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Abstract

In this paper, we introduce two general algorithms (one implicit and one explicit) for finding a common
element of the set of an equilibrium problem and the set of common fixed points of a nonexpansive semigroup
{T (s)}s≥0 in Hilbert spaces. We prove that both approaches converge strongly to a common element x∗ of
the set of the equilibrium points and the set of common fixed points of {T (s)}s≥0. Such common element x∗

is the unique solution of some variational inequality, which is the optimality condition for some minimization
problem. As special cases of the above two algorithms, we obtain two schemes which both converge strongly
to the minimum norm element of the set of the equilibrium points and the set of common fixed points
of {T (s)}s≥0. The results obtained in the present paper improve and extend the corresponding results by
Cianciaruso et al. [F. Cianciaruso, G. Marino, L. Muglia, J. Optim. Theory. Appl., 146 (2010), 491–509]
and many others. c©2016 All rights reserved.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C be a nonempty
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closed convex subset of H. Recall that a mapping f : C → H be a ρ-contraction; that is, there exists a
constant ρ ∈ [0, 1) such that ‖f(x) − f(y)‖ ≤ ρ‖x − y‖ for all x, y ∈ C. A mapping T : C → C is said to
be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. Denote the set of fixed points of T by Fix(T ).
Let A be a strongly positive bounded linear operator on H, i.e., there exists a constant γ̄ > 0 such that
〈Ax, x〉 ≥ γ̄‖x‖2 for all x ∈ H.

Iterative methods for nonexpansive mappings are widely used to solve convex minimization problems.
A typical problem is to minimize a function over the set of fixed points of a nonexpansive mapping T ,

min
x∈Fix(T )

1

2
〈Ax, x〉 − 〈x, b〉. (1.1)

In [20], Xu proved that the sequence {xn} defined by

xn+1 = αnb+ (1− αnA)Txn, n ≥ 0,

strongly converges to the unique solution of (1.1) under certain conditions. Recently, Marino and Xu [11]
introduced the viscosity approximation method

xn+1 = αnγf(xn) + (1− αnA)Txn, n ≥ 0,

and proved that the sequence {xn} converges strongly to the unique solution of the variational inequality

〈(A− γf)z, x− z〉 ≥ 0, ∀x ∈ Fix(T ),

which is the optimality condition for the minimization problem

min
x∈Fix(T )

1

2
〈Ax, x〉 − h(x),

where h is a potential function for γf (i.e., h′ = γf on H).
Recall also that a mapping B : C → H is called α-inverse-strongly monotone if there exists a positive

real number α such that
〈Bx−By, x− y〉 ≥ α‖Bx−By‖2, ∀x, y ∈ C.

It is clear that any α-inverse-strongly monotone mapping is monotone (that is, 〈Bx − By, x − y〉 is
non-negative) and 1

α -Lipschitz continuous.
Let B : C → H be a nonlinear mapping and F : C ×C → R be a bifunction. We concerned equilibrium

problem is to find z ∈ C such that

F (z, y) + 〈Bz, y − z〉 ≥ 0, ∀y ∈ C. (1.2)

The solution set of (1.2) is denoted by Ω. If B = 0, then (1.2) reduces to the following equilibrium
problem of finding z ∈ C such that

F (z, y) ≥ 0, ∀y ∈ C. (1.3)

The equilibrium problem and the variational inequality problem have been investigated by many au-
thors. To see related works, we refer the reader to [1–5, 7–15, 17, 19–28] and the references therein. The
problem (1.2) is very general in the sense that it includes, as special cases, optimization problems, variational
inequalities, minimax problems, Nash equilibrium problem in noncooperative games and others.

For solving equilibrium problem (1.2), Moudafi [12] introduced an iterative algorithm and proved a weak
convergence theorem. Further, Takahashi and Takahashi [19] introduced another iterative algorithm for
finding an element of Ω ∩ Fix(S) and they obtained a strong convergence result. Recently, Plubtieng and
Punpaeng [15] introduced the following iterative method to find an equilibrium point of F , which is also a
fixed point of a nonexpansive mapping T : H → H,{

F (un, y) + 1
rn
〈x− un, un − xn〉 ≥ 0, ∀y ∈ H,

xn+1 = αnf(xn) + (I − αnA)Tun, n ≥ 0.
(1.4)
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They proved that, with suitable conditions, both the sequences {xn} and {un} defined by (1.4) are
strongly convergent to the unique solution z ∈ Fix(T )∩Ω of the variational inequality 〈(A−γf)z, x−z〉 ≥ 0
for all x ∈ Fix(T ) ∩ Ω, which is the optimality condition for the minimization problem
minx∈Fix(T )∩Ω

1
2〈Ax, x〉 − h(x), where h is a potential function for γf .

In this paper, we focus on nonexpansive semigroup {T (s)}s≥0. Recall that a family S := {T (s)}s≥0

of mappings of C into itself is called a nonexpansive semigroup on C if it satisfies the following conditions:

(S1) T (0)x = x for all x ∈ C;

(S2) T (s+ t) = T (s)T (t) for all s, t ≥ 0;

(S3) ‖T (s)x− T (s)y‖ ≤ ‖x− y‖ for all x, y ∈ C and s ≥ 0;

(S4) for all x ∈ H, s→ T (s)x is continuous.

We denote by Fix(T (s)) the set of fixed points of T (s) and by Fix(S) the set of all common fixed points
of S, i.e., Fix(S) =

⋂
s≥0 Fix(T (s)). It is known that Fix(S) is closed and convex.

Very recently, Cianciaruso et al. [5] introduced the following implicit and explicit schemes for finding a
common element of the set of an equilibrium problem and the set of common fixed points of a nonexpansive
semigroup in Hilbert spaces:

Implicit algorithm:

{
G(ut, y) + 1

rt
〈y − ut, ut − xt〉 ≥ 0, ∀y ∈ H,

xt = tγf(xt) + (I − tA) 1
λt

∫ λt
0 T (s)utds,

(1.5)

and

Explicit algorithm:

{
F (un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ H,

xn+1 = αnγf(xn) + (I − αnA) 1
λn

∫ λn
0 T (s)unds, n ≥ 0.

