(A) = d(A|Z+).

To prove the following proposition, we firstly give a useful lemma.

Lemma 5.3. Let an, bn be two sequences of nonnegative real numbers. If limn→∞ bn exists and limn→∞ bn 6=
0, then
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(i) lim supn→∞
an
bn

= lim supn→∞ an
limn→∞ bn

;

(ii) lim infn→∞
an
bn

= lim infn→∞ an
limn→∞ bn

.

Proof. The proof of this lemma is easy, so we omit it here.

Proposition 5.4. For the above M ⊂ Z+ and A ⊂ Z+, if the density of M exists, then the following
assertions hold.

(i) If B = {mj |j ∈ A}, then d(A) = d(B|M) and d(A) = d(B|M);

(ii) d(A|M) = d(A∩M)
d(M) and d(A|M) = d(A∩M)

d(M) .

Proof. (i) Note that for any i > 0, we have ](A ∩ {0, 1, · · · , i − 1}) = ](B ∩ {m0,m1, · · · ,mi−1}). So (i) is
easy.

(ii) According to Lemma 5.3, we have

d(A ∩M)

d(M)
=

lim supi→∞
](A∩M∩{0,1,··· ,i−1})

i

limi→∞
](M∩{0,1,··· ,i−1})

i

= lim sup
i→∞

](A ∩M ∩ {0, 1, · · · , i− 1})
](M ∩ {0, 1, · · · , i− 1})

.

And for any large enough i > 0, there exists j > 0 such that M ∩{0, 1, · · · , i−1} = {m0,m1, · · · ,mj−1}.
Therefore, d(A∩M)

d(M) = lim supj→∞
](A∩{m0,m1,··· ,mj−1})

j = d(A|M). Similarly, we can proof d(A|M) = d(A∩M)
d(M) .

The following two lemmas are needed in the proofs of our main results in this section.

Lemma 5.5. If A,B ⊂ Z+, and d(A) > γ > 0, d(B) = 1, where γ < 1, then d(A ∩B) > γ.

Proof. Since 1 = d(B) ≤ d(B \A) + d(A ∩B), d(B \A) ≤ d(Z+ \A) < 1− γ, it is easy to see that Lemma
5.5 holds.

Lemma 5.6. If A,B ⊂ Z+, and d(A) ≥ γ > 0, d(B) > 1− γ, where γ < 1, then d(A ∩B) > 0.

Proof. Since 1 − γ < d(B) ≤ d(B \ A) + d(A ∩ B), d(B \ A) ≤ d(Z+ \ A) ≤ 1 − γ, it is easy to see that
Lemma 5.6 holds.

Now, we are going to show our main results. For a given sequence {ni}i≥1 of positive integers, where

n0 = 0, write sj =
∑j

i=0 ni and S =
⋃∞
j=0{sj}.

Lemma 5.7. Let (X, f) be a dynamical system and d(S) = 1. If f has {ni}-AASP and W (f) = X, then f
is topologically transitive.

Proof. Suppose that U and V are two nonempty open subsets of X. We choose u ∈ U , v ∈ V and r > 0 such
that B(u, r) ⊂ U and B(v, r) ⊂ V . Since W (f) = X, we can pick x ∈ B(u, r2) and y ∈ B(v, r2) such that both
N(x,B(u, r2)) and N(y,B(v, r2)) have positive lower density. Let Rx = N(x,B(u, r2)), Ry = N(y,B(v, r2)),
then d(Rx) = d1 > 0, d(Ry) = d2 > 0.

Let d = min{d1, d2} and mi = 2i
2
. We define a sequence {wi}∞i=0 in X as follows:

w0 = x,w1 = fn1(x), · · · , wm1−1 = fn1+n2+···+nm1−1(x),
wm1 = fn1+n2+···+nm1 (y), · · · , wm2−1 = fn1+n2+···+nm2−1(y),
...
wm2k

= fn1+n2+···+nm2k (x), · · · , wm2k+1−1 = fn1+n2+···+nm2k+1−1(x),
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wm2k+1
= fn1+n2+···+nm2k+1 (y), · · · , wm2k+2−1 = fn1+n2+···+nm2k+2−1(y),

....
For any m2k ≤ n < m2k+2, we have

1

n

n−1∑
i=0

d(fni+1(wi), wi+1) <
2(k + 2)D

m2k
.

So limn→∞
1
n

∑n−1
i=0 d(fni+1(wi), wi+1) = 0, which implies that {wi}∞i=0 is an {ni}-asymptotic average

pseudo orbit of f . Since f has {ni}-AASP, there exists w ∈ X such that

lim
n→∞

1

n

n−1∑
i=0

d(fn0+n1+···+ni(w), wi) = 0. (5.1)

Let

J1 =

∞⋃
i=0

{m2i,m2i + 1, · · · ,m2i+1 − 1} ,

J2 =

∞⋃
i=0

{m2i+1,m2i+1 + 1, · · · ,m2i+2 − 1} ,

Ax =
{
i ∈ J1|d(fn0+n1+···+ni(w), wi) <

r

2

}
,

Ay =
{
i ∈ J2|d(fn0+n1+···+ni(w), wi) <

r

2

}
,

Bx =
{
j ∈ S|d(f j(w), f j(x)) <

r

2

}
,

By =
{
j ∈ S|d(f j(w), f j(y)) <

r

2

}
.

Claim 2. d(J1) = 1, d(J2) = 1.

