**Research** Article



Journal of Nonlinear Science and Applications Print: ISSN 2008-1898 Online: ISSN 2008-1901



# Some new fixed point theorems in generalized probabilistic metric spaces

Cuiru Ji, Chuanxi Zhu\*, Zhaogi Wu

Department of Mathematics, Nanchang University, Nanchang, 330031, P. R. China.

Communicated by R. Saadati

# Abstract

In this paper, we introduced the notion of  $\alpha$ - $\psi$ -type contractive mapping in PGM-spaces and established some new fixed point theorems in complete PGM-spaces. Finally, an example is given to support our main results. ©2016 All rights reserved.

Keywords: PGM-space,  $\alpha$ - $\psi$ -type contractive mapping,  $\phi$ -function, fixed point. 2010 MSC: 47H10, 47H09.

# 1. Introduction

In 1942, Menger [9] initiated the study of PM-spaces and then Sehgal and Bharucha-Reid [14] followed Menger's line of research by using the notion of probabilistic q-contraction. They proved a unique fixed point result, which is an extension of the celebrated Banach's contraction principle [1]. For interested reader, a comprehensive study of fixed point theory in the probabilistic metric setting can be found in the book of Hadžić and Pap [6]. Recently, Choudhury and Das [2] gave a generalized unique fixed point theorem by using an altering distance function which was originally introduced by Khan et al. [7]. This extension of altering distance function is called  $\phi$ -function, and has been further used in many related literatures [3, 10].

Dutta et al. [4] defined nonlinear generalized contractive type mapping involving  $\psi$ -contractive mapping and proved their theorems for such kind of mappings in the setting of G-complete Menger PM-spaces. Then Kutbi et al. [8] weakened the notion of  $\psi$ -contraction mapping and established some fixed point theorems in G-complete Menger PM-spaces. Later Samet et al. [12] introduced  $\alpha$ - $\psi$ -type contractive mapping in metric spaces, while Gopal et al. [5] introduced the notion of  $\alpha$ - $\psi$ -type contractive mapping and established

\*Corresponding author

Email addresses: cuiruji0809@163.com (Cuiru Ji), chuanxizhu@126.com (Chuanxi Zhu)

corresponding fixed point theorems. In 2006, Mustafa and Sims [11] introduced the concept of generalized metric space. After then, many fixed point results have been obtained by many authors. Moreover, Zhou et al. [15] defined the notion of generalized probabilistic metric space as a generalization of PM-spaces and established corresponding fixed point theorems.

In this paper, motivated by the idea of Samet et al. [12] and  $\alpha$ - $\psi$ -type contractive mapping in PM-spaces, we weaken the notion of  $\alpha$ - $\psi$ -type contractive mapping and establish some fixed point theorems in complete PGM-spaces. Finally, an example is given to support our main results.

## 2. Preliminaries

In this section, we recall some definitions and theorems which will be needed in the next section.

Throughout this paper, let  $\mathbb{R} = (-\infty, +\infty)$ ,  $\mathbb{R}^+ = [0, +\infty)$ , and  $\mathbb{N}^+$  be the set of all positive integers.

A mapping  $F : \mathbb{R} \to \mathbb{R}^+$  is called a distribution function if it is non-decreasing and left-continuous with  $\sup_{t \in \mathbb{R}} F(t) = 1$  and  $\inf_{t \in \mathbb{R}} F(t) = 0$ .

We shall denote by  $\mathscr{D}$  the set of all distribution functions. A special distribution function H of  $\mathscr{D}$  is defined by

$$H(t) = \begin{cases} 0, & t \le 0, \\ 1, & t > 0. \end{cases}$$

**Definition 2.1** ([13]). A binary operation  $T : [0,1] \times [0,1] \rightarrow [0,1]$  is called a *t*-norm if the following conditions are satisfied:

- (1) T(a,b) = T(b,a) and T(a,T(b,c)) = T(T(a,b),c), for all  $a,b,c \in [0,1]$ ;
- (2) T is continuous;
- (3) T(a, 1) = a for all  $a \in [0, 1]$ ;
- (4)  $T(a,b) \ge T(c,d)$ , whenever  $a \ge c$  and  $b \ge d$ , for  $a, b, c, d \in [0,1]$ .

From the definition of T, it follows that  $T(a, b) = \min\{a, b\}$  for all  $a, b \in [0, 1]$ . The following are three basic continuous t-norms:

- (1) The minimum *t*-norm, defined by  $T_M(a, b) = \min\{a, b\};$
- (2) The product *t*-norm, defined by  $T_P(a, b) = ab$ ;
- (3) The Lukasiewicz *t*-norm, defined by  $T_L(a, b) = \max\{a + b 1, 0\}$ .