(1.6)

They proved that the above both approaches (1.5) and (1.6) have strong convergence. (Note that the
integral mentioned in the present paper is the usual integral, for example, we can compute

∫ t
0 T (s)xds as

limn→∞
∑n

i=1
t
nT ( tn i)x).

The following interesting problem arises: can one construct some more general algorithms which unify
the above algorithms?

On the other hand, we also notice that it is quite often to seek a particular solution of a given nonlinear
problem, in particular, the minimum-norm solution. For instance, given a closed convex subset C of a
Hilbert space H1 and a bounded linear operator R : H1 → H2, where H2 is another Hilbert space. The
C-constrained pseudoinverse of R, R†C , is then defined as the minimum-norm solution of the constrained
minimization problem

R†C(b) := arg min
x∈C
‖Rx− b‖,

which is equivalent to the fixed point problem

x = PC(x− λR∗(Rx− b)),

where PC is the metric projection from H1 onto C, R∗ is the adjoint of R, λ > 0 is a constant, and b ∈ H2

is such that P
R(C)

(b) ∈ R(C).

It is therefore another interesting problem to invent some algorithms that can generate schemes which
converge strongly to the minimum-norm solution of a given problem.

In this paper, we introduce two general algorithms (one implicit and one explicit) for finding a common
element of the set of an equilibrium problem and the set of common fixed points of a nonexpansive semigroup
{T (s)}s≥0 in Hilbert spaces. We prove that both approaches converge strongly to a common element x∗ of
the set of the equilibrium points and the set of common fixed points of {T (s)}s≥0. Such common element x∗

is the unique solution of some variational inequality, which is the optimality condition for some minimization
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problem. As special cases of the above two algorithms, we obtain two schemes which both converge strongly
to the minimum norm element of the set of the equilibrium points and the set of common fixed points of
{T (s)}s≥0.

The results contained in the present paper improve and extend the corresponding results by Cianciaruso
et al. [5] and many others.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. Throughout this paper, we assume
that a bifunction F : C × C → R satisfies the following conditions:

(H1) F (x, x) = 0 for all x ∈ C;

(H2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(H3) for each x, y, z ∈ C, limt↓0 F (tz + (1− t)x, y) ≤ F (x, y);

(H4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.

The metric (or nearest point) projection from H onto C is the mapping PC : H → C which assigns to
each point x ∈ C the unique point PCx ∈ C satisfying the property

‖x− PCx‖ = inf
y∈C
‖x− y‖ =: d(x,C).

It is well known that PC is a nonexpansive mapping and satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ H.

Moreover, PC is characterized by the following properties:

〈x− PCx, y − PCx〉 ≤ 0, (2.1)

and
‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2

for all x ∈ H and y ∈ C.
We need the following lemmas to prove our main results.

Lemma 2.1 ([8]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let F : C ×C → R
be a bifunction which satisfies conditions (H1)–(H4). Let r > 0 and x ∈ C. Then, there exists z ∈ C such
that

F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Further, if Sr(x) = {z ∈ C : F (z, y) + 1
r 〈y − z, z − x〉 ≥ 0, ∀y ∈ C}, then the following hold:

(i) Sr is single-valued and Sr is firmly nonexpansive, i.e., for any x, y ∈ H, ‖Srx − Sry‖2 ≤ 〈Srx −
Sry, x− y〉;

(ii) SF (as the set of all z ∈ C holding (1.3)) is closed and convex and SF = Fix(Sr).

Lemma 2.2 ([13]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let the mapping
B : C → H be α-inverse strongly monotone and r > 0 be a constant. Then, we have

‖(I − rB)x− (I − rB)y‖2 ≤ ‖x− y‖2 + r(r − 2α)‖Bx−By‖2, ∀x, y ∈ C.

In particular, if 0 ≤ r ≤ 2α, then I − rB is nonexpansive.
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Lemma 2.3 ([18]). Let C be a nonempty bounded closed convex subset of a Hilbert space H and let {T (s)}s≥0

be a nonexpansive semigroup on C. Then, for every h ≥ 0,

lim
t→∞

sup
x∈C

∥∥∥∥1

t

∫ t

0
T (s)xds− T (h)

1

t

∫ t

0
T (s)xds

∥∥∥∥ = 0.

Lemma 2.4 ([9]). Let C be a closed convex subset of a real Hilbert space H and let S : C → C be a
nonexpansive mapping. Then, the mapping I − S is demiclosed. That is, if {xn} is a sequence in C such
that xn → x∗ weakly and (I − S)xn → y strongly, then (I − S)x∗ = y.

Lemma 2.5 ([20]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + δnγn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∑∞

n=1 γn =∞;

(2) lim supn→∞ δn ≤ 0 or
∑∞

n=1 |δnγn| <∞.

Then limn→∞ an = 0.

3. Main results

In this section we will show our main results.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let S = {T (s)}s≥0 be
a nonexpansive semigroup on C. Let f : C → H be a ρ-contraction (possibly non-self) with ρ ∈ [0, 1). Let
A be a strongly positive linear bounded self-adjoint operator on H with coefficient γ̄ > 0. Let B : C → H be
an α-inverse strongly monotone mapping. Let {rt}0<t<1 be a continuous net of positive real numbers such
that rt ∈ [a, b] ⊂ (0, 2α). Let {λt}0<t<1 be a continuous net of positive real numbers such that limt→0 λt =
+∞. Let γ and β be two real numbers such that 0 < γ < γ̄/ρ and β ∈ [0, 1). Suppose that the function
F : C × C → R satisfies (H1)-(H4) and Fix(S) ∩ Ω 6= ∅. Let the nets {xt} and {ut} be defined by the
following implicit scheme:{

F (ut, y) + 〈Bxt, y − ut〉+ 1
rt
〈y − ut, ut − xt〉 ≥ 0, ∀y ∈ C,

xt = PC [tγf(xt) + βxt + ((1− β)I − tA) 1
λt

∫ λt
0 T (s)utds].

