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Abstract

In this paper, by using the concepts of α-admissible mappings and simulation functions, we establish
some fixed point results in the class of modular spaces. Our presented results generalize and improve many
known results in literature. Some concrete examples are also provided to support the obtained results.
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1. Introduction and preliminaries

The fixed point theory is very important and useful in Mathematics. It can be applied in various areas,
for instant, variational and linear inequalities, optimization, and approximation theory. On the other hand,
the concept of modular spaces was introduced by Nakano [18]. Many authors introduced generalizations of
the above concept. Among them, we can cite Musielak and Orlicz [17]. Since then, several fixed point and
common fixed point theorems in the framework of modular spaces have been investigated. For more details,
see [6, 7, 9, 10, 12–16, 19] and [21].

For the sake of convenience, some notations and definitions on modular space are recalled.

Definition 1.1. Let X be an arbitrary vector space over K (= R or C). A functional ρ : X → [0,∞) is
called a modular if, for any x, y ∈ X, the following conditions hold:
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(ρ1) ρ(x) = 0 if and only if x = 0X ;

(ρ2) ρ(λx) = |λ|ρ(x) for every λ ∈ K with |λ| = 1;

(ρ3) ρ(λx+ µy) ≤ ρ(x) + ρ(y) whenever λ+ µ = 1 and λ, µ ≥ 0.

Note that Xρ = {x ∈ X : ρ(λx)→ 0 as λ→ 0} is called a modular space.

Example 1.2. The mapping ρ : R→ [0,∞) defined by ρ(x) = n
√
|x| is a modular functional on R.

Remark 1.3. Let Xρ be a modular space. From condition (ρ3), we have

(i) ρ(ax) ≤ ρ(bx) for all b ≥ a ≥ 0 and for all x ∈ Xρ;

(ii) ρ(x+ y) ≤ ρ(2x) + ρ(2y) for all x, y ∈ Xρ.

Definition 1.4. Let Xρ be a modular space.

(1) A sequence {xn} in Xρ ρ-converges to x ∈ Xρ if and only if

lim
n→∞

ρ(xn − x) = 0.

(2) A sequence {xn} is ρ-Cauchy if and only if lim
n,m→∞

ρ(xn − xm) = 0.

(3) A subset C of Xρ is called ρ-closed if the ρ-limit of a ρ-convergent sequence of C is still in C.

(4) A subset C of Xρ is called ρ-complete if any ρ-Cauchy sequence in C is ρ-convergent and its ρ-limit
belongs to C.

(5) ρ is said to satisfy the ∆2-condition if ρ(2xn)→ 0 whenever ρ(xn)→ 0 as n→∞.

(6) We say that ρ has the Fatou Property if

ρ(x− y) ≤ lim inf
n→∞

ρ(xn − y)

whenever ρ(xn − x)→ 0 as n→∞.

Definition 1.5. LetXρ be a modular space. We say that T : Xρ → Xρ is ρ-continuous when if ρ(xn−x)→ 0,
then ρ(Txn − Tx)→ 0 as n→∞.

In 2012, Samet et al. [20] introduced the concept of α-admissible mappings.

Definition 1.6 ([20]). For a nonempty set X, let T : X → X and α : X ×X → [0,∞) be given mappings.
We say that T is α−admissible if for all x, y ∈ X, we have

α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1. (1.1)

The concept of α-admissible mappings is used frequently in several papers, see [2–5]. Later, Karapinar
et al. [8] introduced the notion of triangular α-admissible mappings.

Definition 1.7 ([8]). Let T : X → X and α : X ×X → [0,∞) be given mappings. A mapping T : A→ B
is called a triangular α-admissible if

(T1) T is α-admissible;

(T2) α(x, y) ≥ 1 and α(y, z) ≥ 1⇒ α(x, z) ≥ 1, x, y, z ∈ X.
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Very recently, Khojasteh, Shukla and Radenović [11] introduced a new class of mappings called simulation
functions. Using the above concept, they [11] proved several fixed point theorems and showed that many
known results in literature are simple consequences of their obtained results. Later, Argoubi, Samet and
Vetro [1] slightly modified the definition of simulation functions by withdrawing a condition.

Let Z∗ be the set of simulation functions in the sense of Argoubi et al. [1].

Definition 1.8 ([1]). A simulation function is a mapping ζ : [0,∞) × [0,∞) → R satisfying the following
conditions:

(ζ1) ζ(t, s) < s− t for all t, s > 0;

(ζ2) if {tn} and {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn = ` ∈ (0,∞), then

lim sup
n→∞

ζ(tn, sn) < 0.

Example 1.9 ([1]). Let ζλ : [0,∞)× [0,∞)→ R be the function defined by

ζλ(t, s) =

{
1 if (t, s) = (0, 0),

λs− t otherwise,

where λ ∈ (0, 1). Then, ζλ ∈ Z∗.

Example 1.10. Let ζ : [0,∞)× [0,∞)→ R be the function defined by ζ(t, s) = ψ(s)−ϕ(t) for all t, s ≥ 0,
where ψ : [0,∞) → R is an upper semi-continuous function and ϕ : [0,∞) → R is a lower semi-continuous
function such that ψ(t) < t ≤ ϕ(t) for all t > 0. Then, ζ ∈ Z∗.