These *t*-norms are related in this way:  $T_L \leq T_P \leq T_M$ .

**Definition 2.2** ([13]). A Menger probabilistic metric space (briefly, Menger PM-space) is a triplet (X, F, T), where X is a nonempty set, T is a continuous t-norm and F is a mapping from  $X \times X$  into  $\mathscr{D}^+$  ( $F_{x,y}$  denote the value of F at the pair (x, y)) satisfying the following conditions:

- (PM-1)  $F_{x,y}(t) = H(t)$  for all  $x, y \in X$  and t > 0 if and only if x = y;
- (PM-2)  $F_{x,y}(t) = F_{y,x}(t)$  for all  $x, y \in X$  and t > 0;
- (PM-3)  $F_{x,z}(t+s) \ge \Delta(F_{x,y}(t), F_{y,z}(s))$  for all  $x, y, z \in X$  and  $t, s \ge 0$ .

**Definition 2.3** ([13]). Let (X, F, T) be a PM-space. Then

(1) a sequence  $\{x_n\}$  in X is said to be convergent to a point  $x \in X$ , if for every  $\varepsilon > 0$  and  $0 < \lambda < 1$  there exists a positive integer N such that  $F_{x_n,x}(\varepsilon) > 1 - \lambda$  whenever  $n \ge N$ ;

- (2) a sequence  $\{x_n\}$  in X is called a *Cauchy* sequence if for every  $\varepsilon > 0$  and  $\lambda > 0$  we can find a positive integer N such that  $F_{x_n,x_m}(\varepsilon) > 1 \lambda$  whenever  $m, n \ge N$ ;
- (3) a Menger PM-space is said to be complete if every Cauchy sequence is convergent to a point in X;
- (4) the sequence  $\{x_n\}$  in X is said to be a G-Cauchy sequence if  $\lim_{n \to \infty} F_{x_n, x_{n+m}}(t) = 1$  for each  $m \in \mathbb{N}$ and t > 0;
- (5) the space (X, F, T) is called G-complete if every G-Cauchy sequence in X is convergent.

According to [13], the  $(\varepsilon, \lambda)$ -topology in Menger PM-space (X, F, T) is introduced by the family of neighbourhoods  $N_x$  of a point  $x \in X$  given by  $N_x = \{N_x(\varepsilon, \lambda) : \varepsilon > 0, \lambda \in (0, 1)\}$  where  $N_x(\varepsilon, \lambda) = \{y \in X : F_{x,y}(\varepsilon) > 1 - \lambda\}$ . The  $(\varepsilon, \lambda)$ -topology is a Hausdorff topology.

**Definition 2.4** ([15]). The 3-tuple( $X, G^*, T$ ) is called a Menger probabilistic G-metric space (briefly,PGM-space), where X is a nonempty set, T is a continuous t-norm and  $G^*$  is a mapping from  $X \times X \times X$  into  $\mathscr{D}$  ( $G^*_{x,y,z}$  denotes the value of  $G^*$  at the pair (x, y, z)) satisfying the following conditions:

- (PGM-1)  $G^*_{x,y,z}(t) = 1$  for all  $x, y, z \in X$  and t > 0 if and only if x = y = z;
- (PGM-2)  $G_{x,x,y}^*(t) \ge G_{x,y,z}^*(t)$  for all  $x, y, z \in X$  with  $z \neq y$  and t > 0;
- (PGM-3)  $G_{x,y,z}^*(t) = G_{z,x,y}^*(t) = G_{y,x,z}^*(t) = \cdots$  (symmetry in all three variables);

(PGM-4)  $G_{x,y,z}^*(t+s) \ge T(G_{x,a,a}^*(t), G_{a,y,z}^*(s))$  for all  $x, y, z, a \in X$  and  $t, s \ge 0$ .

**Example 2.5** ([15]). Let (X, F, T) be a PM-space. Define a function  $G^* : X \times X \times X \to \mathbb{R}^+$  by

$$G_{x,y,z}^{*}(t) = \min\{F_{x,y}(t), F_{y,z}(t), F_{x,z}(t)\}$$

for all  $x, y, z \in X$  and t > 0. Then  $(X, G^*, T)$  is a PGM-space.

For more examples of PGM-space, please refer to Zhou et al. [15].