(3.1)

Then the nets {xt} and {ut} defined by (3.1) strongly converge to x∗ ∈ Fix(S) ∩ Ω as t → 0 and x∗ is the
unique solution of the following variational inequality:

x∗ ∈ Fix(S) ∩ Ω, 〈(γf −A)x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(S) ∩ Ω. (3.2)

In particular, if we take f = 0 and A = I, then the nets {xt} and {ut} defined by (3.1) reduces to{
F (ut, y) + 〈Bxt, y − ut〉+ 1

rt
〈y − ut, ut − xt〉 ≥ 0, ∀y ∈ C,

xt = PC [βxt + (1− β − t) 1
λt

∫ λt
0 T (s)utds].

(3.3)

In this case, the nets {xt} and {ut} defined by (3.3) converge in norm to the minimum norm element x∗ of
Fix(S) ∩ Ω, namely, the point x∗ is the unique solution to the minimization problem:

x∗ = arg min
x∈Fix(S)∩Ω

‖x‖.
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Proof. First, we note that the nets {xt} and {ut} defined by (3.1) are well-defined. As a matter of fact,
from Lemma 2.1, we have ut = Srt(xt − rtBxt). Now we define a mapping

Gx := PC

[
tγf(x) + βx+ ((1− β)I − tA)

1

λt

∫ λt

0
T (s)Srt(x− rtBx)ds

]
.

Since Srt and (I − rtB) are nonexpansive, we have

‖Gx−Gy‖ ≤
∥∥∥∥tγ(f(x)− f(y)) + β(x− y)

+ ((1− β)I − tA)
1

λt

∫ λt

0
T (s)[Srt(x− rtBx)− Srt(y − rtBy)]ds

∥∥∥∥
≤ tγ‖f(x)− f(y)‖+ β‖x− y‖

+

∥∥∥∥((1− β)I − tA)
1

λt

∫ λt

0
T (s)[Srt(x− rtBx)− Srt(y − rtBy)]ds

∥∥∥∥
≤ tγρ‖x− y‖+ β‖x− y‖+ (1− β − tγ̄)‖x− y‖
= (1− (γ̄ − γρ)t)‖x− y‖.

This implies that the mapping G is a contraction and so it has a unique fixed point. Hence, the nets {xt}
and {ut} defined by (3.1) are well-defined.

Let p ∈ Fix(S) ∩ Ω. It is clear that p = Srt(p− rtBp) for all t ∈ (0, 1). From Lemma 2.2, we have

‖ut − p‖2 = ‖Srt(xt − rtBxt)− Srt(p− rtBp)‖2

≤ ‖xt − rtBxt − (p− rtBp)‖2

≤ ‖xt − p‖2 + rt(rt − 2α)‖Bxt −Bp‖2

≤ ‖xt − p‖2.

(3.4)

So, we have
‖ut − p‖ ≤ ‖xt − p‖.

Then, we obtain

‖xt − p‖ =

∥∥∥∥PC[tγf(xt) + βxt + ((1− β)I − tA)
1

λt

∫ λt

0
T (s)utds

]
− p
∥∥∥∥

≤
∥∥∥∥t(γf(xt)−Ap) + β(xt − p) + ((1− β)I − tA)

(
1

λt

∫ λt

0
T (s)utds− p

)∥∥∥∥
≤ t‖γf(xt)−Ap‖+ β‖xt − p‖+ (1− β − γ̄t) 1

λt

∫ λt

0
‖T (s)ut − T (s)p‖ds

≤ tγ‖f(xt)− f(p)‖+ t‖γf(p)−Ap‖+ β‖xt − p‖+ (1− β − γ̄t)‖ut − p‖
≤ tγρ‖xt − p‖+ t‖γf(p)−Ap‖+ β‖xt − p‖+ (1− β − γ̄t)‖xt − p‖.

Hence

‖xt − p‖ ≤
1

γ̄ − γρ
‖γf(p)−Ap‖,

which implies that the net {xt} is bounded and so is the net {ut}.
Set R := 1

γ̄−γρ‖γf(p)−Ap‖. It is clear that {xt} ⊂ B(p,R) and {ut} ⊂ B(p,R). Notice that∥∥∥∥ 1

λt

∫ λt

0
T (s)utds− p

∥∥∥∥ ≤ ‖ut − p‖ ≤ ‖xt − p‖ ≤ R.
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Moreover, we observe that if x ∈ B(p,R) then

‖T (s)x− p‖ = ‖T (s)x− T (s)p‖ ≤ ‖x− p‖ ≤ R,

i.e., B(p,R) is T (s)-invariant for all s.

Set yt = tγf(xt) + βxt + ((1 − β)I − tA) 1
λt

∫ λt
0 T (s)utds. It follows that xt = PC [yt]. By using the

property of the metric projection (2.1), we have

‖xt − p‖2 = 〈xt − yt, xt − p〉+ 〈yt − p, xt − p〉
≤ 〈yt − p, xt − p〉
= t〈γf(xt)−Ap, xt − p〉+ β‖xt − p‖2

+

〈
((1− β)I − tA)

1

λt

∫ λt

0
(T (s)ut − p)ds, xt − p

〉
≤ t‖γf(xt)−Ap‖‖xt − p‖+ β‖xt − p‖2 + (1− β − tγ̄)‖ut − p‖‖xt − p‖.

(3.5)

This implies that

‖xt − p‖ ≤
t

1− β
‖γf(xt)−Ap‖+ ‖ut − p‖.

