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Abstract

In this paper, we study the existence of solutions for a class of rational systems of difference equations
of order four in four-dimensional case

xn+1 = xn−3

±1±tnzn−1yn−2xn−3
, yn+1 = yn−3

±1±xntn−1zn−2yn−3
,

zn+1 = zn−3

±1±ynxn−1tn−2zn−3
, tn+1 = tn−3

±1±znyn−1xn−2tn−3

with the initial conditions are real numbers. Also, we study some behavior such as the periodicity and
boundedness of solutions for such systems. Finally, some numerical examples are given to confirm our
theoretical results and graphed by Matlab. c©2016 All rights reserved.

Keywords: Recursive sequences, difference equation system, periodic solutions.
2010 MSC: 39A10, 39A22, 39A23.

1. Introduction

The theory of discrete dynamical systems and difference equations developed greatly during the last
twenty-five years of the twentieth century. Applications of discrete dynamical systems and difference equa-
tions have experienced enormous growth in many areas. Many applications of discrete dynamical systems
and difference equations have appeared recently in the areas of biology, economics, physics, resource man-
agement and others. The theory of difference equations occupies a central position in applicable analysis.
There is no suspicion that the theory of difference equations will continue to play an important role in math-
ematics as a whole. Nonlinear difference equations of order greater than one are of paramount importance
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in applications. Such equations also appear naturally as discrete analogues and as numerical solutions of
differential and delay differential equations which model various diverse phenomena in biology, ecology, psy-
chology, engineering, physics, probability theory, economics, genetics, physiology and resource management.
It is very interesting to investigate the behavior of solutions of a system of higher-order rational difference
equations and to discuss the local asymptotic stability of their equilibrium points. There are many papers
deal with the difference equations system [1–33]. For example, the dynamical behavior of positive solution
for the system

xn+1 =
xn−m+1

A+ ynyn−1...yn−m+1
, yn+1 =

yn−m+1

A+ xnxn−1...xn−m+1
,

has been studied by Sroysang in [24].
In [12], El-Metwally presented solutions of the following sixteen systems of difference equations

xn =
xn−2yn−1

±xn−2 ± yn−3
, yn =

yn−2xn−1

±yn−2 ± xn−3
.

In [26], Stević et al. studied the solutions of rational difference equations

xn =
xn−kyn−l

bnxn−k + anyn−l−k
, yn =

yn−kxn−l

dnyn−k + cnxn−l−k
.

In [4], Din has investigated the dynamics of a system of fourth-order rational difference equations

xn+1 =
α1xn−3

β1 + γ1ynyn−1xn−2xn−3
, yn+1 =

α2yn−3

β2 + γ2xnxn−1yn−2yn−3
.

Yalçinkaya and Çinar [29] got the periodicity of the positive solutions of the nonlinear difference equations
system

xn+1 =
1

zn
, yn+1 =

yn
xn−1yn−1

, zn+1 =
1

xn−1
.

El-Dessoky et al. [11] obtained the solutions of the difference equation systems

xn+1 =
xn−1

1 + ynxn−1
, yn+1 =

yn−1

1 + xnyn−1
, zn+1 =

zn−m

xnyn
.

Özkan et al. [23] investigated the periodical solutions of the third order rational difference equations

xn+1 =
yn−2

−1± yn−2xn−1yn
, yn+1 =

xn−2

−1± xn−2yn−1xn
, zn+1 =

xn−2 + yn−2

−1± xn−2yn−1xn
.

Yazlik et al. [31] studied the behaviour of solutions of the systems of difference equations

xn+1 =
yn−2xn−3yn−4

ynxn−1(±1± yn−2xn−3yn−4)
, yn+1 =

xn−2yn−3xn−4

xnyn−1(±1± xn−2yn−3xn−4)
.

El-Dessoky et al. [9] investigated the form of the solution of the systems of difference equations

xn+1 =
xn−2

±1 + xn−2zn−1yn
, yn+1 =

yn−2

±1 + yn−2xn−1zn
, zn+1 =

zn−2

±1 + zn−2yn−1xn
.

Also, in [19] , Kurbanli studied a three-dimensional system of rational difference equations

xn+1 =
xn−1

xn−1yn − 1
, yn+1 =

yn−1

yn−1xn − 1
, zn+1 =

xn
zn−1yn − 1

.

To be motivated by the above studies, our aim in this paper is to obtain the existence of solutions for
the rational systems of difference equations of order four in four-dimensional case

xn+1 =
xn−3

±1± tnzn−1yn−2xn−3
, yn+1 =

yn−3

±1± xntn−1zn−2yn−3
,

zn+1 =
zn−3

±1± ynxn−1tn−2zn−3
, tn+1 =

tn−3

±1± znyn−1xn−2tn−3
,

where n ∈ N0 and the initial conditions xi, yi, zi, ti for i = −3, −2, −1, 0 are arbitrary real numbers. We
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study the dynamics of theses solutions such as the periodicity and boundedness and give some numerical
examples for the systems.

2. Systems and the expressions of their solutions

Here we interest to investigate the following system of some rational difference equations

xn+1 =
xn−3

−1− tnzn−1yn−2xn−3
, yn+1 =

yn−3

−1− xntn−1zn−2yn−3
,

zn+1 =
zn−3

1 + ynxn−1tn−2zn−3
, tn+1 =

tn−3

1 + znyn−1xn−2tn−3
, (2.1)

where n ∈ N0 and the initial conditions xi, yi, zi, ti for i = −3, − 2, − 1, 0 are arbitrary real numbers.

Theorem 2.1. Assume that {xn, yn, zn, tn} are solutions of system (2.1), then for n = 0, 1, 2, ..., we obtain

x4n−3 = (−1)nx−3

n−1∏
i=0

(1 + (2i)x−3y−2z−1t0)

(1 + (2i+ 1)x−3y−2z−1t0)
, x4n−2 = (−1)nx−2

n−1∏
i=0

(1 + (2i+ 1)t−3x−2y−1z0)

(1 + (2i+ 2)t−3x−2y−1z0)
,

x4n−1 = (−1)nx−1

n−1∏
i=0

(1 + (2i+ 2)z−3t−2x−1y0)

(1 + (2i+ 3)z−3t−2x−1y0)
, x4n = (−1)nx0

n−1∏
i=0

(−1 + (2i+ 1)y−3z−2t−1x0)

(−1 + (2i+ 2)y−3z−2t−1x0)
,

y4n−3 = (−1)ny−3

n−1∏
i=0

(−1 + (2i)y−3z−2t−1x0)

(−1 + (2i− 1)y−3z−2t−1x0)
, y4n−2 = (−1)ny−2

n−1∏
i=0

(1 + (2i+ 1)x−3y−2z−1t0)

(1 + (2i)x−3y−2z−1t0)
,

y4n−1 = (−1)ny−1

n−1∏
i=0

(1 + (2i+ 2)t−3x−2y−1z0)

(1 + (2i+ 1)t−3x−2y−1z0)
, y4n = (−1)ny0

n−1∏
i=0

(1 + (2i+ 3)z−3t−2x−1y0)