**Definition 2.6** ([15]). Let  $(X, G^*, T)$  be a PGM-space. Then

- (1) a sequence  $\{x_n\}$  in X is said to be convergent to a point  $x \in X$ , if for any  $\varepsilon > 0$  and  $0 < \lambda < 1$ , there exists a positive integer  $N_{\varepsilon,\lambda}$  such that  $G^*_{x,x_n,x_n}(\varepsilon) \ge 1 \lambda$  whenever  $n > N_{\varepsilon,\lambda}$ ;
- (2) a sequence  $\{x_n\}$  in X is said to be a Cauchy sequence, if for any  $\varepsilon > 0$  and  $\lambda > 0$  we can find a positive integer  $N_{\varepsilon,\lambda}$  such that  $G^*_{x_n,x_m,x_l}(\varepsilon) \ge 1 \lambda$  whenever  $m, n, l \ge N_{\varepsilon,\lambda}$ ;
- (3) a PGM-space is said to be complete if every Cauchy sequence is convergent to a point in X.

**Definition 2.7** ([16]). Let  $(X, G^*, T)$  be a PGM-space. Then the following statement are equivalent:

- (1) the sequence  $\{x_n\}$  is a *Cauchy* sequence;
- (2) for all  $\varepsilon > 0$  and  $0 < \lambda < 1$ , there exists M such that  $G^*_{x_n, x_m, x_m}(\varepsilon) \ge 1 \lambda$  for all n, m > M.

Remark 2.8. Let  $(X, G^*, T)$  be a PGM-space. Then a sequence  $\{x_n\}$  is said to be a *Cauchy* sequence if  $\lim_{n \to \infty} G^*_{x_n, x_{n+m}, x_{n+m}}(t) = 1$  for each  $m \in \mathbb{N}^+$ , and t > 0.

**Definition 2.9** ([15]). Let  $(X, G^*, T)$  be a PGM-space and  $x_0$  be any point in X. For every  $\varepsilon > 0$  and  $0 < \lambda < 1$ , an $(\varepsilon, \lambda)$ -neighborhood of  $x_0$  is the set of all points  $y \in X$  for which  $G^*_{x_0,y,y}(\varepsilon) \ge 1 - \lambda$  and  $G^*_{y,x_0,x_0}(\varepsilon) \ge 1 - \lambda$ . We write  $N_{x_0}(\varepsilon, \lambda) = \{y \in X: G^*_{x_0,y,y}(\varepsilon) \ge 1 - \lambda, G^*_{y,x_0,x_0}(\varepsilon) \ge 1 - \lambda\}.$ 

**Theorem 2.10** ([15]). Let  $(X, G^*, T)$  be a Menger PGM-space. Then  $(X, G^*, T)$  is a Hausdorff space in the topology induced by the family  $\{N_{x_0}(\varepsilon, \lambda)\}$  of  $(\varepsilon, \lambda)$ -neighborhoods.

**Definition 2.11** ([15]). A function  $\phi : \mathbb{R}^+ \to \mathbb{R}^+$  is said to be a  $\phi$ -function if it satisfies the following conditions:

- (1)  $\phi(t)=0$  if and only if t=0;
- (2)  $\phi(t)$  is strictly monotone increasing and  $\phi(t) \to \infty$  as  $t \to \infty$ ;
- (3)  $\phi$  is left continuous in  $(0,\infty)$ ;
- (4)  $\phi$  is continuous at 0.

In the sequel, the class of all  $\phi$ -function will be denoted by  $\Phi$ .

**Definition 2.12** ([16]). Let  $(X, G^*, T)$  be a PGM-space. If the mapping  $f : X \to X$  be a given mapping and  $\alpha : X \times X \times X \times (0, \infty) \to \mathbb{R}^+$  be a function, we say that f is generalized  $\alpha$ -admissible if

 $\alpha(x,y,z,t) \geq 1 \Rightarrow \alpha(fx,fy,fz,t) \geq 1 \ \, \text{for \ all} \ \ t>0 \ \, \text{and} \ \ x,y,z\in X.$ 

#### 3. Main results

In this section, we denote by  $\Psi$  the class of all non-decreasing functions  $\psi : \mathbb{R}^+ \to \mathbb{R}^+$  such that  $\psi$  is continuous at point 0,  $\psi(0) = 0$  and  $\psi^n(a_n) \to 0$  whenever  $a_n \to 0$  as  $n \to \infty$ .

**Theorem 3.1.** Let  $(X, G^*, T)$  be a PGM-space, and  $f : X \to X$  be a mappings, we say that f is an  $\alpha$ - $\psi$ -type contractive mapping, if there exist two functions  $\alpha : X \times X \times X \times (0, \infty) \to \mathbb{R}^+$  and  $\psi \in \Psi$  satisfying the following inequality:

$$\alpha(x, y, z, t) \left(\frac{1}{G_{fx, fy, fz}^*(\phi(ct))} - 1\right) \le \psi\left(\frac{1}{G_{x, y, z}^*(\phi(t))} - 1\right),\tag{3.1}$$

where  $x, y, z \in X$ ,  $c \in (0, 1)$ ,  $\phi \in \Phi$ ,  $\psi \in \Psi$  and all t > 0 such that  $G^*_{x,y,z}(\phi(t)) > 0$ .