Hence,

‖xt − p‖2 ≤ ‖ut − p‖2 + t

(
t

(1− β)2
‖γf(xt)−Ap‖2 + 2

1

1− β
‖γf(xt)−Ap‖‖ut − p‖

)
≤ ‖ut − p‖2 + tM

≤ ‖xt − p‖2 + rt(rt − 2α)‖Bxt −Bp‖2 + tM,

(3.6)

where

M := sup
0<t<1

{
t

(1− β)2
‖γf(xt)−Ap‖2 +

2

1− β
‖γf(xt)−Ap‖‖ut − p‖, 2rt‖xt − ut‖

}
.

It follows that
rt(2α− rt)‖Bxt −Bp‖2 ≤ tM → 0.

Since limt→0 rt = r ∈ (0, 2α), we derive

lim
t→0
‖Bxt −Bp‖ = 0. (3.7)

From Lemmas 2.1, 2.2 and (3.1), we obtain

‖ut − p‖2 = ‖Srt(xt − rtBxt)− Srt(p− rtBp)‖2

≤ 〈(xt − rtBxt)− (p− rtBp), ut − p〉

=
1

2

(
‖(xt − rtBxt)− (p− rtBp)‖2 + ‖ut − p‖2 − ‖(xt − p)− rt(Bxt −Bp)− (ut − p)‖2

)
≤ 1

2

(
‖xt − p‖2 + ‖ut − p‖2 − ‖(xt − ut)− rt(Bxt −Bp)‖2

)
=

1

2

(
‖xt − p‖2 + ‖ut − p‖2 − ‖xt − ut‖2 + 2rt〈xt − ut, Bxt −Bp〉 − r2

t ‖Bxt −Bp‖2
)
,

which implies that

‖ut − p‖2 ≤ ‖xt − p‖2 − ‖xt − ut‖2 + 2rt〈xt − ut, Bxt −Bp〉 − r2
t ‖Bxt −Bp‖2

≤ ‖xt − p‖2 − ‖xt − ut‖2 + 2rt‖xt − ut‖‖Bxt −Bp‖
≤ ‖xt − p‖2 − ‖xt − ut‖2 +M‖Bxt −Bp‖.

(3.8)
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By (3.6) and (3.8), we have

‖xt − p‖2 ≤ ‖xt − p‖2 − ‖xt − ut‖2 + (‖Bxt −Bp‖+ t)M.

It follows that
‖xt − ut‖2 ≤ (‖Bxt −Bp‖+ t)M.

This together with (3.7) implies that
lim
t→0
‖xt − ut‖ = 0.

From (3.1), we deduce

‖T (τ)xt − xt‖ = ‖PC [T (τ)xt]− PC [yt]‖
≤ ‖T (τ)xt − yt‖

≤
∥∥∥∥T (τ)xt − T (τ)

1

λt

∫ λt

0
T (s)utds

∥∥∥∥+

∥∥∥∥T (τ)
1

λt

∫ λt

0
T (s)utds−

1

λt

∫ λt

0
T (s)utds

∥∥∥∥
+

∥∥∥∥ 1

λt

∫ λt

0
T (s)utds− yt

∥∥∥∥
≤
∥∥∥∥xt − 1

λt

∫ λt

0
T (s)utds

∥∥∥∥+

∥∥∥∥T (τ)
1

λt

∫ λt

0
T (s)utds−

1

λt

∫ λt

0
T (s)utds

∥∥∥∥
+

∥∥∥∥ 1

λt

∫ λt

0
T (s)utds− yt

∥∥∥∥.
Note that ∥∥∥∥yt − 1

λt

∫ λt

0
T (s)utds

∥∥∥∥ ≤ t∥∥∥∥γf(xt)−
A

λt

∫ λt

0
T (s)utds

∥∥∥∥+ β

∥∥∥∥xt − 1

λt

∫ λt

0
T (s)utds

∥∥∥∥.
Since ∥∥∥∥xt − 1

λt

∫ λt

0
T (s)utds

∥∥∥∥ ≤ ∥∥∥∥tγf(xt) + βxt − (βI + tA)
1

λt

∫ λt

0
T (s)utds

∥∥∥∥
≤ t
∥∥∥∥γf(xt)−

A

λt

∫ λt

0
T (s)utds

∥∥∥∥+ β

∥∥∥∥xt − 1

λt

∫ λt

0
T (s)utds

∥∥∥∥,
we obtain ∥∥∥∥xt − 1

λt

∫ λt

0
T (s)utds

∥∥∥∥ ≤ t

1− β

∥∥∥∥γf(xt)−
A

λt

∫ λt

0
T (s)utds

∥∥∥∥.
Therefore,

‖T (τ)xt − xt‖ ≤
2t

1− β

∥∥∥∥γf(xt)−
A

λt

∫ λt

0
T (s)utds

∥∥∥∥+

∥∥∥∥T (τ)
1

λt

∫ λt

0
T (s)utds−

1

λt

∫ λt

0
T (s)utds

∥∥∥∥.
From Lemma 2.3, we deduce for all 0 ≤ τ <∞

lim
t→0
‖T (τ)xt − xt‖ = 0. (3.9)

From (3.5), we have

‖xt − p‖2 ≤ 〈yt − p, xt − p〉
= t〈γf(xt)−Ap, xt − p〉+ β‖xt − p‖2

+

〈
((1− β)I − tA)

(
1

λt

∫ λt

0
T (s)utds− p

)
, xt − p

〉
≤ β‖xt − p‖2 + (1− β − γ̄t)‖ut − p‖‖xt − p‖

+ tγ〈f(xt)− f(p), xt − p〉+ t〈γf(p)−Ap, xt − p〉
≤ [1− (γ̄ − γρ)t]‖xt − p‖2 + t〈γf(p)−Ap, xt − p〉.



Y. Liu, S. M. Kang, Y. Yu, L. Zhu, J. Nonlinear Sci. Appl. 9 (2016), 3702–3718 3710

Therefore,

‖xt − p‖2 ≤
1

γ̄ − γρ
〈γf(p)−Ap, xt − p〉, ∀p ∈ Fix(S) ∩ Ω.