2. Fixed points via simulation functions

The first main result is:

Theorem 2.1. Let C be a ρ-closed subset of a ρ-complete modular space Xρ, where ρ satisfies the ∆2-
condition. Let T : C → C be a given mapping. Suppose that there exists a simulation function ζ ∈ Z∗ and
α : C × C → [0,∞) such that

ζ (ρ(Tx− Ty),M(x, y)) ≥ 0 (2.1)

for all x, y ∈ C satisfying α(x, y) ≥ 1, where

M(x, y) = max{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(x−Ty2 ) + ρ(y−Tx2 )

2
}.

Assume that

(i) T is triangular α-admissible;

(ii) there exists an element x0 ∈ C such that α(x0, Tx0) ≥ 1;

(iii) T is ρ-continuous.

Then T has a fixed point, that is, there exists z ∈ C such that Tz = z.

Proof. By assumption (ii), there exists a point x0 ∈ C such that α(x0, Tx0) ≥ 1. Define a sequence {xn}
by xn = Tnx0 for all n ≥ 0.

We split the proof into several steps.
Step 1: α(xn, xm) ≥ 1 for all m > n ≥ 0.
We have α(x0, x1) = α(x0, Tx0) ≥ 1. Since T is α-admissible, by induction, we have

α(xn, xn+1) ≥ 1 for all n ≥ 0.
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The mapping T is triangular α-admissible, then

α(xn, xn+1) ≥ 1 and α(xn+1, xn+2) ≥ 1⇒ α(xn, xn+2) ≥ 1.

Thus, by induction
α(xn, xm) ≥ 1 for all m > n ≥ 0.

Step 2: We shall prove
lim
n→∞

ρ(xn − xn+1) = 0. (2.2)

By Step 1, we have α(xn, xm) ≥ 1 for all m > n ≥ 0. Then, from (2.1)

ζ (ρ(xn − xn+1),M(xn−1, xn)) = ζ (ρ(Txn−1, Txn),M(xn−1, xn)) ≥ 0,

where

M(xn−1, xn) = max{ρ(xn−1 − xn), ρ(xn−1 − Txn−1), ρ(xn − Txn),
ρ(xn−1−Txn

2 ) + ρ(xn−Txn−1

2 )

2
}

= max{ρ(xn−1 − xn), ρ(xn − xn+1),
ρ(xn−1−xn+1

2 )

2
}.

From (ρ3), we have

ρ(
xn−1 − xn+1

2
) = ρ(

xn−1 − xn + xn − xn+1

2
)

≤ ρ(xn−1 − xn) + ρ(xn − xn+1)

≤ 2 max{ρ(xn−1 − xn), ρ(xn − xn+1)}.

Thus
M(xn−1, xn) = max{ρ(xn−1 − xn), ρ(xn, xn+1)}.

If xn = xn+1 for some n, then xn = xn+1 = Txn, that is, xn is a fixed point of T and so the proof is
completed. Suppose now that xn 6= xn+1 for all n = 0, 1, . . ..

If max{ρ(xn−1 − xn), ρ(xn − xn+1)} = ρ(xn − xn+1) for some n, then it follows from the condition (ζ1),

0 ≤ ζ (ρ(xn − xn+1), ρ(xn − xn+1)) < ρ(xn − xn+1)− ρ(xn − xn+1) = 0,

which is a contradiction. Then, max{ρ(xn−1 − xn), ρ(xn − xn+1)} = ρ(xn−1 − xn) for all n. So

0 ≤ ζ (ρ(xn − xn+1), ρ(xn−1 − xn)) . (2.3)

Therefore, from condition (ζ1), we have

0 ≤ ζ (ρ(xn − xn+1), ρ(xn−1 − xn)) < ρ(xn−1 − xn)− ρ(xn − xn+1), for all n ≥ 1.

Necessarily, we have
ρ(xn − xn+1) < ρ(xn−1 − xn), for all n ≥ 1, (2.4)

which implies that {ρ(xn − xn+1)} is a decreasing sequence of positive real numbers, so there exists t ≥ 0
such that

lim
n→∞

ρ(xn − xn+1) = t. (2.5)

Suppose that t > 0. By (2.3), (2.5) and the condition (ζ2),

0 ≤ lim sup
n→∞

ζ (ρ(xn − xn+1), ρ(xn−1 − xn)) < 0,
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which is a contradiction. Then, we conclude that t = 0, that is,

lim
n→∞

ρ(xn − xn+1) = 0. (2.6)

Step 3: Now, we shall prove that xn is a ρ-Cauchy sequence. Suppose to the contrary. Then, there exists
ε > 0 for which we can find subsequences {xm(k)} and {xn(k)} of {xn} with m(k) > n(k) > k such that for
every k

ρ(xm(k) − xn(k)) ≥ ε. (2.7)

Moreover, corresponding to n(k) we can choose m(k) in such a way that it is the smallest integer with
m(k) > n(k) and satisfying (2.7). Then

ρ(2(xm(k)−1 − xn(k))) < ε. (2.8)

Using (2.7), (2.8) and (ρ3), we get

ε ≤ ρ(xm(k) − xn(k)) = ρ(xm(k) − xm(k)−1 + xm(k)−1 − xn(k))
≤ ρ(2(xm(k) − xm(k)−1)) + ρ(2(xm(k)−1 − xn(k)))
< ρ(2(xm(k) − xm(k)−1)) + ε.