**Theorem 3.2.** Let  $(X, G^*, T)$  be a complete PGM-space. If the mapping  $f : X \to X$  is an  $\alpha$ - $\psi$ -type contractive mapping satisfying the following conditions:

- (1) f is a generalized  $\alpha$ -admissible mapping;
- (2) there exists  $x_0 \in X$ , such that  $\alpha(x_0, fx_0, fx_0, t) \ge 1$ , for all t > 0;
- (3) if  $\{x_n\}$  is a sequence in X such that  $\alpha(x_n, x_{n+1}, x_{n+1}, t) \ge 1$  for all t > 0 and all  $n \in \mathbb{N}$ , and  $x_n \to x$  as  $n \to \infty$ , then  $\alpha(x_n, x, x, t) \ge 1$  for all t > 0 and all  $n \in \mathbb{N}$ .

Then f has a fixed point in X.

Proof. Take an arbitrary point  $x_0 \in X$  and  $\alpha(x_0, fx_0, fx_0, t) \ge 1$ , for all t > 0. Define a sequence  $\{x_n\}$  in X by  $x_{n+1} = fx_n$  for  $n \in \mathbb{N}^+$ . suppose that  $x_{n+1} \neq x_n$  for  $n \in \mathbb{N}^+$  (otherwise f has trivially a fixed point). Then, by using the fact that f is  $\alpha$ -admissible, we have

$$\alpha(x_0, fx_0, fx_0, t) = \alpha(x_0, x_1, x_1, t) \ge 1 \Rightarrow \alpha(fx_0, fx_1, fx_1, t) = \alpha(x_1, x_2, x_2, t) \ge 1,$$

By induction, we get

 $\alpha(x_n, x_{n+1}, x_{n+1}, t) \ge 1$  for t > 0 and  $n \in \mathbb{N}^+$ .

From the properties of  $\phi$ , there exists t > 0 such that  $G^*_{x_n,x_{n+1},x_{n+1}}(\phi(t)) > 0$  for  $n \in \mathbb{N}^+$ . Obviously,  $G^*_{x_n,x_{n+1},x_{n+1}}(\phi(\frac{t}{c})) > 0$  and  $G^*_{x_n,x_{n+1},x_{n+1}}(\phi(ct)) > 0$  for  $c \in (0,1)$  and  $n \in \mathbb{N}^+$ . Therefore Theorem 3.1 gives that

$$\begin{split} \frac{1}{G_{x_1,x_2,x_2}^*(\phi(t))} - 1 = & \frac{1}{G_{fx_0,fx_1,fx_1}^*(\phi(t))} - 1 \\ \leq & \alpha(x_0,x_1,x_1,t)(\frac{1}{G_{fx_0,fx_1,fx_1}^*(\phi(t))} - 1) \\ \leq & \psi(\frac{1}{G_{x_0,x_1,x_1}^*(\phi(\frac{t}{c}))} - 1). \end{split}$$

Repeating the above procedure successively n times, we obtain

$$\frac{1}{G_{x_n,x_{n+1},x_{n+1}}^*(\phi(t))} - 1 \le \psi^n \left(\frac{1}{G_{x_0,x_1,x_1}^*(\phi(\frac{t}{c^n}))} - 1\right).$$

In general, if we repeat the above step with r < n, we get

$$\frac{1}{G_{x_n,x_{n+1},x_{n+1}}^*(\phi(c^r t))} - 1 \le \psi^{n-r} \left(\frac{1}{G_{x_r,x_r+1,x_r+1}^*(\phi(\frac{c^r t}{c^{n-r}}))} - 1\right).$$
(3.2)

Since  $\psi^n(a_n) \to 0$ , whenever  $a_n \to 0$ , from (3.2), we deduce that

$$\lim_{n \to \infty} G^*_{x_n, x_{n+1}, x_{n+1}}(\phi(c^r t)) = 1 \text{ for all } r > 0.$$
(3.3)

Now, let  $\varepsilon > 0$  be given, there exists  $r \in \mathbb{N}^+$  such that  $\phi(c^r t) \leq \varepsilon$ . Therefore, from (3.3), we obtain

$$\lim_{n \to \infty} G^*_{x_n, x_{n+1}, x_{n+1}}(\varepsilon) \ge \lim_{n \to \infty} G^*_{x_n, x_{n+1}, x_{n+1}}(\phi(c^r t)) = 1.$$
(3.4)