From this inequality, we have immediately that ωw(xt) = ωs(xt), where ωw(xt) and ωs(xt) denote the set of
weak and strong cluster points of {xt}, respectively.

Let {tn} ⊂ (0, 1) be a sequence such that tn → 0 as n → ∞. Put xn := xtn , un := utn , rn := rtn and
λn := λtn . Since {xn} is bounded, without loss of generality, we may assume that {xn} converges weakly to
a point x∗ ∈ C. Also yn → x∗ weakly. Noticing (3.9) we can use Lemma 2.4 to get x∗ ∈ Fix(S).

Now we show x∗ ∈ Ω. Since un = Srn(xn − rnBxn), for any y ∈ C we have

F (un, y) +
1

rn
〈y − un, un − (xn − rnBxn)〉 ≥ 0.

From the monotonicity of F , we have

1

rn
〈y − un, un − (xn − rnBxn)〉 ≥ F (y, un), ∀y ∈ C.

Hence, 〈
y − uni ,

uni − xni

rni

+Bxni

〉
≥ F (y, uni), ∀y ∈ C. (3.10)

Put zt = ty + (1− t)x∗ for all t ∈ (0, 1] and y ∈ C. Then, we have zt ∈ C. So, from (3.10) we have

〈zt − uni , Bzt〉 ≥ 〈zt − uni , Bzt〉 −
〈
zt − uni ,

uni − xni

rni

+Bxni

〉
+ F (zt, uni)

= 〈zt − uni , Bzt −Buni〉+ 〈zt − uni , Buni −Bxni〉

−
〈
zt − uni ,

uni − xni

rni

〉
+ F (zt, uni).

(3.11)

Note that ‖Buni − Bxni‖ ≤ 1
α‖uni − xni‖ → 0. Further, from monotonicity of B, we have 〈zt − uni , Bzt −

Buni〉 ≥ 0. Letting i→∞ in (3.11), we have

〈zt − x∗, Bzt〉 ≥ F (zt, x
∗). (3.12)

From (H1), (H4) and (3.12), we also have

0 = F (zt, zt) ≤ tF (zt, y) + (1− t)F (zt, x
∗)

≤ tF (zt, y) + (1− t)〈zt − x∗, Bzt〉
= tF (zt, y) + (1− t)t〈y − x∗, Bzt〉

and hence

0 ≤ F (zt, y) + (1− t)〈Bzt, y − x∗〉. (3.13)

Letting t→ 0 in (3.13), we have, for each y ∈ C,

0 ≤ F (x∗, y) + 〈y − x∗, Bx∗〉.

This implies that x∗ ∈ Ω. We can rewrite (3.1) as

(A− γf)xt = −1

t
((1− β)I − tA)

[
xt −

1

λt

∫ λt

0
T (s)utds

]
+

1

t
(xt − yt).



Y. Liu, S. M. Kang, Y. Yu, L. Zhu, J. Nonlinear Sci. Appl. 9 (2016), 3702–3718 3711

Therefore,

〈(A− γf)xt, xt − p〉 = −1− β
t

[
1

λt

∫ λt

0
〈(I − T (s)Srt(I − rtB))xt − (I − T (s)Srt(I − rtB))p, xt − p〉ds

]
+

1

λt

〈
A

∫ λt

0
[xt − T (s)ut]ds, xt − p

〉
+

1

t
〈xt − yt, xt − p〉.

Noting that I − T (s)Srt(I − rtB) is monotone and 〈xt − yt, xt − p〉 ≤ 0, so

〈(A− γf)xt, xt − p〉 ≤
1

λt

〈
A

∫ λt

0
[xt − T (s)ut]ds, xt − p

〉
=

〈
Axt −

A

λt

∫ λt

0
T (s)utds, xt − p

〉
≤ ‖A‖

∥∥∥∥xt − 1

λt

∫ λt

0
T (s)utds

∥∥∥∥‖xt − p‖
≤ t

1− β
‖A‖

∥∥∥∥γf(xt)−A
1

λt

∫ λt

0
T (s)utds

∥∥∥∥‖xt − p‖.
Taking the limit through t := tni → 0, we have

〈(A− γf)x∗, x∗ − p〉 = lim
i→∞
〈(A− γf)xni , xni − p〉 ≤ 0.

Since the solution of the variational inequality (3.2) is unique, hence ωw(xt) = ωs(xt) is singleton. Therefore,
xt → x∗.

In particular, if we take f = 0 and A = I, then it follows that xt → x∗ = PFix(S)∩Ω(0), which implies
that x∗ is the minimum norm fixed point of T . As a matter of fact, by (3.2), we deduce

〈x∗, x∗ − x〉 ≤ 0, ∀x ∈ Fix(S) ∩ Ω,

that is,
‖x∗‖2 ≤ 〈x∗, x〉 ≤ ‖x∗‖‖x‖, ∀x ∈ Fix(S) ∩ Ω.

Therefore, the point x∗ is the unique solution to the minimization problem

x∗ = arg min
x∈Fix(S)∩Ω

‖x‖.

This completes the proof.

Next we introduce an explicit algorithm to find a solution of minimization problem (1.1). This scheme
is obtained by discretizing the implicit scheme (3.1). We will show the strong convergence of this algorithm.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let S = {T (s)}s≥0 be
a nonexpansive semigroup on C. Let f : C → H be a ρ-contraction (possibly non-self) with ρ ∈ [0, 1). Let
A be a strongly positive linear bounded self-adjoint operator on H with coefficient γ̄ > 0. Let B : C → H
be an α-inverse strongly monotone mapping. Let γ and β be two real numbers such that 0 < γ < γ̄/ρ and
β ∈ [0, 1). Suppose that the function F : C × C → R satisfies (H1)-(H4) and Fix(S) ∩ Ω 6= ∅. Let {xn}
and {un} be defined by the following explicit algorithm:{

F (un, y) + 〈Bxn, y − un〉+ 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = PC [αnγf(xn) + βxn + ((1− β)I − αnA) 1
λn

∫ λn
0 T (s)unds], n ≥ 0,

(3.14)

where {αn} is real number sequence in [0, 1] and {λn}, {rn} are two sequences of positive real numbers.
Suppose that the following conditions are satisfied:
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(i) limn→∞ αn = 0,
∑∞

n=1 αn =∞ and
∑∞

n=0 |αn − αn−1| <∞;

(ii) limn→∞ λn =∞ and limn→∞
|λn−λn−1|
λnαn

= 0;

(iii) rn ∈ [a, b] ⊂ (0, 2α) and
∑∞

n=0 |rn+1 − rn| <∞.