(1 + (2i+ 2)z−3t−2x−1y0)
,

z4n−3 = z−3

n−1∏
i=0

(1 + (2i)z−3t−2x−1y0)

(1 + (2i+ 1)z−3t−2x−1y0)
, z4n−2 = z−2

n−1∏
i=0

(−1 + (2i− 1)y−3z−2t−1x0)

(−1 + (2i)y−3z−2t−1x0)
,

z4n−1 = z−1

n−1∏
i=0

(1 + (2i)x−3y−2z−1t0)

(1 + (2i+ 1)x−3y−2z−1t0)
, z4n = z0

n−1∏
i=0

(1 + (2i+ 1)t−3x−2y−1z0)

(1 + (2i+ 2)t−3x−2y−1z0)
,

and

t4n−3 = t−3

n−1∏
i=0

(1 + (2i)t−3x−2y−1z0)

(1 + (2i+ 1)t−3x−2y−1z0)
, t4n−2 = t−2

n−1∏
i=0

(1 + (2i+ 1)z−3t−2x−1y0)

(1 + (2i+ 2)z−3t−2x−1y0)
,

t4n−1 = t−1

n−1∏
i=0

(−1 + (2i)y−3z−2t−1x0)

(−1 + (2i+ 1)y−3z−2t−1x0)
, t4n = t0

n−1∏
i=0

(1 + (2i+ 1)x−3y−2z−1t0)

(1 + (2i+ 2)x−3y−2z−1t0)
,

where
−1∏
i=0

Ai = 1.

Proof. For n = 0 the result holds. Now let n > 1 and that our assumption holds for n− 1, that is,

x4n−7= (−1)n−1x−3

n−2∏
i=0

(1 + (2i)x−3y−2z−1t0)

(1 + (2i+ 1)x−3y−2z−1t0)
, x4n−6 = (−1)n−1x−2

n−2∏
i=0

(1 + (2i+ 1)t−3x−2y−1z0)

(1 + (2i+ 2)t−3x−2y−1z0)
,

x4n−5 = (−1)n−1x−1

n−2∏
i=0

(1 + (2i+ 2)z−3t−2x−1y0)

(1 + (2i+ 3)z−3t−2x−1y0)
, x4n−4 = (−1)n−1x0

n−2∏
i=0

(−1+(2i+1)y−3z−2t−1x0)
(−1+(2i+2)y−3z−2t−1x0)

,

y4n−7 = (−1)n−1y−3

n−2∏
i=0

(−1 + (2i)y−3z−2t−1x0)

(−1 + (2i− 1)y−3z−2t−1x0)
, y4n−6 = (−1)n−1y−2

n−2∏
i=0

(1+(2i+1)x−3y−2z−1t0)
(1+(2i)x−3y−2z−1t0)

,

y4n−5 = (−1)n−1y−1

n−2∏
i=0

(1 + (2i+ 2)t−3x−2y−1z0)

(1 + (2i+ 1)t−3x−2y−1z0)
, y4n−4 = (−1)n−1y0

n−2∏
i=0

(1+(2i+3)z−3t−2x−1y0)
(1+(2i+2)z−3t−2x−1y0)

,

z4n−7 = z−3

n−2∏
i=0

(1 + (2i)z−3t−2x−1y0)

(1 + (2i+ 1)z−3t−2x−1y0)
, z4n−6 = z−2

n−2∏
i=0

(−1 + (2i− 1)y−3z−2t−1x0)

(−1 + (2i)y−3z−2t−1x0)
,
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z4n−5 = z−1

n−2∏
i=0

(1 + (2i)x−3y−2z−1t0)

(1 + (2i+ 1)x−3y−2z−1t0)
, z4n−4 = z0

n−2∏
i=0

(1 + (2i+ 1)t−3x−2y−1z0)

(1 + (2i+ 2)t−3x−2y−1z0)
,

t4n−7 = t−3

n−2∏
i=0

(1 + (2i)t−3x−2y−1z0)

(1 + (2i+ 1)t−3x−2y−1z0)
, t4n−6 = t−2

n−2∏
i=0

(1 + (2i+ 1)z−3t−2x−1y0)

(1 + (2i+ 2)z−3t−2x−1y0)
,

t4n−5 = t−1

n−2∏
i=0

(−1 + (2i)y−3z−2t−1x0)

(−1 + (2i+ 1)y−3z−2t−1x0)
, t4n−4 = t0

n−2∏
i=0

(1 + (2i+ 1)x−3y−2z−1t0)

(1 + (2i+ 2)x−3y−2z−1t0)
.

From system (2.1), we deduce that

x4n−3 =
x4n−7

−1− t4n−4z4n−5y4n−6x4n−7

=

(−1)n−1x−3

n−2∏
i=0

(1+(2i)x−3y−2z−1t0)
(1+(2i+1)x−3y−2z−1t0)

−1−

 t0
n−2∏
i=0

(1+(2i+1)x−3y−2z−1t0)
(1+(2i+2)x−3y−2z−1t0)

z−1

n−2∏
i=0

(1+(2i)x−3y−2z−1t0)
(1+(2i+1)x−3y−2z−1t0)

(−1)n−1y−2

n−2∏
i=0

(1+(2i+1)x−3y−2z−1t0)
(1+(2i)x−3y−2z−1t0)

(−1)n−1x−3

n−2∏
i=0

(1+(2i)x−3y−2z−1t0)
(1+(2i+1)x−3y−2z−1t0)



=

(−1)nx−3

n−2∏
i=0

(1+(2i)x−3y−2z−1t0)
(1+(2i+1)x−3y−2z−1t0)

−1−
[
x−3y−2z−1t0

n−2∏
i=0

(1+(2i)x−3y−2z−1t0)
(1+(2i+2)x−3y−2z−1t0)

] =

(−1)n−1x−3

n−2∏
i=0

(1+(2i)x−3y−2z−1t0)
(1+(2i+1)x−3y−2z−1t0)

−1−
[

x−3y−2z−1t0
(1+(2n−2)x−3y−2z−1t0)

]

=

(−1)n−1x−3

n−2∏
i=0

(1+(2i)x−3y−2z−1t0)
(1+(2i+1)x−3y−2z−1t0)

−
(

1+(2n−1)x−3y−2z−1t0
(1+(2n−2)x−3y−2z−1t0)

)
=(−1)nx−3

n−1∏
i=0

(1 + (2i)x−3y−2z−1t0)

(1 + (2i+ 1)x−3y−2z−1t0)
,

y4n−3 =
y4n−7

−1− x4n−4t4n−5z4n−6y4n−7

=

(−1)n−1y−3

n−2∏
i=0

(−1+(2i)y−3z−2t−1x0)
(−1+(2i−1)y−3z−2t−1x0)

−1−

 (−1)n−1x0
n−2∏
i=0

(−1+(2i+1)y−3z−2t−1x0)
(−1+(2i+2)y−3z−2t−1x0)

t−1

n−2∏
i=0

(−1+(2i)y−3z−2t−1x0)
(−1+(2i+1)y−3z−2t−1x0)

z−2

n−2∏
i=0

(−1+(2i−1)y−3z−2t−1x0)
(−1+(2i)y−3z−2t−1x0)