On the other hand, we know that

$$G_{x_{n},x_{n+p},x_{n+p}}^{*}(\varepsilon) \geq T(G_{x_{n},x_{n+1},x_{n+1}}^{*}(\frac{\varepsilon}{p}),G_{x_{n+1},x_{n+p},x_{n+p}}^{*}(\frac{(p-1)\varepsilon}{p})) \\ \geq T(G_{x_{n},x_{n+1},x_{n+1}}^{*}(\frac{\varepsilon}{p}),T(G_{x_{n+1},x_{n+2},x_{n+2}}^{*}(\frac{\varepsilon}{p})\cdots(G_{x_{n+p-1},x_{n+p},x_{n+p}}^{*}(\frac{\varepsilon}{p}))\cdots).$$

Letting  $n \to \infty$  and making use of (3.4), for any integer p, we get

$$\lim_{n \to \infty} G^*_{x_n, x_{n+p}, x_{n+p}}(\varepsilon) = 1 \text{ for every } \varepsilon > 0.$$

It follows that  $\{x_n\}$  is a *Cauchy* sequence. Since  $(X, G^*, T)$  is a complete PGM-space, there exists  $u \in X$  such that  $x_n \to u$  as  $n \to \infty$ . Moreover, we get

$$G_{f_{u},u,u}^{*}(\varepsilon) \ge T(G_{f_{u},x_{n+1},x_{n+1}}^{*}(\frac{\varepsilon}{2}), G_{x_{n+1},u,u}^{*}(\frac{\varepsilon}{2})).$$
(3.5)

Next, using the properties of  $\phi$ , there exists s > 0, such that  $\phi(s) < \frac{\varepsilon}{2}$ . Since  $x_n \to u$ , as  $n \to \infty$ , then there exists  $n_0 \in \mathbb{N}^+$ , such that

$$G_{u,x_n,x_n}^*(\phi(s)) > 0$$
 for all  $n > n_0$ .

Therefore, for  $n > n_0$ , we obtain

$$\frac{1}{G_{f_u,x_{n+1},x_{n+1}}^*(\frac{\varepsilon}{2})} - 1 \leq \frac{1}{G_{f_u,fx_n,fx_n}^*(\phi(s))} - 1 \\
\leq \alpha(u,x_n,x_n,\frac{s}{c}) \frac{1}{G_{f_u,fx_n,fx_n}^*(\phi(s))} - 1 \\
\leq \psi(\frac{1}{G_{u,x_n,x_n}^*(\phi(\frac{s}{c}))} - 1).$$

Since  $\psi$  is continuous at 0 and  $\psi(0) = 0$ , we obtain

$$\lim_{n \to \infty} G^*_{f_u, x_{n+1}, x_{n+1}}(\frac{\varepsilon}{2}) = 1.$$
(3.6)

Finally, from (3.5) and (3.6), we get  $G^*_{f_u,u,u}(\varepsilon) = 1$  for every  $\varepsilon > 0$ . Thus  $f_u = u$ . This completes the proof.

**Theorem 3.3.** For all  $x, y, z \in X$  and for t > 0, there exists  $z \in X$  such that  $\alpha(z, x, x, t) \ge 1$  and  $\alpha(z, y, y, t) \ge 1$ . Adding this condition to the hypotheses of Theorem 3.1, we obtain the uniqueness of the fixed point.

*Proof.* Let  $u, v \in X$  be two fixed points of f, that is u = fu and v = fv. Now, from the condition, there exists  $z \in X$ , such that

$$\alpha(z, u, u, t) \ge 1 \quad \text{and} \quad \alpha(z, v, v, t) \ge 1.$$
(3.7)

Since f is generalized  $\alpha$ -admissible, we get

$$\alpha(f^n z, u, u, t) \ge 1 \quad \text{and} \quad \alpha(f^n z, v, v, t) \ge 1 \quad \text{for} \quad n \in \mathbb{N} \quad \text{and} \quad t > 0.$$
(3.8)

Then, using (3.1) and (3.8), we obtain

$$\begin{aligned} \frac{1}{G_{f^n z, u, u}^*(\phi(ct))} - 1 = & \frac{1}{G_{f(f^{n-1}z), f u, f u}^*(\phi(ct))} - 1 \\ & \leq & \alpha(f^{n-1}z, u, u, t) \frac{1}{G_{f(f^{n-1}z), f u, f u}^*(\phi(ct))} - 1 \\ & \leq & \psi(\frac{1}{G_{f^{n-1}z, u, u}^*(\phi(t))} - 1). \end{aligned}$$

Repeating the above procedure successively n times, we obtain

$$\frac{1}{G^*_{f^nz,u,u}(\phi(ct))}-1 \leq \psi^n(\frac{1}{G^*_{z,u,u}(\phi(\frac{t}{c^{n-1}}))}-1.$$

Finally, letting  $n \to \infty$ , we obtain  $f^n z \to u$ . A similar argument shows that  $f^n z \to v$  as  $n \to \infty$ . Thus u = v. This completes the proof.