Then the sequences {xn} and {un} defined by (3.14) strongly converge to x∗ ∈ Fix(S) ∩ Ω and x∗ is the
unique solution of the variational inequality (3.2).

In particular, if we take f = 0 and A = I, then the sequences {xn} and {un} defined by (3.14) reduces
to {

F (un, y) + 〈Bxn, y − un〉+ 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = PC [βxn + (1− αn − β) 1
λn

∫ λn
0 T (s)unds], n ≥ 0.

(3.15)

In this case, the sequences {xn} and {un} defined by (3.15) converge in norm to the minimum norm element
x∗ of Fix(S) ∩ Ω.

Proof. Take p ∈ Fix(S) ∩ Ω, we have

‖xn+1 − p‖ ≤ αn‖γf(xn)−Ap‖+ β‖xn − p‖+ (1− β − γ̄αn)
1

λn

∫ λn

0
‖T (s)un − T (s)p‖ds

≤ αnγρ‖xn − p‖+ αn‖γf(p)−Ap‖+ β‖xn − p‖+ (1− β − αnγ̄)‖un − p‖.
(3.16)

From Lemma 2.2, we have

‖un − p‖2 = ‖Srn(xn − rnBxn)− Srn(p− rnBp)‖2

≤ ‖xn − rnBxn − (p− rnBp)‖2

≤ ‖xn − p‖2 + rn(rn − 2α)‖Bxn −Bp‖2

≤ ‖xn − p‖2.

(3.17)

So, we have

‖un − p‖ ≤ ‖xn − p‖. (3.18)

By (3.16) and (3.18), we derive

‖xn+1 − p‖ ≤ [1− (γ̄ − ργ)αn]‖xn − p‖+ αn‖γf(p)−Ap‖.

Using induction, it follows that

‖xn − p‖ ≤ max

{
‖x0 − p‖,

‖γf(p)−Ap‖
γ̄ − γρ

}
.

Set yn = 1
λn

∫ λn
0 T (s)unds for all n ≥ 0. From (3.14), we get

‖xn+1 − xn‖ ≤ ‖αnγf(xn) + βxn + ((1− β)I − αnA)yn

− αn−1γf(xn−1)− βxn−1 − ((1− β)I − αn−1A)yn−1‖
= ‖γαn(f(xn)− f(xn−1)) + γ(αn − αn−1)f(xn−1) + β(xn − xn−1)

+ ((1− β)I − αnA)(yn − yn−1) + (αn−1 − αn)Ayn−1‖
≤ γαn‖f(xn)− f(xn−1)‖+ |αn − αn−1|(‖γf(xn−1)‖+ ‖Ayn−1‖)

+ β‖xn − xn−1‖+ (1− β − αnγ̄)‖yn − yn−1‖,

and

‖yn − yn−1‖ =

∥∥∥∥ 1

λn

∫ λn

0
[T (s)un − T (s)un−1]ds+

(
1

λn
− 1

λn−1

)∫ λn−1

0
T (s)un−1ds
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+
1

λn

∫ λn

λn−1

T (s)un−1ds

∥∥∥∥
=

∥∥∥∥ 1

λn

∫ λn

0
[T (s)un − T (s)un−1]ds+

(
1

λn
− 1

λn−1

)∫ λn−1

0
[T (s)un−1 − T (s)p]ds

+
1

λn

∫ λn

λn−1

[T (s)un−1 − T (s)p]ds

∥∥∥∥
≤ 1

λn

∫ λn

0
‖T (s)un − T (s)un−1‖ds+

1

λn

∥∥∥∥∫ λn

λn−1

[T (s)un−1 − T (s)p]ds

∥∥∥∥
+

∣∣∣∣ 1

λn
− 1

λn−1

∣∣∣∣ ∫ λn−1

0
‖T (s)un−1 − T (s)p‖ds

≤ ‖un − un−1‖+
2|λn − λn−1|

λn
‖un−1 − p‖.

Next, we estimate ‖un+1 − un‖. From (3.14), we have

F (un, y) + 〈Bxn, y − un〉+
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C, (3.19)

and

F (un+1, y) + 〈Bxn+1, y − un+1〉+
1

rn+1
〈y − un+1, un+1 − xn+1〉 ≥ 0, ∀ y ∈ C. (3.20)

Putting y = un+1 in (3.19) and y = un in (3.20), we have

F (un, un+1) + 〈Bxn, un+1 − un〉+
1

rn
〈un+1 − un, un − xn〉 ≥ 0,

and

F (un+1, un) + 〈Bxn+1, un − un+1〉+
1

rn+1
〈un − un+1, un+1 − xn+1〉 ≥ 0.

From the monotonicity of F , we have

F (un, un+1) + F (un+1, un) ≤ 0.

Then,

〈Bxn −Bxn+1, un+1 − un〉+

〈
un+1 − un,

un − xn
rn

− un+1 − xn+1

rn+1

〉
≥ 0,

and hence〈
un+1 − un, un − un+1 + un+1 − xn −

rn
rn+1

(un+1 − xn+1)

〉
+ rn〈Bxn −Bxn+1, un+1 − un〉 ≥ 0.