(−1)n−1y−3

n−2∏
i=0

(−1+(2i)y−3z−2t−1x0)
(−1+(2i−1)y−3z−2t−1x0)



=

(−1)n−1y−3

n−2∏
i=0

(−1+(2i)y−3z−2t−1x0)
(−1+(2i−1)y−3z−2t−1x0)

−1−
[
y−3z−2t−1x0

n−2∏
i=0

(−1+(2i)y−3z−2t−1x0)
(−1+(2i+2)y−3z−2t−1x0)

] =

(−1)n−1y−3

n−2∏
i=0

(−1+(2i)y−3z−2t−1x0)
(−1+(2i−1)y−3z−2t−1x0)

−1 + y−3z−2t−1x0

(−1+(2n−2)y−3z−2t−1x0)

=

(−1)n−1y−3

n−2∏
i=0

(−1+(2i)y−3z−2t−1x0)
(−1+(2i−1)y−3z−2t−1x0)

−
(
−1+(2n−3)y−3z−2t−1x0

−1+(2n−2)y−3z−2t−1x0

)
=(−1)ny−3

n−1∏
i=0

(−1 + (2i)y−3z−2t−1x0)

(−1 + (2i− 1)y−3z−2t−1x0)
.
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Also, from system (2.1), we see that

z4n−3 =
z4n−7

1 + y4n−4x4n−5t4n−6z4n−7

=

z−3

n−2∏
i=0

(1+(2i)z−3t−2x−1y0)
(1+(2i+1)z−3t−2x−1y0)

1 +

 (−1)n−1y0
n−2∏
i=0

(1+(2i+3)z−3t−2x−1y0)
(1+(2i+2)z−3t−2x−1y0)

(−1)n−1x−1

n−2∏
i=0

(1+(2i+2)z−3t−2x−1y0)
(1+(2i+3)z−3t−2x−1y0)

t−2

n−2∏
i=0

(1+(2i+1)z−3t−2x−1y0)
(1+(2i+2)z−3t−2x−1y0)

z−3

n−2∏
i=0

(1+(2i)z−3t−2x−1y0)
(1+(2i+1)z−3t−2x−1y0)



=

z−3

n−2∏
i=0

(1+(2i)z−3t−2x−1y0)
(1+(2i+1)z−3t−2x−1y0)

1 + z−3t−2x−1y0
n−2∏
i=0

(1+(2i)z−3t−2x−1y0)
(1+(2i+2)z−3t−2x−1y0)

=

z−3

n−2∏
i=0

(1+(2i)z−3t−2x−1y0)
(1+(2i+1)z−3t−2x−1y0)

1 + z−3t−2x−1y0
1+(2n−2)z−3t−2x−1y0

=

z−3

n−2∏
i=0

(1+(2i)z−3t−2x−1y0)
(1+(2i+1)z−3t−2x−1y0)

1+(2n−1)z−3t−2x−1y0
1+(2n−2)z−3t−2x−1y0

= z−3

n−1∏
i=0

(1 + (2i)z−3t−2x−1y0)

(1 + (2i+ 1)z−3t−2x−1y0)
.

Finally, from system (2.1), we see that

t4n−3 =
t4n−7

1 + z4n−4y4n−5x4n−6t4n−7

=

t−3

n−2∏
i=0

(1+(2i)t−3x−2y−1z0)
(1+(2i+1)t−3x−2y−1z0)

1 +

 z0
n−2∏
i=0

(1+(2i+1)t−3x−2y−1z0)
(1+(2i+2)t−3x−2y−1z0)

(−1)n−1y−1

n−2∏
i=0

(1+(2i+2)t−3x−2y−1z0)
(1+(2i+1)t−3x−2y−1z0)

(−1)n−1x−2

n−2∏
i=0

(1+(2i+1)t−3x−2y−1z0)
(1+(2i+2)t−3x−2y−1z0)

t−3

n−2∏
i=0

(1+(2i)t−3x−2y−1z0)
(1+(2i+1)t−3x−2y−1z0)



=

t−3

n−2∏
i=0

(1+(2i)t−3x−2y−1z0)
(1+(2i+1)t−3x−2y−1z0)

1 +

[
t−3x−2y−1z0

n−2∏
i=0

(1+(2i)t−3x−2y−1z0)
(1+(2i+2)t−3x−2y−1z0)

] =

t−3

n−2∏
i=0

(1+(2i)t−3x−2y−1z0)
(1+(2i+1)t−3x−2y−1z0)

1 + t−3x−2y−1z0
1+(2i+2)t−3x−2y−1z0

=

t−3

n−2∏
i=0

(1+(2i)t−3x−2y−1z0)
(1+(2i+1)t−3x−2y−1z0)

1+(2i−1)t−3x−2y−1z0
1+(2i−2)t−3x−2y−1z0

= t−3

n−1∏
i=0

(1 + (2i)t−3x−2y−1z0)

(1 + (2i+ 1)t−3x−2y−1z0)
.

Similarly, we can prove the other relations. This completes the proof.

Lemma 2.2. If xi, yi, zi, ti for i = −3,−2,−1, 0 be arbitrary real numbers and let {xn, yn, zn, tn} are
solutions of system (2.1), then the following conditions hold:

(i) If x−3 = 0, then we have x4n−3 = 0 and y4n−2 = (−1)ny−2, z4n−1 = z−1, t4n = t0.
(ii) If x−2 = 0, then we have x4n−2 = 0 and y4n−1 = (−1)ny−1, z4n = z0, t4n−3 = t−3.
(iii) If x−1 = 0, then we have x4n−1 = 0 and y4n = (−1)ny0, z4n−3 = z−3, t4n−2 = t−2.
(iv) If x0 = 0, then we have x4n = 0 and y4n−3 = (−1)ny−3, z4n−2 = z−2, t4n−1 = t−1.
(v) If y−3 = 0, then we have y4n−3 = 0 and x4n = (−1)nx0, z4n−2 = z−2, t4n−1 = t−1 .
(vi) If y−2 = 0, then we have y4n−2 = 0 and x4n−3 = (−1)nx−3, z4n−1 = z−1, t4n = t0.
(vii) If y−1 = 0, then we have y4n−1 = 0 and x4n−2 = (−1)nx−2, z4n = z0, t4n−3 = t−3.
(viii) If y0 = 0, then we have y4n = 0 and x4n−1 = (−1)nx−1, z4n−3 = z−3, t4n−2 = t−2.
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(ix) If z−3 = 0, then we have z4n−3 = 0 and x4n−1 = (−1)nx−1, y4n = (−1)ny0, t4n−2 = t−2.
(x) If z−2 = 0, then we have z4n−2 = 0 and x4n = (−1)nx0, y4n−3 = (−1)ny−3, t4n−1 = t−1.
(xi) If z−1 = 0, then we have z4n−1 = 0 and x4n−3 = (−1)nx−3, y4n−2 = (−1)ny−2, t4n = t0.
(xii) If z0 = 0, then we have z4n = 0 and x4n−2 = (−1)nx−2, y4n−1 = (−1)ny−1, t4n−3 = t−3.
(xiii) If t−3 = 0, then we have t4n−3 = 0 and x4n−2 = (−1)nx−2, y4n−1 = (−1)ny−1, z4n = z0.
(xiv) If t−2 = 0, then we have t4n−2 = 0 and x4n−1 = (−1)nx−1, y4n = (−1)ny0, z4n−3 = z−3.
(xv) If t−1 = 0, then we have t4n−1 = 0 and x4n = (−1)nx0, y4n−3 = (−1)ny−3, z4n−2 = z−2.
(xvi) If t0 = 0, then we have t4n = 0 and x4n−3 = (−1)nx−3, y4n−2 = (−1)ny−2, z4n−1 = z−1.