By (2.6) and since ρ satisfies the ∆2-condition, we get

lim
k→∞

ρ(xm(k) − xn(k)) = ε. (2.9)

If xn = xm for some n < m, then xn+1 = Txn = Txm = xm+1 it follows from (2.4),

0 < ρ(xn − xn+1) = ρ(xm − xm+1) < ρ(xm−1 − xm) < · · · < ρ(xn − xn+1),

which is a contradiction. Then xn 6= xm for all n < m. By (2.1) and as α(xn(k)−1, xm(k)−1) ≥ 1 for all k ≥ 1,
we get

0 ≤ ζ
(
ρ(xm(k) − xn(k)),M(xm(k)−1, xn(k)−1)

)
, (2.10)

where

M(xm(k)−1, xn(k)−1) = max{ρ(xm(k)−1 − xn(k)−1), ρ(xm(k)−1, xm(k)), ρ(xn(k)−1, xn(k)),

ρ(
xn(k)−1−xm(k)

2 ) + ρ(
xm(k)−1−xn(k)

2 )

2
}.

From (ρ3) and (2.8), we have

ρ(xm(k)−1 − xn(k)−1) ≤ ρ(2(xm(k)−1 − xn(k))) + ρ(2(xn(k) − xn(k)−1)) ≤ ε+ ρ(2(xn(k) − xn(k)−1)), (2.11)

ρ(
xn(k)−1 − xm(k)

2
) ≤ ρ(xn(k)−1 − xn(k)) + ρ(xn(k) − xm(k)), (2.12)

ρ(
xm(k)−1 − xn(k)

2
) ≤ ρ(xm(k)−1 − xm(k)) + ρ(xm(k) − xn(k)). (2.13)

Moreover, from (2.10) and the condition (ζ1)

0 ≤ ζ
(
ρ(xm(k) − xn(k)),M(xm(k)−1, xn(k)−1)

)
< M(xm(k)−1, xn(k)−1)− ρ(xm(k) − xn(k)).

It follows that
ρ(xm(k) − xn(k)) < M(xm(k)−1, xn(k)−1). (2.14)



H. Aydi, A. Felhi, J. Nonlinear Sci. Appl. 9 (2016), 3686–3701 3691

From (2.11), (2.12), (2.13) and (2.14), we have

ρ(xm(k) − xn(k)) < M(xm(k)−1, xn(k)−1)

≤ max{ε+ ρ(2(xn(k) − xn(k)−1)), ρ(xm(k)−1, xm(k)), ρ(xn(k)−1, xn(k))

ρ(xn(k)−1 − xn(k)) + ρ(xm(k)−1 − xm(k)) + 2ρ(xm(k) − xn(k))
2

}.

Letting k →∞, by using (2.9), (2.6) and taking into account that ρ satisfies the ∆2-condition, we get

lim
k→∞

M(xm(k)−1, xn(k)−1) = ε.

The condition (ζ2) implies that

0 ≤ lim sup
k→∞

ζ
(
ρ(xn(k) − xm(k)),M(xm(k)−1 − xn(k)−1)

)
< 0,

which is a contradiction. It follows that {xn} is a ρ-Cauchy sequence in C. Since C is a ρ-closed subset of
the ρ-complete Xρ, there exists some z ∈ C such that limn→∞ ρ(xn − z) = 0.
Step 4: Now, we shall prove that z is a fixed point of T .

The mapping T is ρ-continuous at z, then limn→∞ ρ(Txn − Tz) = 0. On the other hand, we have

ρ(
z − Tz

2
) ≤ ρ(z − xn+1) + ρ(Txn − Tz).

Letting n → ∞ in the above inequality, we get ρ( z−Tz2 ) = 0, that is, Tz = z. Thus, z is a fixed point of
T .

We may replace the ρ-continuity hypothesis of T in Theorem 2.1 by the following hypothesis:
(H) If {xn} is a sequence in C such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ C as n → ∞, then

there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 for all k.

Theorem 2.2. Let C be a ρ-closed subset of a ρ-complete modular space Xρ, where ρ satisfies the ∆2-
condition. Let T : C → C be a given mapping. Suppose that there exists a simulation function ζ ∈ Z∗ and
α : C × C → [0,∞) such that

ζ (ρ(Tx− Ty),M(x, y)) ≥ 0 (2.15)

for all x, y ∈ C satisfying α(x, y) ≥ 1, where

M(x, y) = max{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(x−Ty2 ) + ρ(y−Tx2 )

2
}.

Assume that

(i) T is triangular α-admissible;

(ii) there exists an element x0 ∈ C such that α(x0, Tx0) ≥ 1;

(iii) (H) holds;

(iv) ρ has the Fatou property.

Then T has a fixed point.