It follows that

‖un+1 − un‖2 ≤
〈
un+1 − un,

rn+1 − rn
rn+1

(un+1 − xn+1) + xn+1 − xn
〉

+ rn〈Bxn −Bxn+1, un+1 − un〉
= 〈(I − rnB)xn+1 − (I − rnB)xn, un+1 − un〉

+

〈
un+1 − un,

rn+1 − rn
rn+1

(un+1 − xn+1)

〉
≤ ‖(I − rnB)xn+1 − (I − rnB)xn‖‖un+1 − un‖

+

∣∣∣∣rn+1 − rn
rn+1

∣∣∣∣‖un+1 − un‖‖un+1 − xn+1‖,
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that is,

‖un+1 − un‖ ≤ ‖(I − rnB)xn+1 − (I − rnB)xn‖+

∣∣∣∣rn+1 − rn
rn+1

∣∣∣∣‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖+

∣∣∣∣rn+1 − rn
rn+1

∣∣∣∣‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖+

∣∣∣∣rn+1 − rn
a

∣∣∣∣‖un+1 − xn+1‖.

Therefore,

‖yn − yn−1‖ ≤ ‖xn − xn−1‖+

∣∣∣∣rn − rn−1

a

∣∣∣∣‖un − xn‖+
2|λn − λn−1|

λn
‖un−1 − p‖,

and hence

‖xn+1 − xn‖ ≤ γαnρ‖xn − xn−1‖+ |αn − αn−1|(‖γf(xn−1)‖+ ‖Ayn−1‖)

+ β‖xn − xn−1‖+ (1− β − αnγ̄)

(
‖xn − xn−1‖

+

∣∣∣∣rn − rn−1

a

∣∣∣∣‖un − xn‖+
2|λn − λn−1|

λn
‖un−1 − p‖

)
≤ [1− (γ̄ − γρ)αn]‖xn − xn−1‖+M

{
|αn − αn−1|

+

∣∣∣∣rn − rn−1

a

∣∣∣∣+
|λn − λn−1|

λn

}
,

(3.21)

where M > 0 is a constant such that

sup
n
{‖γf(xn−1)‖+ ‖Ayn−1‖, 2rn‖un − xn‖, 2‖un−1 − p‖} ≤M.

From Lemma 2.5 and (3.21), we derive

lim
n→∞

‖xn+1 − xn‖ = 0.

It follows that
lim
n→∞

‖un+1 − un‖ = lim
n→∞

‖yn+1 − yn‖ = 0.

Note that
‖xn − yn‖ ≤ ‖xn+1 − xn‖+ ‖xn+1 − yn‖

≤ ‖xn+1 − xn‖+ αnγ‖f(xn)‖+ β‖xn − yn‖+ αn‖Ayn‖,

that is,

‖xn − yn‖ ≤
1

1− β
(‖xn+1 − xn‖+ αnγ‖f(xn)‖+ αn‖Ayn‖)

→ 0 (as n→∞).

Set vn = αnγf(xn) + βxn + ((1− β)I − αnA) 1
λn

∫ λn
0 T (s)unds. It follows that xn+1 = PC [vn] for all n ≥ 0.

By using the property of the metric projection (2.1) and (3.14), we have

‖xn+1 − p‖2 = 〈xn+1 − p, xn+1 − p〉
= 〈xn+1 − vn, xn+1 − p〉+ 〈vn − p, xn+1 − p〉
≤ 〈vn − p, xn+1 − p〉
= αn〈γf(xn)−Ap, xn+1 − p〉+ β〈xn − p, xn+1 − p〉
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+ 〈((1− β)I − αnA)(yn − p), xn+1 − p〉
≤ αn‖γf(xn)−Ap‖‖xn+1 − p‖+ β‖xn − p‖‖xn+1 − p‖

+ (1− β − γ̄αn)‖yn − p‖‖xn+1 − p‖ (3.22)

≤ αn‖γf(xn)−Ap‖‖xn+1 − p‖+ β‖xn − p‖‖xn+1 − p‖
+ (1− β)‖yn − p‖‖xn+1 − p‖

≤ αn‖γf(xn)−Ap‖‖xn+1 − p‖+
β

2
(‖xn − p‖2 + ‖xn+1 − p‖2)

+
1− β

2
(‖yn − p‖2 + ‖xn+1 − p‖2),

which implies that

‖xn+1 − p‖2 ≤ 2αn‖γf(xn)−Ap‖‖xn+1 − p‖+ β‖xn − p‖2 + (1− β)‖yn − p‖2

= 2αn‖γf(xn)−Ap‖‖xn+1 − p‖+ β‖xn − p‖2 + (1− β)

∥∥∥∥ 1

λn

∫ λn

0
[T (s)un − T (s)p]ds

∥∥∥∥2

≤ 2αn‖γf(xn)−Ap‖‖xn+1 − p‖+ β‖xn − p‖2 + (1− β)‖un − p‖2 (3.23)

≤ 2αn‖γf(xn)−Ap‖‖xn+1 − p‖+ β‖xn − p‖2

+ (1− β)(‖xn − p‖2 + rn(rn − 2α)‖Bxn −Bp‖2).

Hence,
rn(2α− rn)(1− β)‖Bxn −Bp‖2 ≤ 2αn‖γf(xn)−Ap‖‖xn+1 − p‖

+ ‖xn − p‖2 − ‖xn+1 − p‖2

≤ 2αn‖γf(xn)−Ap‖‖xn+1 − p‖
+ ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖).

It follows that
lim
n→∞

‖Bxn −Bp‖ = 0.

From Lemmas 2.1 and 2.2, we obtain

‖un − p‖2 = ‖Srn(xn − rnBxn)− Srn(p− rnBp)‖2

≤ 〈(xn − rnBxn)− (p− rnBp), un − p〉

=
1

2

(
‖(xn − rnBxn)− (p− rnBp)‖2 + ‖un − p‖2

− ‖(xn − p)− rn(Bxn −Bp)− (un − p)‖2
)

≤ 1

2

(
‖xn − p‖2 + ‖un − p‖2 − ‖(xn − un)− rn(Bxn −Bp)‖2

)
=

1

2

(
‖xn − p‖2 + ‖un − p‖2 − ‖xn − un‖2

+ 2rn〈xn − un, Bxn −Bp〉 − r2
n‖Bxn −Bp‖2

)
,

which implies that

‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖2 + 2rn〈xn − un, Bxn −Bp〉 − r2
n‖Bxn −Bp‖2

≤ ‖xn − p‖2 − ‖xn − un‖2 + 2rn‖xn − un‖‖Bxn −Bp‖
≤ ‖xn − p‖2 − ‖xn − un‖2 +M‖Bxn −Bp‖.