Taking  $\alpha(x, y, z, t) = 1$  in Theorem 3.2, we obtain the following corollary.

**Corollary 3.4.** Let  $(X, G^*, T)$  be a complete PGM-space and  $f : X \to X$  be a mapping satisfying the following inequality:

$$\frac{1}{G_{fx,fy,fz}^*(\phi(ct))} - 1 \le \psi(\frac{1}{G_{x,y,z}^*(\phi(t))} - 1),\tag{3.9}$$

where  $x, y, z \in X$ ,  $c \in (0,1)$ ,  $\phi \in \Phi$ ,  $\psi \in \Psi$  and t > 0 such that  $G^*_{x,y,z}(\phi(t)) > 0$ . Then f has a unique fixed point in X.

From Example 2.5 and Theorem 3.1 we get the following corollary.

**Corollary 3.5** ([4]). Let (X, F, T) be a G-complete PM-space and  $f : X \to X$  be a mapping satisfying the following inequality:

$$\frac{1}{F_{fx,fy}(\phi(ct))} - 1 \le \psi(\frac{1}{F_{x,y}(\phi(t))} - 1), \tag{3.10}$$

where  $x, y \in X$ ,  $c \in (0,1)$ ,  $\phi \in \Phi$ ,  $\psi \in \Psi$  and t > 0 such that  $F_{x,y}(\phi(t)) > 0$ . Then f has a unique fixed point in X.

3741

Proof. Define  $G_{x,y,z}^*(t) = \min\{F_{x,y}(t), F_{y,z}(t), F_{x,z}(t)\}$  for all  $x, y, z \in X$  and t > 0. Example 2.5 shows that  $(X, G^*, T)$  is a PGM-space. Since  $G_{x_n, x_{n+m}, x_{n+m}}^*(t) = F_{x_n, x_{n+m}}(t)$  and  $\lim_{n \to \infty} F_{x_n, x_{n+m}}(t) = 1$  implies  $\lim_{n \to \infty} G_{x_n, x_{n+m}, x_{n+m}}^*(t) = 1$  for each  $m \in \mathbb{N}^+$  and t > 0. Thus  $(X, G^*, T)$  is a complete PGM-space.

Now we show that f satisfies the inequality of Corollary 3.4.

$$\begin{aligned} \frac{1}{G_{fx,fy,fz}^{*}(\phi(ct))} &- 1 = \frac{1}{\min\{F_{fx,fy}(\phi(ct)), F_{fy,fz}(\phi(ct)), F_{fx,fz}(\phi(ct))\}} - 1 \\ &= \max\{\frac{1}{F_{fx,fy}(\phi(ct))} - 1, \frac{1}{F_{fy,fz}(\phi(ct))} - 1, \frac{1}{F_{fx,fz}(\phi(ct))} - 1\} \\ &\leq \max\{\psi(\frac{1}{F_{x,y}(\phi(t))} - 1), \psi(\frac{1}{F_{y,z}(\phi(t))} - 1), \psi(\frac{1}{F_{x,z}(\phi(t))} - 1)\} \\ &\leq \psi(\frac{1}{\min\{F_{x,y}(\phi(t)), F_{y,z}(\phi(t)), F_{x,z}(\phi(t))\}} - 1) \\ &= \psi(\frac{1}{G_{x,y,z}^{*}(\phi(t))} - 1), \end{aligned}$$

this implies f satisfies all the hypotheses of Corollary 3.4. Thus f has a unique fixed point. This completes the proof.

Taking  $\psi(t) = t$  in Corollary 3.4, we obtain the following corollary.

**Corollary 3.6.** Let  $(X, G^*, T)$  be a complete PGM-space,  $f : X \to X$  be a given mapping satisfying

$$G_{x,y,z}^*(\phi(t)) \le G_{fx,fy,fz}^*(\phi(ct)),$$

where  $x, y, z \in X$ ,  $\phi \in \Phi$  and t > 0. Then f has a unique fixed point in X.

Taking  $\phi(t) = \frac{t}{c}$  in Corollary 3.6, we obtain the following corollary.

**Corollary 3.7** ([5]). Let  $(X, G^*, T)$  be a complete PGM-space,  $f : X \to X$  be a given mapping satisfying

$$G_{x,y,z}^*(\frac{t}{c}) \le G_{fx,fy,fz}^*(t),$$

where  $x, y, z \in X$ ,  $c \in (0, 1)$ , and t > 0. Then f has a unique fixed point in X.