Proof. Following the proof of Theorem 2.1, there exists a sequence {xn} such that α(xn, xm) ≥ 1 for all
m > n ≥ 0. Also {xn} is ρ-Cauchy in C and converges to some z ∈ C. We claim that z is a fixed point
of T . If there exists a subsequence {xnk

} of {xn} such that xnk
= z or xnk+1 = Tz for all k, then

ρ(z − Tz) = ρ(z − xnk+1) for all k. Letting k → ∞, we get ρ(z − Tz) = 0, that is, Tz = z and the proof
is complete. So, without loss of generality, we may suppose that xn 6= z and xn 6= Tz for all nonnegative
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integer n. Suppose that ρ(z−Tz) > 0. By assumption (iii), there exists a subsequence {xn(k)} of {xn} such
that α(xn(k), z) ≥ 1 for all k. By (2.15) and as α(xn(k), z) ≥ 1 for all k ≥ 1, we get

ζ
(
ρ(xn(k)+1 − Tz),M(xn(k), z)

)
≥ 0, (2.16)

where

M(xn(k), z) = max{ρ(xn(k) − z), ρ(xn(k) − xn(k)+1), ρ(z − Tz),

ρ(
xn(k)−Tz

2 ) + ρ(
z−xn(k)+1

2 )

2
}.

From the condition (ζ1),

0 ≤ ζ
(
ρ(xn(k)+1 − Tz),M(xn(k), z)

)
< M(xn(k), z)− ρ(xn(k)+1 − Tz).

This leads to
ρ(xn(k)+1 − Tz) < M(xn(k), z).

Moreover, from (ρ3)

M(xn(k), z) ≤ max{ρ(xn(k) − z), ρ(xn(k) − xn(k)+1), ρ(z − Tz),
ρ(xn(k) − z) + ρ(z − Tz) + ρ(z − xn(k)+1)

2
}.

One has

ρ(xn(k)+1 − Tz) < M(xn(k), z) ≤ max{ρ(xn(k) − z), ρ(xn(k) − xn(k)+1), ρ(z − Tz),
ρ(xn(k) − z) + ρ(z − Tz) + ρ(z − xn(k)+1)

2
}.

Since ρ has the Fatou property, by using (2.6), we have

ρ(z − Tz) ≤ lim inf
k→∞

ρ(xn(k)+1 − Tz) ≤ lim sup
k→∞

ρ(xn(k)+1 − Tz) ≤ lim sup
k→∞

M(xn(k), z)

≤ lim sup
k→∞

max{ρ(xn(k) − z), ρ(xn(k) − xn(k)+1), ρ(z − Tz),

ρ(xn(k) − z) + ρ(z − Tz) + ρ(z − xn(k)+1)

2
}

= ρ(z − Tz).

Then
lim
k→∞

ρ(xn(k)+1 − Tz) = ρ(z − Tz). (2.17)

Also
lim
k→∞

M(xn(k), z) = ρ(z − Tz). (2.18)

From (2.16), (2.17), (2.18) and the condition (ζ2), we get

0 ≤ lim sup
k→∞

ζ
(
ρ(xn(k)+1 − Tz),M(xn(k), z)

)
< 0,

which is a contradiction. Then we conclude that ρ(z − Tz) = 0 and so z is fixed point of T .

Now, we prove a uniqueness fixed point result. For this, we need the following additional condition.
(U): For all x, y ∈ Fix(T ), we have α(x, y) ≥ 1, where Fix(T ) denotes the set of fixed points of T.
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Theorem 2.3. Adding condition (U) to the hypotheses of Theorem 2.1 (resp. Theorem 2.2 ), we obtain
that z is the unique fixed point of T .

Proof. We argue by contradiction, that is, there exist z, w ∈ X such that z = Tz and w = Tw with z 6= w.
By assumption (U), we have α(z, w) ≥ 1. So, by (2.1) (resp. (2.15)) and using the condition (ζ2), we get

0 ≤ ζ(ρ(Tz − Tw),M(z, w)) = ζ(ρ(z − w),max{ρ(z − w), ρ(z − Tz), ρ(w − Tw),

ρ( z−Tw2 ) + ρ(w−Tz2 )

2
})

= ζ(ρ(z − w),max{ρ(z − w), 0, 0, ρ(
z − w

2
)})

= ζ (ρ(z − w), ρ(z − w)) < ρ(z − w)− ρ(z − w) = 0,

which is a contradiction. Hence, z = w.

Using the same techniques, we obtain the following results.

Theorem 2.4. Let C be a ρ-closed subset of a ρ-complete modular space Xρ, where ρ satisfies the ∆2-
condition. Let T : C → C be a given mapping. Suppose that there exists a simulation function ζ ∈ Z∗ and
α : C × C → [0,∞) such that

ζ (ρ(Tx− Ty), ρ(x− y)) ≥ 0 (2.19)

for all x, y ∈ C satisfying α(x, y) ≥ 1. Assume that

(i) T is triangular α-admissible;

(ii) there exists an element x0 ∈ C such that α(x0, Tx0) ≥ 1;

(iii) T is ρ-continuous.

Then T has a fixed point.