(3.24)

From (3.23) and (3.24), we have

‖xn+1 − p‖2 ≤ 2αn‖γf(xn)−Ap‖‖xn+1 − p‖+ β‖xn − p‖2

+ (1− β)(‖xn − p‖2 − ‖xn − un‖2 +M‖Bxn −Bp‖).
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It follows that

(1− β)‖xn − un‖2 ≤ 2αn‖γf(xn)−Ap‖‖xn+1 − p‖+ ‖xn − p‖2

− ‖xn+1 − p‖2 +M‖Bxn −Bp‖
≤ 2αn‖γf(xn)−Ap‖‖xn+1 − p‖+ ‖xn − xn+1‖(‖xn − p‖

+ ‖xn+1 − p‖) +M‖Bxn −Bp‖.

Therefore,
lim
n→∞

‖xn − un‖ = 0.

Note that {xn} is a bounded sequence. Let x̃ be a weak limit of {xn}. Putting x∗ = PFix(S)∩Ω(I −A+ γf).
Then there exists R such that B(x∗, R) contains {xn}. Moreover, B(x∗, R) is T (s)-invariant for every s ≥ 0;
therefore, without loss of generality, we can assume that {T (s)}s≥0 is a nonexpansive semigroup on B(x∗, R).
We notice that, from Theorem 3.1, x̃ ∈ ωw(yn) = ωs(yn). Then, from Lemma 2.3, it follows that, for every
h ≥ 0, limn→∞ ‖yn−T (h)yn‖ = 0 and from the demiclosedness principle, we have x̃ ∈ Fix(S). By the same
argument as that of Theorem 3.1, we can deduce that x̃ ∈ Ω. Hence, x̃ ∈ Fix(S) ∩ Ω. Therefore,

lim sup
n→∞

〈γf(x∗)−Ax∗, xn+1 − x∗〉 = lim
n→∞

〈γf(x∗)−Ax∗, x̃− x∗〉 ≤ 0.

Finally, we prove that xn → x∗. From (3.22), we have

‖xn+1 − x∗‖2 ≤ αnγ〈f(xn)− f(x∗), xn+1 − x∗〉+ αn〈γf(x∗)−Ax∗, xn+1 − x∗〉
+ β‖xn − x∗‖‖xn+1 − x∗‖+ (1− β − γ̄αn)‖yn − x∗‖‖xn+1 − x∗‖
≤ αnργ‖xn − x∗‖‖xn+1 − x∗‖+ αn〈γf(x∗)−Ax∗, xn+1 − x∗〉

+ β‖xn − x∗‖‖xn+1 − x∗‖+ (1− β − γ̄αn)‖xn − x∗‖‖xn+1 − x∗‖

≤ 1− (γ̄ − γρ)αn
2

(‖xn − x∗‖2 + ‖xn+1 − x∗‖2)

+ αn〈γf(x∗)−Ax∗, xn+1 − x∗〉,

that is,
‖xn+1 − x∗‖2 ≤ [1− (γ̄ − γρ)αn]‖xn − x∗‖2 + 2αn〈γf(x∗)−Ax∗, xn+1 − x∗〉.

Hence, all conditions of Lemma 2.5 are satisfied. Therefore, we immediately deduce that xn → x∗.
In particular, if we take f = 0 and A = I, then it is clear that x∗ = PFix(S)∩Ω(0) is the unique solution

to the minimization problem x∗ = arg minx∈Fix(S)∩Ω ‖x‖. This completes the proof.

Remark 3.3. We observe that our algorithms presented in this paper include some algorithms in the literature
as special cases:

(1) If we take B = 0 and β = 0 and let S = {T (s)}s≥0 be a nonexpansive semigroup on a real Hilbert
space H, then our algorithms (3.1) and (3.14) reduce to the algorithms (1.5) and (1.6) which were
considered by Cianciaruso et al. [5].

(2) If we take B = 0, β = 0, γ = 1 and let S = T be a nonexpansive mapping on a real Hilbert space
H, then our algorithm (3.14) reduces to the algorithm (1.4) which was considered by Plubtieng and
Punpaeng [15].

(3) If we take A = I,B = 0, β = 0, γ = 1, F = 0, and let S = {T (s)}s≥0 be a nonexpansive semigroup on
a real Hilbert space H, then our algorithm (3.1) reduces to the following algorithm

xt = tf(xt) + (1− t) 1

λt

∫ λt

0
T (s)xtds,

which was considered by Plubtieng and Punpaeng [16].
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(4) If we take A = I,B = 0, f = u, β = 0, γ = 1, F = 0, and let S = {T (s)}s≥0 be a nonexpansive
semigroup on a real Hilbert space H, then our algorithm (3.14) reduces to the following algorithm

xn+1 = αnu+ (1− αn)
1

λn

∫ λn

0
T (s)xnds, n ≥ 0,

which was considered by Shimizu and Takahashi [18].

(5) If we take B = 0, β = 0, F = 0 and let S = T be a nonexpansive mapping on a real Hilbert space H,
then our algorithms (3.1) and (3.14) reduce to the following algorithms

xt = tγf(xt) + (I − tA)Txt,

and
xn+1 = αnγf(xn) + (1− αnA)Txn, n ≥ 0,

which were considered by Marino and Xu [11].

Remark 3.4. From Remark 3.3, it is clear that our results contain the corresponding results in [6, 11, 15,
16, 18] as special cases.
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