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Abstract

The aim of this paper is to present fuzzy optimal coincidence point results of fuzzy proximal quasi
contraction and generalized fuzzy proximal quasi contraction of type− 1 in the framework of complete non-
Archimedean fuzzy metric space. Some examples are presented to support the results which are obtained
here. These results also hold in fuzzy metric spaces when some mild assumption is added to the set in
the domain of mappings which are involved here. Our results unify, extend and generalize various existing
results in literature. c©2016 All rights reserved.
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1. Introduction and preliminaries

Let (X, d) be a metric space, (A,B) a pair of nonempty subsets of X and T : A→ B. An exact solution
of the problem d(x, Tx) = 0 gives a fixed point of a mapping T . If there is no such x in A which solves
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d(x, Tx) = 0, then it is desirable to solve the following optimization problem:

inf
x∈A

d(x, Tx).

The solution x ∈ A of the above problem is called approximate fixed point of T or approximate solution
of an equation Tx = x. It is a matter of great interest to study the conditions that assure the existence and
uniqueness of an approximate fixed point of the mapping T . Existence of best approximation in Hausdorff
locally convex topological vector has been studied by K. Fan [8]. He proved the following best approximation
result.

Theorem 1.1. Let X be a nonempty compact convex set in a Hausdorff locally convex topological vector space
E and T : X → E be a continuous mapping. Then there exists a fixed point x in X, or there exists a point
x0 ∈ X and a continuous semi-norm p on E satisfying the inequality miny∈X p(y−Ty) = p(x0−T (x0)) > 0.

The value d(A,B) := inf{d(x, y) : x ∈ A and y ∈ B} where A ∩ B = φ, defines the distance between
two nonempty sets A and B. Note that d(A,B) = 0, if A ∩ B 6= φ. An element x∗ in A is called a best
proximity point of T if d(x∗, Tx∗) = d(A,B). Clearly, if A = B, then best proximity point of T reduces to
fixed point of T. Best proximity point theory deals with the study of conditions on mappings and underlying
domain which guarantee the existence and uniqueness of the best proximity points. This generalizes the
fixed point theorems in a natural way. Furthermore, results dealing with existence and uniqueness of the
best proximity point of certain mapping are more general than the ones dealing with fixed point problem
of those mappings. For more results in this direction, we refer to [5, 6, 15, 27] and reference mentioned in.

Fuzzy set theory has been evolved in mathematics as an important tool (initiated by Zadeh [30]) to
resolve the issues of uncertainty and ambiguity. Kramosil and Michalek [16] introduced a notion of fuzzy
metric space by using continuous t-norms, which generalizes the concept of probabilistic metric space to
fuzzy situation. Moreover George and Veeramani ([9, 10]) modified the concept of a fuzzy metric space
introduced by Kramosil and Michalek [16]. They obtained a Hausdorff topology for this kind of fuzzy metric
space which has applications in quantum particle physics, particularly in connection with both string and ε∞

theory (see, [7] and references mentioned therein). Recently, fuzzy metrics have been applied to improve the
color image filtering, some filters were improved when replaced some classical metrics with fuzzy metrics [18–
20]. Mihet ([17]) proved a “fuzzy Banach contraction result for complete Non-Archimedean fuzzy metric
spaces” ([17]) and modified the concept of fuzzy contractive mappings of Gregori and Sapena [12]. For
interesting results and applications of non-Archimedean fuzzy metric space, we refer to ([1–3, 21–25, 28]).

Recently, Vetro and Salimi [29] studied best proximity point results in the setup of non-Archimedean
fuzzy metric spaces.

In this paper, we study the class of proximal quasi-contraction mappings and the concept of proximal
orbital completeness in the framework of non-Archimedean fuzzy metric spaces. We also obtain optimal
coincidence point results of fuzzy proximal quasi contraction and generalized fuzzy proximal quasi contrac-
tion of type − 1 in the setup of complete non-Archimedean fuzzy metric space. Our results extend and
strengthen various results in [4] and [14].