Theorem 2.5. Let C be a ρ-closed subset of a ρ-complete modular space Xρ, where ρ satisfies the ∆2-
condition. Let T : C → C be a given mapping. Suppose that there exist a simulation function ζ ∈ Z∗ and
α : C × C → [0,∞) such that

ζ (ρ(Tx− Ty), ρ(x− y)) ≥ 0 (2.20)

for all x, y ∈ C satisfying α(x, y) ≥ 1. Assume that

(i) T is triangular α-admissible;

(ii) there exists an element x0 ∈ C such that α(x0, Tx0) ≥ 1;

(iii) (H) holds.

Then T has a fixed point.

Proof. Following the proof of Theorem 2.1, we can construct a sequence {xn} such that α(xn, xm) ≥ 1
for all m > n ≥ 0. {xn} is also ρ-Cauchy in C and converges to some z ∈ C. We claim that z is a fixed
point of T . If there exists a subsequence {xnk

} of {xn} such that xnk
= z or Txnk

= Tz for all k, then
ρ(z − Tz) = ρ(z − xnk+1) for all k. Letting k → ∞, we get ρ(z − Tz) = 0, that is, Tz = z and the proof
is finished. So, without loss of generality, we may suppose that xn 6= z and Txn 6= Tz for all nonnegative
integer n. By assumption (iii), there exists a subsequence {xn(k)} of {xn} such that α(xn(k), z) ≥ 1 for all
k. By (2.20) and as α(xn(k), z) ≥ 1 for all k ≥ 1, we get

ζ
(
ρ(Txn(k) − Tz), ρ(xn(k) − z)

)
≥ 0.

From the condition (ζ1),

0 ≤ ζ
(
ρ(Txn(k) − Tz), ρ(xn(k) − z)

)
< ρ(xn(k) − z)− ρ(Txn(k) − Tz).
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This leads to
ρ(Txn(k) − Tz) < ρ(xn(k) − z).

One has

ρ(
z − Tz

2
) ≤ ρ(z − xn(k)+1) + ρ(Txn(k) − Tz).

It follows that

ρ(
z − Tz

2
) ≤ ρ(z − xn(k)+1) + ρ(xn(k) − z).

Letting k →∞ in the above inequality, we obtain ρ( z−Tz2 ) = 0 and so z is a fixed point of T .

Theorem 2.6. Adding condition (U) to the hypotheses of Theorem 2.4 (resp. Theorem 2.5 ), we obtain
that z is the unique fixed point of T .

Example 2.7. Take Xρ = R, with ρ(x) =
√
|x| and C = [0,∞). Consider the mapping T : C → C given

by

Tx =

{
x
4 if x ∈ [0, 1]

2x− 7
4 if x > 1.

Note that C is ρ-complete. Define the mapping α : C × C → [0,∞) by

α(x, y) =

{
2 + sin(x+ y) if x, y ∈ [0, 1]

0 otherwise.

Let ζ(t, s) = s − 2+t
1+t t for all s, t ≥ 0. Note that T is α-admissible. In fact, let x, y ∈ X be such that

α(x, y) ≥ 1. By definition of α, this implies that x, y ∈ [0, 1]. Thus,

α(Tx, Ty) = α(
x

4
,
y

4
) = 2 + sin(

x

4
+
y

4
) ≥ 1.

T is also triangular α-admissible. In fact, let x, y, z ∈ X such that α(x, y) ≥ 1 and α(y, z) ≥ 1. This implies
that x, y, z ∈ [0, 1]. It follows that α(x, z) = 2 + sin(x+ z) ≥ 1.

Now, we show that the contraction condition (2.19) is verified. Let x, y ∈ X such that α(x, y) ≥ 1. So,
x, y ∈ [0, 1]. In this case, we have

ζ(ρ(Tx− Ty), ρ(x− y)) = ρ(x− y)− 2 + ρ(Tx− Ty)

1 + ρ(Tx− Ty)
ρ(Tx− Ty)

=
√
|x− y| −

4 +
√
|x− y|

4 + 2
√
|x− y|

√
|x− y|

=
|x− y|

4 + 2
√
|x− y|

≥ 0.

Note that T is ρ-continuous. Moreover, there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. In fact, for x0 = 1,
we have α(1, T1) = α(1, 14) = 2 + sin(54) ≥ 1. Hence, all hypotheses of Theorem 2.4 are verified. Here, {0, 74}
is the set of fixed points of T . Remark that α(0, 74) < 1. So the fixed point of T is not unique.

On the other hand, the Banach contraction principle is not applicable because, for x = 2 and y = 3, we
have

ρ(T2− T3) =
√

2 > 1 = ρ(2− 3).
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Example 2.8. Take Xρ = R with ρ(x) = |x| and C = [0,∞). Consider the mapping T : C → C given by

Tx =

{
x
3 if x ∈ [0, 1]

x2 if x > 1.

Note that C is ρ-complete. Define the mapping α : C × C → [0,∞) by

α(x, y) =

{
1 if x, y ∈ [0, 1]

0 otherwise.

Let ζ(t, s) = 1
2s−t for all s, t ≥ 0. Note that T is triangular α-admissible. Let x, y ∈ C such that α(x, y) ≥ 1.