Proof. The proof follows directly from the expressions of the solutions of system (2.1).

Theorem 2.3. Assume that {xn, yn, zn, tn} are solutions of the system

xn+1 =
xn−3

1 + tnzn−1yn−2xn−3
, yn+1 =

yn−3

1− xntn−1zn−2yn−3
,

zn+1 =
zn−3

1− ynxn−1tn−2zn−3
, tn+1 =

tn−3

1 + znyn−1xn−2tn−3
(2.2)

with x−3y−2z−1t0 6= ±1, t−3x−2y−1z0 6= −1, t−3x−2y−1z0 6= −1
2 , z−3t−2x−1y0 6= ±1, y−3z−2t−1x0 6= 1,

y−3z−2t−1x0 6= 1
2 , takes the form

x4n−3 =
x−3

(1 + x−3y−2z−1t0)
n , x4n−2 =

x−2 (1 + t−3x−2y−1z0)
n

(1 + 2t−3x−2y−1z0)
n ,

x4n−1 =
x−1

(1 + z−3t−2x−1y0)
n , x4n = x0 (1− y−3z−2t−1x0)

n ,

y4n−3 =
y−3

(1− y−3z−2t−1x0)
n , y4n−2 = y−2 (1 + x−3y−2z−1t0)

n ,

y4n−1 =
y−1 (1 + 2t−3x−2y−1z0)

n

(1 + t−3x−2y−1z0)
n , y4n = y0 (1 + z−3t−2x−1y0)

n ,

z4n−3 =
z−3

(1− z−3t−2x−1y0)
n , z4n−2 =

z−2 (−1 + y−3z−2t−1x0)
n

(−1 + 2y−3z−2t−1x0)
n ,

z4n−1 =
z−1

(1− x−3y−2z−1t0)
n , z4n = z0 (1 + t−3x−2y−1z0)

n ,

t4n−3 =
t−3

(1 + t−3x−2y−1z0)
n , t4n−2 = t−2 (1− z−3t−2x−1y0)

n ,

t4n−1 =
t−1 (−1 + 2y−3z−2t−1x0)

n

(−1 + y−3z−2t−1x0)
n , t4n = t0 (1− x−3y−2z−1t0)

n .

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assumption holds for n−1, that is,

x4n−7 =
x−3

(1 + x−3y−2z−1t0)
n−1 , x4n−6 =

x−2 (1 + t−3x−2y−1z0)
n−1

(1 + 2t−3x−2y−1z0)
n−1

x4n−5 =
x−1

(1 + z−3t−2x−1y0)
n−1 , x4n−4 = x0 (1− y−3z−2t−1x0)

n−1 ,

y4n−7 =
y−3

(1− y−3z−2t−1x0)
n−1 , y4n−6 = y−2 (1 + x−3y−2z−1t0)

n−1 ,

y4n−5 =
y−1 (1 + 2t−3x−2y−1z0)

n−1

(1 + t−3x−2y−1z0)
n−1 , y4n−4 = y0 (1 + z−3t−2x−1y0)

n−1 ,

z4n−7 =
z−3

(1− z−3t−2x−1y0)
n−1 , z4n−6 =

z−2 (−1 + y−3z−2t−1x0)
n−1

(−1 + 2y−3z−2t−1x0)
n−1 ,
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z4n−5 =
z−1

(1− x−3y−2z−1t0)
n−1 , z4n−4 = z0 (1 + t−3x−2y−1z0)

n−1 ,

t4n−7 =
t−3

(1 + t−3x−2y−1z0)
n−1 , t4n−6 = t−2 (1− z−3t−2x−1y0)

n ,

t4n−5 =
t−1 (−1 + 2y−3z−2t−1x0)

n−1

(−1 + y−3z−2t−1x0)
n−1 , t4n−4 = t0 (1− x−3y−2z−1t0)

n−1 .

It follows that, from system (2.2), we have

x4n−3 =
x4n−7

1 + t4n−4z4n−5y4n−6x4n−7

=

x−3

(1+x−3y−2z−1t0)
n−1[

1 + z−1t0(1−x−3y−2z−1t0)
n−1

(1−x−3y−2z−1t0)
n−1

x−3y−2(1+x−3y−2z−1t0)
n−1

(1+x−3y−2z−1t0)
n−1

]
=

x−3

(1+x−3y−2z−1t0)
n−1

[1 + x−3y−2z−1t0]
=

x−3

(−1 + x−3y−2z−1t0)
n .

y4n−2 =
y4n−6

1− x4n−3t4n−4z4n−5y4n−6

=
y−2 (1 + x−3y−2z−1t0)

n−1[
1− x−3t0(1−x−3y−2z−1t0)

n−1

(1+x−3y−2z−1t0)
n

z−1y−2(1+x−3y−2z−1t0)
n−1

(1−x−3y−2z−1t0)
n−1

]
=
y−2 (1 + x−3y−2z−1t0)

n−1[
1− x−3y−2z−1t0

(1+x−3y−2z−1t0)

] =
y−2 (1 + x−3y−2z−1t0)

n−1[
1

(1+x−3y−2z−1t0)

]
=y−2 (1 + x−3y−2z−1t0)

n .

z4n−1 =
z4n−5

1− y4n−2x4n−3t4n−4z4n−5

=

z−1

(1−x−3y−2z−1t0)
n−1[

1− x−3y−2(1+x−3y−2z−1t0)
n

(1+x−3y−2z−1t0)
n

z−1t0(1−x−3y−2z−1t0)
n−1

(1−x−3y−2z−1t0)
n−1

]
=

z−1

(1−x−3y−2z−1t0)
n−1

[1− x−3y−2z−1t0]
=

z−1

(−1 + x−3y−2z−1t0)
n .

t4n =
t4n−4

1 + z4n−1y4n−2x4n−3t4n−4

=
t0 (1− x−3y−2z−1t0)

n−1[
1 + z−1y−2(1+x−3y−2z−1t0)

n

(1−x−3y−2z−1t0)
n

x−3t0(1−x−3y−2z−1t0)
n−1

(1+x−3y−2z−1t0)
n

]
=
t0 (1− x−3y−2z−1t0)

n−1[
1 + x−3y−2z−1t0

(1−x−3y−2z−1t0)

] =
t0 (1− x−3y−2z−1t0)

n−1[
1

1−x−3y−2z−1t0

]
=t0 (1− x−3y−2z−1t0)

n .

Also, we can prove the other relations similarly. The proof is complete.