Consistent with [1, 10, 11, 22, 26, 28], the following definitions and results will be needed in the sequel.

Definition 1.2 ([26]). A binary operation ∗ : [0, 1]2 −→ [0, 1] is called a continuous t− norm if

(1) ∗ is associative, commutative and continuous;

(2) a ∗ 1 = a for all a ∈ [0, 1];

(3) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d.

Typical examples of continuous t− norm are ∧, · and ∗L, where, for all a, b ∈ [0, 1], a ∧ b = min{a, b},
a · b = ab, and ∗L is the Lukasiewicz t− norm defined by a ∗L b = max{a+ b− 1, 0}.

Note that ∗L ≤ · ≤ ∧. In fact ∗ ≤ ∧ for all continuous t− norm “∗”.
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Definition 1.3 (compare [10]). Let X be a nonempty set, and ∗ be a continuous t− norm. A fuzzy set
M on X ×X × [0,+∞) is said to be a fuzzy metric if for any x, y, z ∈ X, the following conditions hold:

(i) M(x, y, t) > 0,

(ii) x = y if and only if M(x, y, t) = 1 for all t > 0,

(iii) M(x, y, t) = M(y, x, t),

(iv) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s) for all t, s > 0,

(v) M(x, y, ·) : [0,∞)→ [0, 1] is left continuous.

The triplet (X,M, ∗) is called a fuzzy metric space.
Since M is a fuzzy set on X ×X × [0,∞), the value M(x, y, t) is regarded as the degree of closeness of

x and y with respect to t. It is well known that for each x, y ∈ X, M(x, y, ·) is a nondecreasing function on
(0,∞) ([11]).

If we replace (iv) with the following condition

(vi) M(x, z,max{t, s}) ≥M(x, y, t) ∗M(y, z, s) for all t, s > 0.

Then (X,M, ∗) is said to be a non-Archimedean fuzzy metric space.
As (vi) which implies (iv), every non-Archimedean fuzzy metric space is a fuzzy metric space. Also, if

we take s = t in (vi), then we have M(x, z, t) ≥ M(x, y, t) ∗M(y, z, t) for all t > 0. In this case, M is said
to be strong fuzzy metric on X.

Fuzzy metric M on X generates Hausdorff topology τM whose base is the family of open M− balls
{BM (x, ε, t) : x ∈ X, ε ∈ (0, 1), t > 0}, where BM (x, ε, t) = {y ∈ X : M(x, y, t) > 1− ε}.

Note that a sequence {xn} in a fuzzy metric space X converges to x ∈ X ( with respect to τM ) if and
only if lim

n→∞
M(xn, x, t) = 1 for all t > 0. A sequence {xn} in a fuzzy metric space X is said to be a Cauchy

sequence if for each t > 0 and ε ∈ (0, 1), there exists n0 ∈ N such that M(xn, xm, t) > 1−ε for all n,m ≥ n0.
A fuzzy metric space X is complete ([10]) if every Cauchy sequence converges in X. A subset A of X is
closed if for each convergent sequence {xn} in A with xn −→ x, we have x ∈ A. A subset A of X is compact
if each sequence in A has a convergent subsequence.

Let (X, d) be a metric space. Define Md : X ×X × [0,∞)→ [0, 1] by

Md(x, y, t) =
t

t+ d(x, y)
.

Then (X,Md, ·) is a fuzzy metric space, called the standard fuzzy metric space induced by a metric d ([9]).
The topologies τMd

and τd (the topology induced by the metric d) on X are the same. Note that if d is a
metric on a set X, then the fuzzy metric space (X,Md, ∗) is strong for every continuous t− norm “∗” such
that for all ∗ ≤ ·, where Md is the standard fuzzy metric ([13]).

Note that (X,Md, ·) is non-Archimedean fuzzy metric space, where Md is standard fuzzy metric induced
by d.

Lemma 1.4 ([11]). M is a continuous function on X2 × (0,∞).