So, x, y ∈ [0, 1]. In this case, we have

ζ(ρ(Tx− Ty), ρ(x− y)) =
1

2
ρ(x− y)− ρ(Tx− Ty) =

1

6
|x− y| ≥ 0.

Now, we show that condition (iii) of Theorem 2.5 is verified. Let {xn} be a sequence in C such that
α(xn, xn+1) ≥ 1 for all n and ρ(xn− x)→ 0. Then, {xn} ⊂ [0, 1] and x ∈ [0, 1] and so α(xn, x) = 1 for all n.
Moreover, there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. In fact, for x0 = 1, we have α(1, T1) = α(1, 13) = 1.
Thus, all hypotheses of Theorem 2.5 are verified. Here, 0 is the unique fixed point of T .

On the other hand, ρ(T
√

2− T
√

3) = 1 >
√

3−
√

2 = ρ(
√

2−
√

3), then T is not a Banach contraction
on Xρ.

3. Consequences

In this section, as consequences of our obtained results, we provide various fixed point results in the
literature including fixed point theorems in partially ordered modular spaces.

Corollary 3.1. Let C be a ρ-closed subset of a ρ-complete modular space Xρ, where ρ satisfies the ∆2-
condition. Let T : C → C be a given mapping. Suppose that there exist k ∈ (0, 1) and α : C × C → [0,∞)
such that

ρ(Tx− Ty) ≤ kmax{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(x−Ty2 ) + ρ(y−Tx2 )

2
}

for all x, y ∈ C, satisfying α(x, y) ≥ 1. Suppose also that

(i) T is triangular α-admissible;

(ii) there exists an element x0 ∈ C such that α(x0, Tx0) ≥ 1;

(iii) T is ρ-continuous.

Then T has a fixed point.

Proof. It suffices to take a simulation function ζ(t, s) = ks− t for all s, t ≥ 0 in Theorem 2.1.

Corollary 3.2. Let C be a ρ-closed subset of a ρ-complete modular space Xρ, where ρ satisfies the ∆2-
condition. Let T : C → C be a given mapping. Suppose that there exist k ∈ (0, 1) and α : C × C → [0,∞)
such that

ρ(Tx− Ty) ≤ kmax{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(x−Ty2 ) + ρ(y−Tx2 )

2
}

for all x, y ∈ C, satisfying α(x, y) ≥ 1. Suppose also that

(i) T is triangular α-admissible;

(ii) there exists an element x0 ∈ C such that α(x0, Tx0) ≥ 1;

(iii) (H) holds;
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(iV ) ρ has the Fatou property.

Then T has a fixed point.

Proof. It suffices to take a simulation function ζ(t, s) = ks− t for all s, t ≥ 0 in Theorem 2.2.

Corollary 3.3. Let C be a ρ-closed subset of a ρ-complete modular space Xρ, where ρ satisfies the ∆2-
condition. Let T : C → C be a given mapping. Suppose that there exist k ∈ (0, 1) and α : C × C → [0,∞)
such that

ρ(Tx− Ty) ≤ kρ(x− y)

for all x, y ∈ C, satisfying α(x, y) ≥ 1. Suppose also that

(i) T is triangular α-admissible;

(ii) there exists an element x0 ∈ C such that α(x0, Tx0) ≥ 1;

(iii) T is ρ-continuous or (H) holds.

Then T has a fixed point.

Corollary 3.4. Let C be a ρ-closed subset of a ρ-complete modular space Xρ, where ρ satisfies the ∆2-
condition. Let T : C → C be a given mapping. Suppose that there exist a lower semi-continuous function
ϕ : [0,∞)→ [0,∞) with ϕ(t) > 0 for all t > 0 and α : C × C → [0,∞) such that

ρ(Tx− Ty) ≤max{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(x−Ty2 ) + ρ(y−Tx2 )

2
}

− ϕ(max{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(x−Ty2 ) + ρ(y−Tx2 )

2
})

for all x, y ∈ C, satisfying α(x, y) ≥ 1. Suppose also that

(i) T is triangular α-admissible;

(ii) there exists an element x0 ∈ C such that α(x0, Tx0) ≥ 1;

(iii) T is ρ-continuous.

Then T has a fixed point.

Proof. It suffices to take a simulation function ζ(t, s) = s− ϕ(s)− t for all s, t ≥ 0 in Theorem 2.1.

Corollary 3.5. Let C be a ρ-closed subset of a ρ-complete modular space Xρ, where ρ satisfies the ∆2-
condition. Let T : C → C be a given mapping. Suppose that there exist a lower semi-continuous function
ϕ : [0,∞)→ [0,∞) verifying ϕ(t) > 0 for all t > 0 and α : C × C → [0,∞) such that

ρ(Tx− Ty) ≤max{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(x−Ty2 ) + ρ(y−Tx2 )

2
}

− ϕ(max{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(x−Ty2 ) + ρ(y−Tx2 )

2
})

for all x, y ∈ C, satisfying α(x, y) ≥ 1. Suppose also that

(i) T is triangular α-admissible;

(ii) there exists an element x0 ∈ C such that α(x0, Tx0) ≥ 1;

(iii) (H) holds;

(iV ) ρ has the Fatou property.