Theorem 2.4. Let {xn, yn, zn, tn} are solutions of the system

xn+1 =
xn−3

−1 + tnzn−1yn−2xn−3
, yn+1 =

yn−3

−1− xntn−1zn−2yn−3
,

zn+1 =
zn−3

1 + ynxn−1tn−2zn−3
, tn+1 =

tn−3

1 + znyn−1xn−2tn−3
(2.3)
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with the initial values are arbitrary real numbers satisfy x−3y−2z−1t0 6= 1, x−3y−2z−1t0 6= 1
2 , z−3t−2x−1y0 6=

−1, z−3t−2x−1y0 6= −1
2 , t−3x−2y−1z0 6= ±1 and y−3z−2t−1x0 6= ±1. Then the solution is given by the

following formula for n = 0, 1, 2, ...,

x4n−3 =
x−3

(−1 + x−3y−2z−1t0)
n , x4n−2 = (−1)n x−2 (1 + t−3x−2y−1z0)

n ,

x4n−1 =
(−1)n x−1 (1 + 2z−3t−2x−1y0)

n

(1 + z−3t−2x−1y0)
n , x4n = x0 (−1 + y−3z−2t−1x0)

n ,

y4n−3 =
(−1)n y−3

(1 + y−3z−2t−1x0)
n , y4n−2 =

(−1)n y−2 (−1 + x−3y−2z−1t0)
n

(−1 + 2x−3y−2z−1t0)
n ,

y4n−1 =
y−1

(−1 + t−3x−2y−1z0)
n , y4n = (−1)n y0 (1 + z−3t−2x−1y0)

n ,

z4n−3 =
z−3

(1 + z−3t−2x−1y0)
n , z4n−2 = z−2 (1 + y−3z−2t−1x0)

n ,

z4n−1 =
(−1)n z−1 (1− 2x−3y−2z−1t0)

n

(−1 + x−3y−2z−1t0)
n , z4n = (−1)n z0 (−1 + t−3x−2y−1z0)

n ,

t4n−3 =
t−3

(1 + t−3x−2y−1z0)
n , t4n−2 =

t−2 (1 + z−3t−2x−1y0)
n

(1 + 2z−3t−2x−1y0)
n ,

t4n−1 =
(−1)n t−1

(−1 + y−3z−2t−1x0)
n , t4n = (−1)n t0 (−1 + x−3y−2z−1t0)

n .

Proof. As the proof of Theorem 2.3.

Here for confirming the results of this section, we consider an interesting numerical examples of the systems
(2.1)–(2.2).

Example 2.5. We consider the system (2.1) with the initial conditions x−3 = 0.6, x−2 = 3, x−1 = 0.9,
x0 = 1.3, y−3 = 2, y−2 = 1.3, y−1 = −0.5, y0 = 0.1, z−3 = 1.1, z−2 = 0.6, z−1 = −0.7, z0 = 1.5,
t−3 = −2, t−2 = 0.9, t−1 = −3 and t0 = 0.8, see Figure 1.
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Figure 1: Sketch the behavior of the solution of system (2.1)

Example 2.6. See Figure 2 for an example for the system (2.2) with the initial values x−3 = 0.46, x−2 =
0.23, x−1 = 0.29, x0 = 1.16, y−3 = 0.2, y−2 = 1.3, y−1 = −0.5, y0 = 0.61, z−3 = 0.21, z−2 = 0.26, z−1 =
0.27, z0 = 1.85, t−3 = 0.2, t−2 = 0.09, t−1 = 0.28 and t0 = 0.58.
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Figure 2: Draw the behavior of the solution of system (2.2).

3. Systems have a periodic solutions:

In this section, we study the solutions and periodic nature of the solutions of the following system of
four nonlinear difference equations

xn+1 =
xn−3

−1− tnzn−1yn−2xn−3
, yn+1 =

yn−3

−1− xntn−1zn−2yn−3
,

zn+1 =
zn−3

−1− ynxn−1tn−2zn−3
, tn+1 =

tn−3

−1− znyn−1xn−2tn−3
, (3.1)

where n ∈ N0 and the initial conditions are arbitrary real numbers.

Theorem 3.1. Assume that x−3y−2z−1t0 6= −1, t−3x−2y−1z0 6= −1, z−3t−2x−1y0 6= −1, y−3z−2t−1x0 6= −1
and x−3y−2z−1t0 6= −2, t−3x−2y−1z0 6= −2, z−3t−2x−1y0 6= −2 and y−3z−2t−1x0 6= −2, then all solutions of
the system (3.1) are unbounded and given by the expressions

x4n−3 =
x−3

(−1− x−3y−2z−1t0)
n , x4n−2 = x−2 (−1− t−3x−2y−1z0)

n ,

x4n−1 =
x−1

(−1− z−3t−2x−1y0)
n , x4n = x0 (−1− y−3z−2t−1x0)

n ,

y4n−3 =
y−3

(−1− y−3z−2t−1x0)
n , y4n−2 = y−2 (−1− x−3y−2z−1t0)

n ,

y4n−1 =
y−1

(−1− t−3x−2y−1z0)
n , y4n = y0 (−1− z−3t−2x−1y0)

n ,

z4n−3 =
z−3

(−1− z−3t−2x−1y0)
n , z4n−2 = z−2 (−1− y−3z−2t−1x0)

n ,

z4n−1 =
z−1

(−1− x−3y−2z−1t0)
n , z4n = z0 (−1− t−3x−2y−1z0)

n ,

t4n−3 =
t−3

(−1− t−3x−2y−1z0)
n , t4n−2 = t−2 (−1− z−3t−2x−1y0)

n ,

t4n−1 =
t−1

(−1− y−3z−2t−1x0)
n , t4n = t0 (−1− x−3y−2z−1t0)

n .

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assumption holds for n−1, that is,

x4n−7 =
x−3

(−1− x−3y−2z−1t0)
n−1 , x4n−6 = x−2 (−1− t−3x−2y−1z0)

n−1 ,

x4n−5 =
x−1

(−1− z−3t−2x−1y0)
n−1 , x4n−4 = x0 (−1− y−3z−2t−1x0)

n−1 ,



M. M. El-Dessoky, J. Nonlinear Sci. Appl. 9 (2016), 3744–3759 3753

y4n−7 =
y−3

(−1− y−3z−2t−1x0)
n−1 , y4n−6 = y−2 (−1− x−3y−2z−1t0)

n−1 ,

y4n−5 =
y−1

(−1− t−3x−2y−1z0)
n−1 , y4n−4 = y0 (−1− z−3t−2x−1y0)

n−1 ,

z4n−7 =
z−3

(−1− z−3t−2x−1y0)
n−1 , z4n−6 = z−2 (−1− y−3z−2t−1x0)

n−1 ,

z4n−5 =
z−1

(−1− x−3y−2z−1t0)
n−1 , z4n−4 = z0 (−1− t−3x−2y−1z0)

n−1 ,

t4n−7 =
t−3

(−1− t−3x−2y−1z0)
n−1 , t4n−6 = t−2 (−1− z−3t−2x−1y0)

n−1 ,

t4n−5 =
t−1

(−1− y−3z−2t−1x0)
n−1 , t4n−4 = t0 (−1− x−3y−2z−1t0)

n−1 .