Definition 1.5 ([28]). Let A and B be two nonempty subsets of a fuzzy metric space (X,M, ∗). For any
t > 0, define A0(t) and B0(t) by

A0(t) ={x ∈ A : M(x, y, t) = M(A,B, t) for some y ∈ B},
B0(t) ={y ∈ B : M(x, y, t) = M(A,B, t) for some x ∈ A}.

The distance of a point x ∈ X from A is defined as

M(x,A, t) = sup
a∈A

M(x, a, t), for t > 0.

The separation between set A and set B is defined as
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M(A,B, t) = sup{M(a, b, t) : a ∈ A, b ∈ B}, for t > 0.

Let Ψ be the set of all mappings ψ : [0, 1]→ [0, 1] satisfying the following properties:

(i) ψ is continuous on (0, 1), also ψ(t) > t and ψ(1) = 1.

(ii) lim
n→∞

ψn(t) = 1 if and only if t = 1.

Definition 1.6 ([14]). Let A and B be two nonempty subsets of a metric space (X, d). A mapping
T : A −→ B is said to be a proximal quasi-contraction if for any u, v, x, y ∈ A, there exists a number
q ∈ [0, 1) such that the following condition hold:

d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

}
implies that d(u, v) ≤ qmax{d(x, y), d(x, u), d(y, v), d(x, v), d(u, y)}.

Lemma 1.7 ([14]). Let A and B be nonempty subsets of a metric space (X, d) and T : A→ B. If

(i) A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B} 6= φ;

(ii) T (A0) ⊆ B0 = {x ∈ B : d(x, y) = d(A,B) for some x ∈ B}. Then, for all a ∈ A0, there exists a
sequence {xn} ⊂ A0 such that x0 = a, and d(xn+1, Txn) = d(A,B) for all n ∈ N.

Let A and B be nonempty subsets of a metric space (X, d), a ∈ X and T : A → B. Any sequence
{xn} ⊂ A0 satisfying the following conditions:

x0 = a and d(xn+1, Txn) = d(A,B) for all n ∈ N,

is called proximal Picard sequence starting from a ∈ A0. The set of all such sequences is denoted by PP (a).

Definition 1.8 ([14]). The set A0 is proximal T−orbitally complete if and only if every Cauchy sequence
{xn} ∈ PP (x0) for some x0 ∈ A0 converges to an element in the set A0.

Lemma 1.9 ([14]). Let A and B be two nonempty subsets of a metric space (X, d) and T : A→ B. If

(i) A0 6= φ;

(ii) A0 is proximal T−orbitally complete;

(iii) T (A0) ⊆ B0;

(iv) T is proximal quasi-contraction.

Then T has a unique best proximity point x∗ in A0. Moreover, for any x0 ∈ A0, any sequence {xn} ∈ PP (x0)
converges to x∗.

2. Completeness result

In this section, we present some important definitions and preparatory lemmas.

Definition 2.1 ([1, 22]). Let A be a nonempty subset of a non-Archimedean fuzzy metric space (X,M, ∗).
A self mapping f on A is said to be (a) fuzzy isometry if for any x, y ∈ A and t > 0, we have M(fx, fy, t) =
M(x, y, t) (b) fuzzy expansive if for any x, y ∈ A and t > 0, M(fx, fy, t) ≤M(x, y, t) holds.

Example 2.2. Let X = [0, 1] × R, d : X ×X → R a usual metric on X and A = {(0, x) : x ∈ R}. Define

a mapping f : A → A by f(0, x) = (0,−x). Note that Md(w, u, t) =
t

t+ |x− y|
= M(fw, fu, t), where

w = (0, x), u = (0, y) ∈ A. Thus, f is a fuzzy isometry.
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Note that every fuzzy isometry is fuzzy expansive but converse does not hold in general.

Example 2.3. Let X = [0, 4] × R, d : X × X → R a usual metric on X and A = {(0, x) : x ∈ R}.
Define a mapping f : A → A by f(0, x) = 5(0, x). If x = (0, 0) and y = (0, 4), then Md(x, y, t) = t

t+4 and

Md(fx, fy, t) = t
t+20 . This shows that f is fuzzy expansive but not a fuzzy isometry.