Proof of Claim 2. Take ki = m2i+1.

](J1 ∩ {0, 1, · · · , ki − 1})
ki

≥ m2i+1 −m2i

m2i+1
=

2(2i+1)2 − 2(2i)
2

2(2i+1)2

= 1− 1

2(2i+1)2−(2i)2

= 1− 1

24i+1
.

Therefore, d(J1) = 1. Take ki = m2i+2, then

](J2 ∩ {0, 1, · · · , ki − 1})
ki

≥ m2i+2 −m2i+1

m2i+2
=

2(2i+2)2 − 2(2i+1)2

2(2i+2)2

= 1− 1

2(2i+2)2−(2i+1)2

= 1− 1

24i+3
.

Therefore, d(J2) = 1.

Claim 3. d(Ax) > 1− d, d(Ay) > 1− d.
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Proof of Claim 3. Without loss of generality, we only prove d(Ax) > 1− d. Suppose on the contrary
that d(Ax) ≤ 1− d, then d(Z+ \Ax) > d, which together with d(J1) = 1 and Lemma 5.5 yields

d((Z+ \Ax) ∩ J1) > d.

Therefore,

lim sup
n→∞

1

n

n−1∑
i=0

d(fn0+n1+···+ni(w), wi) ≥ lim sup
n→∞

1

n

∑
i∈(Z+\Ax)∩J1∩{0,1,··· ,n−1}

d(fn0+n1+···+ni(w), wi)

≥ r

2
d((Z+ \Ax) ∩ J1)

>
rd

2
,

which is in contradiction with (5.1). So the claim is true.

Claim 4. d(Bx) = d(Ax) > 1− d, d(By) = d(Ay) > 1− d.

Proof of Claim 4. Without loss of generality, we only prove d(Bx) = d(Ax). It is easy to see that
Bx = {sj ∈ S|j ∈ Ax}. It follows from Proposition 5.4 and the condition d(S) = 1 that d(Ax) = d(Bx|S) =
d(Bx∩S)
d(S) = d(Bx). So the claim is true.

According to Claim 4 and Lemma 5.6, we have d(Rx ∩ Bx) > 0 and d(Ry ∩ By) > 0, so we can
take i0 ∈ Rx ∩ Bx and j0 ∈ Ry ∩ By such that i0 < j0. Then f i0(x) ∈ B(u, r2), f j0(y) ∈ B(v, r2) and
d(f i0(w), f i0(x)) < r

2 , d(f j0(w), f j0(y)) < r
2 . Hence, d(f i0(w), u) < r, d(f j0(w), v) < r. Let k0 = j0 − i0,

then U ∩ f−k0(V ) 6= ∅. Since U , V are arbitrary, f is topologically transitive.

The following lemma comes from [13]. For the completeness of this article, we give its whole proof.

Lemma 5.8. Let (X, f) and (Y, g) be two dynamical systems, then M(f)×M(g) = M(f×g). In particular,

M(f)×M(f) = M(f × f). In general,

n︷ ︸︸ ︷
M(f)×M(f)× · · · ×M(f) = M(

n︷ ︸︸ ︷
f × f × · · · × f), n ≥ 2.

Proof. Suppose that (x, y) ∈ M(f) ×M(g), then (x, y) ∈ X × Y and for any neighborhood U of (x, y),
there exist a neighborhood U1 of x in X and a neighborhood U2 of y in Y such that U1 × U2 ⊂ U . Since
x ∈M(f) and y ∈M(g), x and y are support points of f and g respectively, thus there exist µ1 ∈M(X, f)
and µ2 ∈ M(Y, g) such that µ1(U1) > 0 and µ2(U2) > 0. Set m(U) = µ1(U1) × µ2(U2), then m can be
prolonged to the σ-algebra generated by the open subsets of X × Y , we also denote the prolongation of m
by m, so m ∈ M(X × Y ) and m(U) ≥ m(U1 × U2) = µ1(U1) × µ2(U2) > 0. Therefore, (x, y) is a support
point of f × g (x, y) ∈M(f × g).

Conversely, noting that W (f) = M(f), W (g) = M(g) and W (f × g) = M(f × g), we only prove
W (f × g) ⊂W (f)×W (g). Suppose that (x, y) ∈M(f × g), for any ε1 > 0 and ε2 > 0, set ε = min{ε1, ε2},
then B((x, y), ε) is a neighborhood of (x, y) and B((x, y), ε) ⊂ B(x, ε1)×B(y, ε2). Since (x, y) ∈W (f × g),
by the definition of weakly almost periodic point, we get that there is N > 0 such that for any n ≥ 0

](i|(f × g)i((x, y)) ∈ V1 × V2, 0 ≤ i < nN) = ](i|f i(x) ∈ V1, gi(y) ∈ V2, 0 ≤ i < nN) > n,

where V1 = B(x, ε1), V2 = B(y, ε2). Thus

](i|f i(x) ∈ V1, 0 ≤ i < nN) > n,

and
](i|gi(y) ∈ V2, 0 ≤ i < nN) > n.

So x ∈W (f) and y ∈W (g). This proves W (f × g) ⊂W (f)×W (g).
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Theorem 5.9. Under the same conditions of Lemma 5.7, f is weakly mixing.

Proof. The proof is evident according to Lemma 5.7 and Lemma 5.8.

Remark 5.10. If f has the AASP, then S = Z+.
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