**Corollary 3.8.** Let  $(X, G^*, T)$  be a complete PGM-space and  $f : X \to X$  be a mapping satisfying the following inequality:

$$\frac{1}{G_{fx,fy,fz}^*(\phi(ct))} - 1 \le \psi(\frac{2}{G_{x,y,y}^*(\phi(t)) + G_{y,z,z}^*(\phi(t))} - 1),$$

where  $x, y, z \in X$ ,  $c \in (0,1)$ ,  $\phi \in \Phi$ ,  $\psi \in \Psi$  and all t > 0 such that  $G^*_{x,y,z}(\phi(t)) > 0$ . Then f has a unique fixed point in X.

*Proof.* Since  $G^*_{x,x,y}(t) \ge G^*_{x,y,z}(t)$  for all  $x, y, z \in X$  with  $z \neq y$  and t > 0, we get

$$G^*_{x,y,z}(t) \le \min\{G^*_{x,y,y}(t), G^*_{y,z,z}(t)\} \le \frac{G^*_{x,y,y}(t) + G^*_{y,z,z}(t)}{2}$$

Then

$$\frac{1}{G_{fx,fy,fz}^*(\phi(ct))} - 1 \le \psi(\frac{2}{G_{x,y,y}^*(\phi(t)) + G_{y,z,z}^*(\phi(t))} - 1) \le \psi(\frac{1}{G_{x,y,z}^*(\phi(t))} - 1).$$

This implies that f satisfies all the hypotheses of Corollary 3.4. Thus f has a unique fixed point in X. This completes the proof.

As an application of Theorems 3.1 and 3.2, we prove the following common fixed point theorem for a finite family of mappings which runs as follows.

**Theorem 3.9.** Let  $(X, G^*, T)$  be a complete PGM-space,  $\{f_i\}_{i=1}^m$  be a finite family of self-mappings defined on X and denote  $f = f_1 f_2 f_3 \cdots f_m$ . If  $f : X \to X$  satisfies all the hypotheses of Theorems 3.1 and 3.2, then the family  $\{f_i\}_{i=1}^m$  has a unique common fixed point provided that  $f_i f_j = f_j f_i$  whenever  $i \neq j$ , with  $i, j \in \{1, 2, \cdots, m\}$ .

*Proof.* Notice that all the hypotheses of Theorems 3.1 and 3.2 are satisfied in respect of the mapping f, therefore there exists a unique  $x \in X$  such that fx = x. Now

$$f(f_ix) = ((f_1f_2f_3\cdots f_m)f_i)x$$
  
=  $(f_1f_2f_3\cdots f_{m-1})((f_mf_i)x) = (f_1f_2f_3\cdots f_{m-1})(f_mf_ix)$   
=  $\cdots$   
=  $f_1f_i(f_2f_3\cdots f_mx)$   
=  $f_if_1(f_2f_3\cdots f_mx) = f_i(f_ix) = f_ix,$ 

which shows that  $f_i x$  is also a fixed point of f. Since x is the unique fixed point of f, therefore  $f_i x = x$  and hence x is also a fixed point of all mappings  $f_i$  for  $i \in \{1, 2, \dots, m\}$ .

By setting  $f_1 = f_2 = \cdots = f_m = g$  in Theorem 3, we obtain the following fixed point theorem for *m*th iteration of a mapping *g*.

**Corollary 3.10.** Let  $(X, G^*, T)$  be a complete PGM-space and  $g : X \to X$  be a mapping such that  $\{g^m\}$  satisfies all the hypotheses of Theorems 3.1 and 3.2. Then g has a unique fixed point.

## 4. An example

**Example 4.1.** Let X = [0,1] and  $\mathbb{Q}^+$  be the set of all positive rational numbers.  $T(a,b) = min\{a,b\}$  for all  $a, b \in X$ . Define a function  $G^* : X \times X \times X \to \mathscr{D}^+$  as:

$$G_{x,y,z}^{*}(t) = \frac{t}{t + G(x,y,z)}$$
(4.1)

for all  $x, y, z \in X$  and G(x, y, z) = |x - y| + |y - z| + |z - x|. Obviously,  $(X, G^*, T)$  is a complete PGM-space. Let  $f: X \to X$  be a mapping defined by  $fx = \frac{1}{3} \sin x$  and  $\phi \in \Phi$  by  $\phi(x) = \frac{x}{c}$ , and  $\psi \in \Psi$  by

$$\psi(x) = \begin{cases} x & \text{if } s \in \mathbb{Q}^+; \\ \frac{x}{2} & otherwise. \end{cases}$$

Now we show that f satisfies all the hypotheses of Theorem 3.1.

$$\begin{aligned} \frac{1}{G_{fx,fy,fz}^{*}(\phi(ct))} &- 1 = \frac{G(fx, fy, fz)}{t} \\ &= \frac{|\sin x - \sin y| + |\sin y - \sin z| + |\sin z - \sin x|}{3t} \\ &\leq \frac{|x - y| + |y - z| + |z - x|}{3t} \\ &= \frac{G(x, y, z)}{t} \le \psi(\frac{1}{G_{x,y,z}^{*}(\phi(t))} - 1). \end{aligned}$$

Thus f has a unique fixed point. The fixed point is u = 0.