From now onwards, we assume that A,B are nonempty closed subsets of the complete non-Archimedean
fuzzy metric space (X,M, ∗) and T : A −→ B.

Definition 2.4 ([1, 22]). A set B is said to be fuzzy approximatively compact with respect to A if for
every sequence {yn} in B and for some x ∈ A, M(x, yn, t) −→M(x,B, t) implies that x ∈ A0(t).

Definition 2.5 ([1, 22]). A point x in A is said to be optimal coincidence point of a pair of mappings
(g, T ), where T : A −→ B and g : A −→ A if M(gx, Tx, t) = M(A,B, t) hold for any t > 0.

Definition 2.6 ([1, 22]). A mapping T : A −→ B is said to be a fuzzy proximal quasi-contraction
(a) of first kind if for any u, v, x and y in A, satisfying

M(u, Tx, t) = M(A,B, t)
M(v, Ty, t) = M(A,B, t)

}
implies that M(u, v, t) ≥ ψ(min{M(x, y, t),M(x, u, t),M(y, v, t)});

(b) of second kind if for any u, v, x and y in A, we have

M(u, Tx, t) = M(A,B, t)
M(v, Ty, t) = M(A,B, t)

}
implies that M(Tu, Tv, t)≥ψ(min{M(Tx, Ty, t),M(Tx, Tu, t),M(Ty, Tv, t)}).

Note that, if T is a self mapping then every fuzzy proximal quasi-contraction of second kind will become
a fuzzy proximal quasi-contraction of first kind.

Definition 2.7. Let T : A −→ B and g : A −→ A. The pair (g, T ) is said to be a generalized fuzzy proximal
quasi-contraction of type− 1, if for any u, v, x and y in A, we have

M(gu, Tx, t) = M(A,B, t)
M(gv, Ty, t) = M(A,B, t)

}
=⇒M(gu, gv, t) ≥ ψ(min{M(x, y, t),M(x, u, t),M(y, v, t)}).

Note that if g = IA (identity mapping on A), then every fuzzy proximal quasi-contraction of type−1 becomes
a fuzzy proximal quasi-contraction of first kind.

We start with the following result.

Lemma 2.8. If for any t > 0,

(i) A0(t) 6= ∅;

(ii) T (A0(t)) ⊆ B0(t).

Then, for a ∈ A0(t), there exists a sequence {xn} ⊂ A0(t) such that

x0 = a,
M(xn+1, Txn, t) = M(A,B, t), for all n ∈ N

}
. (2.1)

Proof. As x0 = a ∈ A0(t) and T (A0(t)) ⊆ B0(t), there exists x1 ∈ A0(t) such that M(x1, Tx0, t) =
M(A,B, t). Also Tx1 ∈ T (A0(t)) ⊆ B0(t), there exists x2 ∈ A0(t), such that M(x2, Tx1, t) = M(A,B, t).
Continuing this way, we obtain a sequence {xn} ⊂ A0(t) and it satisfies the condition (2.1).

Definition 2.9. A sequence {xn} ⊂ A0(t) satisfying the condition (2.1) is called proximal fuzzy Picard
sequence starting with a ∈ A0(t).



Z. Raza, N. Saleem, M. Abbas, J. Nonlinear Sci. Appl. 9 (2016), 3787–3801 3792

For a ∈ A0(t), we denote the set of all proximal fuzzy Picard sequences starting with a by PFP (a).

Definition 2.10. A set A0(t) is fuzzy proximal T−orbitally complete if and only if every Cauchy sequence
{xn} ∈ PFP (x0) for some x0 ∈ A0(t), converges to an element of A0(t).

We also need the following lemma in the sequel.

Lemma 2.11. Suppose that the following conditions hold:

(i) A0(t) 6= ∅ for any t > 0;

(ii) B is fuzzy approximatively compact with respect to A.