It follows that, from system (3.1), we have

x4n =
x4n−4

−1− t4n−1z4n−2y4n−3x4n−4

=
x0 (−1− y−3z−2t−1x0)

n−1[
−1− t−1z−2(−1−y−3z−2t−1x0)

n

(−1−y−3z−2t−1x0)
n

y−3x0(−1−y−3z−2t−1x0)
n−1

(−1−y−3z−2t−1x0)
n

]
=
x0 (−1− y−3z−2t−1x0)

n−1[
−1− y−3z−2t−1x0

−1−y−3z−2t−1x0

] =
x0 (−1− y−3z−2t−1x0)

n−1[
1

−1−y−3z−2t−1x0

] = x0 (−1− y−3z−2t−1x0)
n ,

y4n−3 =
y4n−7

−1− x4n−4t4n−5z4n−6y4n−7

=

y−3

(−1−y−3z−2t−1x0)
n−1[

−1− t−1x0(−1−y−3z−2t−1x0)
n−1

(−1−y−3z−2t−1x0)
n−1

y−3z−2(−1−y−3z−2t−1x0)
n−1

(−1−y−3z−2t−1x0)
n−1

]
=

y−3

(−1−y−3z−2t−1x0)
n−1

(−1− y−3z−2t−1x0)
=

y−3

(−1− y−3z−2t−1x0)
n ,

z4n−2 =
z4n−6

−1− y4n−3x4n−4t4n−5z4n−6

=
z−2 (−1− y−3z−2t−1x0)

n−1[
−1− y−3x0(−1−y−3z−2t−1x0)

n−1

(−1−y−3z−2t−1x0)
n

t−1z−2(−1−y−3z−2t−1x0)
n−1

(−1−y−3z−2t−1x0)
n−1

]
=
z−2 (−1− y−3z−2t−1x0)

n−1[
−1− y−3x0z−2t−1

−1−y−3z−2t−1x0

] =
z−2 (−1− y−3z−2t−1x0)

n−1[
1

−1−y−3z−2t−1x0

] = z−2 (−1− y−3z−2t−1x0)
n ,

t4n−1 =
t4n−5

−1− z4n−2y4n−3x4n−4t4n−5

=

t−1

(−1−y−3z−2t−1x0)
n−1[

−1− y−3z−2(−1−y−3z−2t−1x0)
n

(−1−y−3z−2t−1x0)
n

t−1x0(−1−y−3z−2t−1x0)
n−1

(−1−y−3z−2t−1x0)
n−1

]
=

t−1

(−1−y−3z−2t−1x0)
n−1

(−1− y−3z−2t−1x0)
=

t−1

(−1− y−3z−2t−1x0)
n .

Also, we can prove the other relations similarly. The proof is complete.

Theorem 3.2. If the sequences {xn, yn, zn, tn} are solutions of difference equation system (3.1) such
that x−3y−2z−1t0 = t−3x−2y−1z0 = z−3t−2x−1y0 = y−3z−2t−1x0 = −2, then all solutions of the system are
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periodic with period four and takes the form

x4n−3 =x−3, x4n−2 = x−2, x4n−1 = x−1, x4n = x0,

y4n−3 =y−3, y4n−2 = y−2, y4n−1 = y−1, y4n = y0,

z4n−3 =z−3, z4n−2 = z−2, z4n−1 = z−1, z4n = z0,

t4n−3 =t−3, t4n−2 = t−2, t4n−1 = t−1, t4n = t0

or

{xn} = {x−3, x−2, x−1, x0, x−3, x−2, ...} ,
{yn} = {y−3, y−2, y−1, y0, y−3, y−2, ...} ,
{zn} = {z−3, z−2, z−1, z0, z−3, z−2, ...} ,
{tn} = {t−3, t−2, t−1, t0, t−3, t−2, ...} .

Proof. The proof follows from the previous theorem and will be omitted.

Example 3.3. We put the initial conditions as follows x−3 = 0.6, x−2 = 3, x−1 = 0.9, x0 = 1.3, y−3 = 0.22,
y−2 = 1.3, y−1 = −0.5, y0 = 0.1, z−3 = 1.1, z−2 = 0.6, z−1 = 0.7, z0 = 1.5, t−3 = 0.02, t−2 = 0.09,
t−1 = −0.3 and t0 = 0.8 for the difference system (3.1), see Figure 3.
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Figure 3: Draw of the behavior of the solution of system (3.1).

Example 3.4. Figure 4 shows the periodicity behavior of the solution of the difference system (3.1) with
the initial conditions x−3 = 2, x−2 = −0.5, x−1 = 1, x0 = 4, y−3 = −5, y−2 = 10, y−1 = 2, y0 = 0.1, z−3 =
15, z−2 = 0.6, z−1 = −0.7, z0 = 1, t−3 = 2, t−2 = −4/3, t−1 = 1/6 and t0 = 1/7.
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Figure 4: Plot the periodicity of the solution of system (3.1).

The following theorems can be proved similarly.
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4. Other systems

In this section, we investigate the solutions of the following systems of the difference equations

xn+1 =
xn−3

1− tnzn−1yn−2xn−3
, yn+1 =

yn−3

1− xntn−1zn−2yn−3
,

zn+1 =
zn−3

1− ynxn−1tn−2zn−3
, tn+1 =

tn−3

1− znyn−1xn−2tn−3
. (4.1)

xn+1 =
xn−3

−1 + tnzn−1yn−2xn−3
, yn+1 =

yn−3

−1 + xntn−1zn−2yn−3
,

zn+1 =
zn−3

−1− ynxn−1tn−2zn−3
, tn+1 =

tn−3

−1− znyn−1xn−2tn−3
. (4.2)

xn+1 =
xn−3

1 + tnzn−1yn−2xn−3
, yn+1 =

yn−3

1− xntn−1zn−2yn−3
,

zn+1 =
zn−3

1 + ynxn−1tn−2zn−3
, tn+1 =

tn−3

1− znyn−1xn−2tn−3
. (4.3)

xn+1 =
xn−3

1− tnzn−1yn−2xn−3
, yn+1 =

yn−3

1 + xntn−1zn−2yn−3
,

zn+1 =
zn−3

1 + ynxn−1tn−2zn−3
, tn+1 =

tn−3

1− znyn−1xn−2tn−3
. (4.4)

xn+1 =
xn−3

−1 + tnzn−1yn−2xn−3
, yn+1 =

yn−3

−1 + xntn−1zn−2yn−3
,

zn+1 =
zn−3

1− ynxn−1tn−2zn−3
, tn+1 =

tn−3

1 + znyn−1xn−2tn−3
, (4.5)

where n ∈ N0 and the initial conditions are arbitrary real numbers.