Then T has a fixed point.
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Corollary 3.6. Let C be a ρ-closed subset of a ρ-complete modular space Xρ, where ρ satisfies the ∆2-
condition. Let T : C → C be a given mapping. Suppose there exist a lower semi-continuous function
ϕ : [0,∞)→ [0,∞) with ϕ(t) > 0 for all t > 0 and α : C × C → [0,∞) such that

ρ(Tx− Ty) ≤ ρ(x− y)− ϕ(ρ(x− y))

for all x, y ∈ C, satisfying α(x, y) ≥ 1. Suppose also that

(i) T is triangular α-admissible;

(ii) there exists an element x0 ∈ C such that α(x0, Tx0) ≥ 1;

(iii) T is ρ-continuous or (H) holds.

Then T has a fixed point.

Proof. It suffices to take a simulation function ζ(t, s) = s − ϕ(s) − t for all s, t ≥ 0 in Theorem 2.4 (resp.
Theorem 2.5).

Corollary 3.7. Let C be a ρ-closed subset of a ρ-complete modular space Xρ, where ρ satisfies the ∆2-
condition. Let T : C → C be a given mapping. Suppose there exist a function ϕ : [0,∞) → [0, 1) with
lim
t→r+

ϕ(t) < 1 for all r > 0 and α : C × C → [0,∞) such that

ρ(Tx− Ty) ≤max{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(x−Ty2 ) + ρ(y−Tx2 )

2
}

− ϕ(max{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(x−Ty2 ) + ρ(y−Tx2 )

2
})

for all x, y ∈ C, satisfying α(x, y) ≥ 1. Suppose also that

(i) T is triangular α-admissible;

(ii) there exists an element x0 ∈ C such that α(x0, Tx0) ≥ 1;

(iii) T is ρ-continuous.

Then T has a fixed point.

Proof. It suffices to take a simulation function ζ(t, s) = sϕ(s)− t for all s, t ≥ 0 in Theorem 2.1.

Corollary 3.8. Let C be a ρ-closed subset of a ρ-complete modular space Xρ, where ρ satisfies the ∆2-
condition. Let T : C → C be a given mapping. Suppose there exist a function ϕ : [0,∞) → [0, 1) with
lim
t→r+

ϕ(t) < 1 for all r > 0 and α : C × C → [0,∞) such that

ρ(Tx− Ty) ≤max{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(x−Ty2 ) + ρ(y−Tx2 )

2
}

− ϕ(max{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(x−Ty2 ) + ρ(y−Tx2 )

2
})

for all x, y ∈ C, satisfying α(x, y) ≥ 1. Suppose also that

(i) T is triangular α-admissible;

(ii) there exists an element x0 ∈ C such that α(x0, Tx0) ≥ 1;

(iii) (H) holds;

(iV ) ρ has the Fatou property.

Then T has a fixed point.
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Corollary 3.9. Let C be a ρ-closed subset of a ρ-complete modular space Xρ, where ρ satisfies the ∆2-
condition. Let T : C → C be a given mapping. Suppose there exist a function ϕ : [0,∞) → [0, 1) with
lim
t→r+

ϕ(t) < 1 for all r > 0 and α : C × C → [0,∞) such that

ρ(Tx− Ty) ≤ ϕ(ρ(x− y))ρ(x− y)

for all x, y ∈ C, satisfying α(x, y) ≥ 1. Suppose also that

(i) T is triangular α-admissible;

(ii) there exists an element x0 ∈ C such that α(x0, Tx0) ≥ 1;

(iii) T is ρ-continuous or (H) holds.

Then T has a fixed point.

Corollary 3.10. Let C be a ρ-closed subset of a ρ-complete modular space Xρ, where ρ satisfies the ∆2-
condition. Let T : C → C be a given mapping. Suppose there exist an upper semi-continuous function
ϕ : [0,∞)→ [0,∞) with ϕ(t) < t for all t > 0 and α : C × C → [0,∞) such that

ρ(Tx− Ty) ≤ ϕ(max{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(x−Ty2 ) + ρ(y−Tx2 )

2
})

for all x, y ∈ C, satisfying α(x, y) ≥ 1. Suppose also that

(i) T is triangular α-admissible;

(ii) there exists an element x0 ∈ C such that α(x0, Tx0) ≥ 1;

(iii) T is ρ-continuous.

Then T has a fixed point.

Proof. It suffices to take a simulation function ζ(t, s) = ϕ(s)− t for all s, t ≥ 0 in Theorem 2.1.

Corollary 3.11. Let C be a ρ-closed subset of a ρ-complete modular space Xρ, where ρ satisfies the ∆2-
condition. Let T : C → C be a given mapping. Suppose there exist an upper semi-continuous function
ϕ : [0,∞)→ [0,∞) with ϕ(t) < t for all t > 0 and α : C × C → [0,∞) such that

ρ(Tx− Ty) ≤ ϕ(max{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(x−Ty2 ) + ρ(y−Tx2 )

2
})

for all x, y ∈ C, satisfying α(x, y) ≥ 1. Suppose also that

(i) T is triangular α-admissible;

(ii) there exists an element x0 ∈ C such that α(x0, Tx0) ≥ 1;

(iii) (H) holds;

(iV ) ρ has the Fatou property.