Then the set A0(t) is closed.

Proof. Let {xn} be a sequence in A0(t) such that limn→∞M(xn, x
∗, t) = 1 for some x∗ ∈ A. Consequently,

we obtain a sequence {yn} ∈ B such that M(xn, yn, t) = M(A,B, t), for all n ∈ N. Note that

M(x∗, B, t) ≥M(x∗, yn, t)

≥M(x∗, xn, t) ∗M(xn, yn, t)

≥M(x∗, xn, t) ∗M(A,B, t)

≥M(x∗, xn, t) ∗M(x∗, B, t),

which implies
M(x∗, B, t) ≥M(x∗, yn, t) ≥M(x∗, xn, t) ∗M(x∗, B, t)

for all n ∈ N. Taking limits n→∞ on both sides of the above inequality, we have

M(x∗, B, t) ≥ lim
n→∞

M(x∗, yn, t) ≥ 1 ∗M(x∗, B, t) = M(x∗, B, t).

Therefore
lim
n→∞

M(x∗, yn, t) = M(x∗, B, t).

As B is fuzzy approximatively compact with respect to A, so x∗ ∈ A0(t). Which shows that A0(t) is
closed.

Lemma 2.12. Let T : A → B be fuzzy proximal quasi contraction of second kind with A0(t) 6= ∅ for any
t > 0 and T (A0(t)) ⊆ B0(t). Then A0(t) is fuzzy proximal T−orbitally complete.

Proof. Let x0 ∈ A0(t) and {xn} ∈ PFP (x0) be a Cauchy sequence. As (X,M, ∗) is complete and A is
closed, there exists some x∗ in A such that limn→∞M(xn, x

∗, t) = 1. Note that

M(xn, Txn−1, t) = M(A,B, t) and M(xn+1, Txn, t) = M(A,B, t) (2.2)

for all n ∈ N. Since T is a fuzzy proximal quasi contraction of second kind, we have

M(Txn, Txn+1, t) ≥ ψ(min{M(Txn−1, Txn, t),M(Txn−1, Txn, t),M(Txn, Txn+1, t)}).

Thus
M(Txn, Txn+1, t) ≥ ψ(min{M(Txn−1, Txn, t),M(Txn, Txn+1, t)}), for all n ∈ N. (2.3)

If
min{M(Txn−1, Txn, t),M(Txn, Txn+1, t)} = M(Txn, Txn+1, t) ≤M(Txn−1, Txn, t). (2.4)

Then
M(Txn, Txn+1, t) ≥ ψ(M(Txn, Txn+1, t)) > M(Txn, Txn+1, t),



Z. Raza, N. Saleem, M. Abbas, J. Nonlinear Sci. Appl. 9 (2016), 3787–3801 3793

gives a contradiction. Hence

min{M(Txn−1, Txn, t),M(Txn, Txn+1, t)} = M(Txn−1, Txn, t) ≤M(Txn, Txn+1, t)

gives that
M(Txn, Txn+1, t) ≥ ψ(M(Txn−1, Txn, t)). (2.5)

If we set M(Txn, Txn+1, t) = τn(t) for all t > 0, n ∈ N ∪ {0}. Then the above inequality becomes

τn(t) ≥ ψ(τn−1(t)) > τn−1(t).

Consequently, {τn(t)} is a non-decreasing sequence for all t > 0 and there exists 0 < τ(t) ≤ 1 such that
limn→∞ τn(t) = τ(t). We now claim that τ(t) = 1. If not, there exist some t0 > 0 such that 0 < τ(t0) < 1.
Taking limits as n→∞ on both sides of the above inequality, we have

τ(t0) ≥ ψ(τ(t0)) > τ(t0),

a contradiction. Hence τ(t) = 1. Now we have to show that {Txn} is a Cauchy sequence. If not, then there
exist ε ∈ (0, 1) and t0 > 0, mk, nk ∈ N with mk > nk ≥ k for all k ∈ N such that

M(Txmk
, Txnk

, t0) ≤ 1− ε.