Theorem 4.1. If {xn, yn, zn, tn} are solutions of difference equation system (4.1), then for n = 0, 1, 2, ...,

x4n−3 =x−3

n−1∏
i=0

(−1 + (4i)x−3y−2z−1t0)

(−1 + (4i+ 1)x−3y−2z−1t0)
, x4n−2 = x−2

n−1∏
i=0

(−1 + (4i+ 1)t−3x−2y−1z0)

(−1 + (4i+ 2)t−3x−2y−1z0)
,

x4n−1 =x−1

n−1∏
i=0

(−1 + (4i+ 2)z−3t−2x−1y0)

(−1 + (4i+ 3)z−3t−2x−1y0)
, x4n = x0

n−1∏
i=0

(−1 + (4i+ 3)y−3z−2t−1x0)

(−1 + (4i+ 4)y−3z−2t−1x0)
,

y4n−3 =y−3

n−1∏
i=0

(−1 + (4i)y−3z−2t−1x0)

(−1 + (4i+ 1)y−3z−2t−1x0)
, y4n−2 = y−2

n−1∏
i=0

(−1 + (4i+ 1)x−3y−2z−1t0)

(−1 + (4i+ 2)x−3y−2z−1t0)
,

y4n−1 =y−1

n−1∏
i=0

(−1 + (4i+ 2)t−3x−2y−1z0)

(−1 + (4i+ 3)t−3x−2y−1z0)
, y4n = y0

n−1∏
i=0

(−1 + (4i+ 3)z−3t−2x−1y0)

(−1 + (4i+ 4)z−3t−2x−1y0)
,

z4n−3 =z−3

n−1∏
i=0

(−1 + (4i)z−3t−2x−1y0)

(−1 + (4i+ 1)z−3t−2x−1y0)
, z4n−2 = z−2

n−1∏
i=0

(−1 + (4i+ 1)y−3z−2t−1x0)

(−1 + (4i+ 2)y−3z−2t−1x0)
,

z4n−1 =z−1

n−1∏
i=0

(−1 + (4i+ 2)x−3y−2z−1t0)

(−1 + (4i+ 3)x−3y−2z−1t0)
, z4n = z0

n−1∏
i=0

(−1 + (4i+ 3)t−3x−2y−1z0)

(−1 + (4i+ 4)t−3x−2y−1z0)
,

t4n−3 =t−3

n−1∏
i=0

(−1 + (4i)t−3x−2y−1z0)

(−1 + (4i+ 1)t−3x−2y−1z0)
, t4n−2 = t−2

n−1∏
i=0

(−1 + (4i+ 1)z−3t−2x−1y0)

(−1 + (4i+ 2)z−3t−2x−1y0)
,

t4n−1 =t−1

n−1∏
i=0

(−1 + (4i+ 2)y−3z−2t−1x0)

(−1 + (4i+ 3)y−3z−2t−1x0)
, t4n = t0

n−1∏
i=0

(−1 + (4i+ 3)x−3y−2z−1t0)

(−1 + (4i+ 4)x−3y−2z−1t0)
,

where
−1∏
i=0

Ai = 1.



M. M. El-Dessoky, J. Nonlinear Sci. Appl. 9 (2016), 3744–3759 3756

Lemma 4.2. If xi, yi, zi, ti for i = −3,−2,−1, 0 arbitrary real numbers and let {xn, yn, zn, tn} are solutions
of system (4.1), then the following conditions hold:

(i) If x−3 = 0, then we have x4n−3 = 0 and y4n−2 = y−2, z4n−1 = z−1, t4n = t0.
(ii) If x−2 = 0, then we have x4n−2 = 0 and y4n−1 = y−1, z4n = z0, t4n−3 = t−3.
(iii) If x−1 = 0, then we have x4n−1 = 0 and y4n = y0, z4n−3 = z−3, t4n−2 = t−2.
(iv) If x0 = 0, then we have x4n = 0 and y4n−3 = y−3, z4n−2 = z−2, t4n−1 = t−1.
(v) If y−3 = 0, then we have y4n−3 = 0 and x4n = x0, z4n−2 = z−2, t4n−1 = t−1 .
(vi) If y−2 = 0, then we have y4n−2 = 0 and x4n−3 = x−3, z4n−1 = z−1, t4n = t0.
(vii) If y−1 = 0, then we have y4n−1 = 0 and x4n−2 = x−2, z4n = z0, t4n−3 = t−3.
(viii) If y0 = 0, then we have y4n = 0 and x4n−1 = x−1, z4n−3 = z−3, t4n−2 = t−2.
(ix) If z−3 = 0, then we have z4n−3 = 0 and x4n−1 = x−1, y4n = y0, t4n−2 = t−2.
(x) If z−2 = 0, then we have z4n−2 = 0 and x4n = x0, y4n−3 = y−3, t4n−1 = t−1.
(xi) If z−1 = 0, then we have z4n−1 = 0 and x4n−3 = x−3, y4n−2 = y−2, t4n = t0.
(xii) If z0 = 0, then we have z4n = 0 and x4n−2 = x−2, y4n−1 = y−1, t4n−3 = t−3.
(xiii) If t−3 = 0, then we have t4n−3 = 0 and x4n−2 = x−2, y4n−1 = y−1, z4n = z0.
(xiv) If t−2 = 0, then we have t4n−2 = 0 and x4n−1 = x−1, y4n = y0, z4n−3 = z−3.
(xv) If t−1 = 0, then we have t4n−1 = 0 and x4n = x0, y4n−3 = y−3, z4n−2 = z−2.
(xvi) If t0 = 0, then we have t4n = 0 and x4n−3 = x−3, y4n−2 = y−2, z4n−1 = z−1.

Theorem 4.3. The form of the solutions of system (4.2) are given by the following formula:

x4n−3 =
x−3

(−1 + x−3y−2z−1t0)
n , x4n−2 =

(−1)nx−2 (1 + t−3x−2y−1z0)
n

(1 + 2t−3x−2y−1z0)
n ,

x4n−1 =
x−1

(−1 + z−3t−2x−1y0)
n , x4n = x0 (−1 + y−3z−2t−1x0)

n ,

y4n−3 =
y−3

(−1 + y−3z−2t−1x0)
n , y4n−2 = y−2 (−1 + x−3y−2z−1t0)

n ,

y4n−1 =
(−1)ny−1 (1 + 2t−3x−2y−1z0)

n

(1 + t−3x−2y−1z0)
n , y4n = y0 (−1 + z−3t−2x−1y0)

n ,

z4n−3 =
(−1)nz−3

(1 + z−3t−2x−1y0)
n , z4n−2 =

(−1)nz−2 (−1 + y−3z−2t−1x0)
n

(−1 + 2y−3z−2t−1x0)
n ,

z4n−1 =
(−1)nz−1

(1 + x−3y−2z−1t0)
n , z4n = (−1)nz0 (1 + t−3x−2y−1z0)

n ,

t4n−3 =
(−1)nt−3

(1 + t−3x−2y−1z0)
n , t4n−2 = (−1)nt−2 (−1 + z−3t−2x−1y0)

n ,

t4n−1 =
(−1)nt−1 (−1 + 2y−3z−2t−1x0)

n

(−1 + y−3z−2t−1x0)
n , t4n = (−1)nt0 (1 + x−3y−2z−1t0)

n ,

where x−3y−2z−1t0 6= ±1, z−3t−2x−1y0 6= ±1, t−3x−2y−1z0 6= −1, t−3x−2y−1z0 6= −1
2 , y−3z−2t−1x0 6= 1 and

y−3z−2t−1x0 6= 1
2 .