Then T has a fixed point.

Corollary 3.12. Let C be a ρ-closed subset of a ρ-complete modular space Xρ, where ρ satisfies the ∆2-
condition. Let T : C → C be a given mapping. Suppose there exist an upper semi-continuous function
ϕ : [0,∞)→ [0,∞) with ϕ(t) < t for all t > 0 and α : C × C → [0,∞) such that

ρ(Tx− Ty) ≤ ϕ(ρ(x− y))

for all x, y ∈ C, satisfying α(x, y) ≥ 1. Suppose also that

(i) T is triangular α-admissible;

(ii) there exists an element x0 ∈ C such that α(x0, Tx0) ≥ 1;
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(iii) T is ρ-continuous or (H) holds.

Then T has a fixed point.

Remark 3.13. We can obtain other fixed point results in the class of modular spaces by choosing an appro-
priate simulation function and an appropriate α.

Corollary 3.14. Let C be a ρ-closed subset of a ρ-complete modular space Xρ, where ρ satisfies the ∆2-
condition. Let T : C → C be a given mapping. Suppose that there exists a simulation function ζ ∈ Z∗ such
that

ζ (ρ(Tx− Ty),M(x, y)) ≥ 0

for all x, y ∈ C, where

M(x, y) = max{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(x−Ty2 ) + ρ(y−Tx2 )

2
}.

If T is ρ-continuous or ρ has the Fatou property, then T has a unique fixed point.

Proof. It suffices to take α(x, y) = 1 in Theorem 2.1 (resp. Theorem 2.2).

Corollary 3.15. Let C be a ρ-closed subset of a ρ-complete modular space Xρ, where ρ satisfies the ∆2-
condition. Let T : C → C be a given mapping. Suppose that there exists a simulation function ζ ∈ Z∗ such
that

ζ (ρ(Tx− Ty), ρ(x− y)) ≥ 0

for all x, y ∈ C. Then T has a unique fixed point.

Now, we give some fixed points results in partially ordered modular spaces as consequences of our results.

Definition 3.16. Let X be a nonempty set and ρ a functional modular. We say that (Xρ,�) is a partially
ordered modular space if Xρ is a modular space and (X,�) is a partially ordered set.

Definition 3.17. Let T : X → X be a given mapping. We say that T is non-decreasing if

(x, y) ∈ X ×X, x � y ⇒ Tx � Ty.

Corollary 3.18. Let (Xρ,�) be a ρ-complete partially ordered modular space and C be a ρ-closed subset of
Xρ. Let T : C → C be a given mapping. Suppose there exists a simulation function ζ ∈ Z∗ such that

ζ (ρ(Tx− Ty),M(x, y)) ≥ 0,

for all x, y ∈ C satisfying x � y, where

M(x, y) = max{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(x−Ty2 ) + ρ(y−Tx2 )

2
}.

Suppose also that

(i) T is non-decreasing;

(ii) there exists an element x0 ∈ X such that x0 � Tx0;
(iii) T is ρ-continuous.

Then T has a fixed point.

Proof. Let α : C × C → [0,∞) be such that

α(x, y) =

{
1 if x � y;

0 otherwise.

Then, all hypotheses of Theorem 2.1 are satisfied and hence T has a fixed point.
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Corollary 3.19. Let (Xρ,�) be a ρ-complete partially ordered modular space and C be a ρ-closed subset of
Xρ. Let T : C → C be a given mapping. Suppose there exists a simulation function ζ ∈ Z∗ such that

ζ (ρ(Tx− Ty),M(x, y)) ≥ 0

for all x, y ∈ C satisfying x � y, where

M(x, y) = max{ρ(x− y), ρ(x− Tx), ρ(y − Ty),
ρ(x−Ty2 ) + ρ(y−Tx2 )

2
}.

Suppose also that

(i) T is non-decreasing;

(ii) there exists an element x0 ∈ X such that x0 � Tx0;
(iii) ρ has the Fatou property;

(iv) if {xn} is a sequence in X such that xn � xn+1 for all n and xn → x ∈ X as n→∞, then there exists
a subsequence {xn(k)} of {xn} such that xn(k) � x for all k.

Then T has a fixed point.

Corollary 3.20. Let (Xρ,�) be a ρ-complete partially ordered modular space and C be a ρ-closed subset of
Xρ. Let T : C → C be a given mapping. Suppose there exists a simulation function ζ ∈ Z∗ such that

ζ (ρ(Tx− Ty), ρ(x− y)) ≥ 0

for all x, y ∈ C satisfying x � y. Suppose also that

(i) T is non-decreasing;

(ii) there exists an element x0 ∈ X such that x0 � Tx0;
(iii) T is ρ-continuous or if {xn} is a sequence in X such that xn � xn+1 for all n and xn → x ∈ X as

n→∞, then there exists a subsequence {xn(k)} of {xn} such that xn(k) � x for all k.

Then T has a fixed point.
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