Define the function  $\alpha: X \times X \times X \times (0, \infty) \to \mathbb{R}^+$  by

$$\alpha(x, y, z, t) = \begin{cases} 1 & \text{if } x, y, z \in [0, 1]; \\ 0 & otherwise. \end{cases}$$

$$(4.2)$$

Now, let  $x, y, z \in X$ , and  $\alpha(x, y, z, t) \leq 1$  for t > 0. This shows that  $x, y, z \in [0, 1]$  and by the definitions of f and  $\alpha$ , we have

$$fx \in [0,1], fy \in [0,1], fz \in [0,1]$$
 and  $\alpha(fx, fy, fz, t) = 1$  for all  $t > 0$ ,

that is, f is generalized  $\alpha$ -admissible.

Then, there exists  $x_0 \in X$  such that  $\alpha(x_0, fx_0, fx_0, t) \leq 1$  for t > 0. Indeed for  $x_0 = 1$ , we have  $\alpha(1, f(1), t) = 1$ .

Next, let  $\{x_n\}$  be a sequence in X such that  $\alpha(x_n, x_{n+1}, x_{n+1}, t) \leq 1$  for t > 0 and  $n \in \mathbb{N}^+$ . Since  $x_n \to x$  as  $n \to \infty$ , this shows that  $x_n, x \in [0, 1]$  and  $\alpha(x_n, x, x, t) \leq 1$  for t > 0 and  $n \in \mathbb{N}^+$ . Thus, Theorems 3.1 and 3.2 are applicable.

Finally, f has a fixed point in X. The fixed point is 0.

#### Acknowledgements

Supported by the National Natural Science Foundation of China (11361042,11326099,11071108) and the Provincial Natural Science Foundation of Jiangxi, China (20132BAB201001,2010GZS0147).

### References

- S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundam. Math., 3 (1922), 133–181.1
- [2] B. S. Choudhury, K. P. Das, A new contraction principle in Menger spaces, Acta Math. Sin. Engl. Ser., 24 (2008), 1379–1386.1
- B. S. Choudhury, K. P. Das, A coincidence point result in Menger spaces using a control function, Chaos Solitons Fractals, 42 (2009), 3058–3063.1
- [4] P. N. Dutta, B. S. Choudhury, K. P. Das, Some fixed point results in Menger spaces using a control function, Surv. Math. Appl., 4 (2009), 41–52.1, 3.5
- [5] D. Gopal, M. Abbas, C. Vetro, Some new fixed point theorems in Menger PM-spaces with application to Volterra type integral equation, Appl. Math. Comput., 232 (2014), 955–967.1, 3.7
- [6] O. Hadžić, E. Pap, Fixed point theory in probabilistic metric soaces, Kluwer Academic, Dordrecht, (2001).1
- [7] M. S. Khan, M. Swalen, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., 30 (1984), 1–9.1
- [8] M. A. Kutbi, D. Gopal, C. Vetro, Further generalization of fixed point theorems in Menger PM-spaces, Fixed Point Theory Appl., 2015 (2015), 10 pages. 1
- [9] K. Menger, Statistical metric, Proc. Natl. Acad. Sci., 28 (1942), 535–537.1
- [10] D. Mihet, Altering distances in probabilistic Menger spaces, Nonlinear Anal., 71 (2009), 2734–2738.1
- Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297.
- [12] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for  $\alpha \psi type$  contractive type mapping, Nonlinear Anal., **75** (2012), 2154–2165.1
- [13] B. Schweizer, A. Sklat, Probabilistic Metric Spaces., North-Holland, New York, (1983).2.1, 2.2, 2.3, 2
- [14] V. M. Sehgal, A. T. Bharucha-Reid, Fixed points of contraction mappings on probabilistic metric spaces, Theory Comput. Sys., 6 (1972), 97–102.1
- [15] L. T. Zhou, S. H. Wang, L. Ćirić, Generalized probabilistic metric spaces and fixed point theorems, Fixed Point Theory Appl., 2014 (2014), 15 pages. 1, 2.4, 2.5, 2, 2.6, 2.9, 2.10, 2.11
- [16] C. X. Zhu, W. Q. Xu, Z. Q. Wu, Some fixed point theorems in generalized probabilistic metric spaces, Abstr. Appl. Anal., 2014 (2014), 8 pages. 2.7, 2.12