Theorem 4.4. Let {xn, yn, zn, tn} are solutions of difference equation system (4.3) with x−3y−2z−1t0 6= −1,
y−3z−2t−1x0 6= 1, t−3x−2y−1z0 6= 1 and z−3t−2x−1y0 6= −1, then for n = 0, 1, 2, ...,

x4n−3 =
x−3

(1 + x−3y−2z−1t0)
n , x4n−2 = (−1)nx−2 (−1 + t−3x−2y−1z0)

n ,

x4n−1 =
x−1

(1 + z−3t−2x−1y0)
n , x4n = (−1)nx0 (−1 + y−3z−2t−1x0)

n ,

y4n−3 =
(−1)ny−3

(−1 + y−3z−2t−1x0)
n , y4n−2 = y−2 (1 + x−3y−2z−1t0)

n ,



M. M. El-Dessoky, J. Nonlinear Sci. Appl. 9 (2016), 3744–3759 3757

y4n−1 =
(−1)ny−1

(−1 + t−3x−2y−1z0)
n , y4n = y0 (1 + z−3t−2x−1y0)

n ,

z4n−3 =
z−3

(1 + z−3t−2x−1y0)
n , z4n−2 = (−1)nz−2 (−1 + y−3z−2t−1x0)

n ,

z4n−1 =
z−1

(1 + x−3y−2z−1t0)
n , z4n = (−1)nz0 (−1 + t−3x−2y−1z0)

n ,

t4n−3 =
(−1)nt−3

(−1 + t−3x−2y−1z0)
n , t4n−2 = t−2 (1 + z−3t−2x−1y0)

n ,

t4n−1 =
(−1)nt−1

(−1 + y−3z−2t−1x0)
n , t4n = t0 (1 + x−3y−2z−1t0)

n .

Theorem 4.5. Suppose that the initial conditions of the system (4.4) are arbitrary real numbers satis-
fies x−3y−2z−1t0 6= ±1, y−3z−2t−1x0 6= −1, y−3z−2t−1x0 6= −1

2 , t−3x−2y−1z0 6= 1, t−3x−2y−1z0 6= 1
2 ,

z−3t−2x−1y0 6= ±1, and if {xn, yn, zn, tn} are solutions of system (4.4), then for n = 0, 1, 2, ...,

x4n−3 =
(−1)nx−3

(−1 + x−3y−2z−1t0)
n , x4n−2 =

x−2 (−1 + t−3x−2y−1z0)
n

(−1 + 2t−3x−2y−1z0)
n ,

x4n−1 =
(−1)nx−1

(−1 + z−3t−2x−1y0)
n , x4n = x0 (1 + y−3z−2t−1x0)

n ,

y4n−3 =
y−3

(1 + y−3z−2t−1x0)
n , y4n−2 = (−1)ny−2 (−1 + x−3y−2z−1t0)

n ,

y4n−1 =
y−1 (−1 + 2t−3x−2y−1z0)

n

(−1 + t−3x−2y−1z0)
n , y4n = (−1)ny0 (−1 + z−3t−2x−1y0)

n ,

z4n−3 =
z−3

(1 + z−3t−2x−1y0)
n , z4n−2 =

z−2 (1 + y−3z−2t−1x0)
n

(1 + 2y−3z−2t−1x0)
n ,

z4n−1 =
z−1

(1 + x−3y−2z−1t0)
n , z4n = (−1)nz0 (−1 + t−3x−2y−1z0)

n ,

t4n−3 =
(−1)nt−3

(−1 + t−3x−2y−1z0)
n , t4n−2 = t−2 (1 + z−3t−2x−1y0)

n ,

t4n−1 =
t−1 (1 + 2y−3z−2t−1x0)

n

(1 + y−3z−2t−1x0)
n , t4n = t0 (1 + x−3y−2z−1t0)

n .

Theorem 4.6. Assume that {xn, yn, zn, tn} are solutions of the system (4.5), with x−3y−2z−1t0 6= 1,
z−3t−2x−1y0 6= 1, y−3z−2t−1x0 6= 1, t−3x−2y−1z0 6= −1, x−3y−2z−1t0 6= 2, z−3t−2x−1y0 6= 2, y−3z−2t−1x0 6=
2 and t−3x−2y−1z0 6= −2, then for n = 0, 1, 2, ...

x4n−3 =
x−3

(−1 + x−3y−2z−1t0)
n , x4n−2 = x−2 (−1− t−3x−2y−1z0)

n ,

x4n−1 =
x−1

(−1 + z−3t−2x−1y0)
n , x4n = x0 (−1 + y−3z−2t−1x0)

n ,

y4n−3 =
y−3

(−1 + y−3z−2t−1x0)
n , y4n−2 = y−2 (−1 + x−3y−2z−1t0)

n ,

y4n−1 =
y−1

(−1− t−3x−2y−1z0)
n , y4n = y0 (−1 + z−3t−2x−1y0)

n ,

z4n−3 =
z−3

(1− z−3t−2x−1y0)
n , z4n−2 = z−2 (1− y−3z−2t−1x0)

n ,

z4n−1 =
z−1

(1− x−3y−2z−1t0)
n , z4n = z0 (1 + t−3x−2y−1z0)

n ,

t4n−3 =
t−3

(1 + t−3x−2y−1z0)
n , t4n−2 = t−2 (1− z−3t−2x−1y0)

n ,

t4n−1 =
t−1

(1− y−3z−2t−1x0)
n , t4n = t0 (1− x−3y−2z−1t0)

n .
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Theorem 4.7. If the sequences {xn, yn, zn, tn} are solutions of difference equation system (4.5) such that
x−3y−2z−1t0 = z−3t−2x−1y0 = y−3z−2t−1x0 = 2, t−3x−2y−1z0 = −2, then {xn, yn} are periodic with period
four and {zn, tn} are periodic with period eight and take the form

x4n−3 =x−3, x4n−2 = x−2, x4n−1 = x−1, x4n = x0,

y4n−3 =y−3, y4n−2 = y−2, y4n−1 = y−1, y4n = y0,

z4n−3 = (−1)n z−3, z4n−2 = (−1)n z−2, z4n−1 = (−1)n z−1, z4n = (−1)n z0,

t4n−3 = (−1)n t−3, t4n−2 = (−1)n t−2, t4n−1 = (−1)n t−1, t4n = (−1)n t0.

Example 4.8. Figure 5 shows the periodicity behavior of the solution of the difference system (4.5) with
the initial conditions x−3 = 2, x−2 = −0.5, x−1 = 1, x0 = 4, y−3 = −5, y−2 = 3, y−1 = −2, y0 = 0.1, z−3 =
5, z−2 = 0.6, z−1 = −0.1, z0 = 1, t−3 = −2, t−2 = 4, t−1 = −1/6 and t0 = −10/3.
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Figure 5: Plot the periodicity of the solution of system (4.5).
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