Assume that mk is the least integer exceeding nk for which the above inequality holds. Then

M(Txmk−1, Txnk
, t0) > 1− ε.

Thus for all k ∈ N, we have

1− ε ≥M(Txmk
, Txnk

, t0),

≥M(Txmk
, Txmk−1, t0) ∗M(Txmk−1, Txnk

, t0),

>τmk
(t0) ∗ (1− ε).

Taking limits as k →∞ on both sides of the above inequality, we obtain that lim
k→∞

M(Txmk
, Txnk

, t0) = 1−ε.
Note that

M(Txmk+1, Txnk+1, t0) ≥M(Txmk+1, Txmk
, t0) ∗M(Txmk

, Txnk
, t0) ∗M(Txnk

, Txnk+1, t0),

and

M(Txmk
, Txnk

, t0) ≥M(Txmk
, Txmk+1, t0) ∗M(Txmk+1, Txnk+1, t0) ∗M(Txnk+1, Txnk

, t0).

Taking limits as k →∞ on both sides of the above inequalities, we have

lim
k→∞

M(Txmk+1, Txnk+1, t0) = 1− ε.

From (2.2), we obtain that

M(xmk+1, Txmk
, t0) = M(A,B, t0) and M(xnk+1, Txnk

, t0) = M(A,B, t0).

Since T is fuzzy proximal quasi contraction of second kind, we have

M(Txmk+1, Txnk+1, t0) ≥ ψ(min{M(Txmk
, Txnk

, t0),M(Txmk
, Txmk+1, t0),M(Txnk

, Txnk+1, t0)),

which on taking limit as k →∞ gives 1− ε ≥ ψ(1− ε) > 1− ε, a contradiction. Hence {Txn} is a Cauchy
sequence. Since (X,M, ∗) is complete and B is closed, there exists y in B such that

lim
n→∞

M(Txn, y, t) = 1. (2.6)

Consequently,
M(A,B, t) = lim

n→∞
M(xn+1, Txn, t) = M(x∗, y, t),

implies that x∗ ∈ A0(t).
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3. Best proximity point of fuzzy proximal quasi-contraction mappings of second kind

Theorem 3.1. Let T : A → B be a fuzzy proximal quasi-contraction of second kind with A0(t) 6= φ for
any t > 0 and T (A0(t)) ⊆ B0(t). Then T has a unique best proximity point x∗ in A0(t) provided that T is
one-to-one on A0(t).

Proof. Let x0 ∈ A0(t). From Lemma 2.8, the set PFP (x0) is nonempty and {xn} ∈ PFP (x0) is a Cauchy
sequence in A0(t). Since (X,M, ∗) is complete, it follows from Lemma 2.12 that A0(t) is fuzzy proximal
T−orbitally complete. Following arguments similar to those in the proof of Lemma 2.12, we obtain that
{Txn} ∈ B0(t) is a Cauchy sequence. As B is a closed subset of a complete non-Archimedean fuzzy metric
space, there exists some y ∈ B such that lim

n→∞
M(Txn, y, t) = 1. Since A0(t) is fuzzy proximal T−orbitally

complete, there exists u in A0(t) such that the following holds:

M(u, Txn, t) = M(A,B, t) = M(xn+1, Txn, t), for all n ∈ N.

Note that

M(Tu, Txn+1, t) ≥ ψ(min{M(Txn, Txn, t),M(Txn, Tu, t),M(Txn, Txn+1, t)}).

Taking limit as n→∞ on both sides of the above inequality, have

M(Tu, y, t) ≥ ψ(min{1,M(y, Tu, t), 1}) = ψ(M(y, Tu, t)),

which implies that Tu = y = lim
n→∞

Txn, and hence u = x∗. ThusM(x∗, Tx∗, t) = M(A,B, t) = M(x∗, Tx∗, t),

that is, x∗ is the best proximity point of T. To show the uniqueness of the best proximity point, suppose to
the contrary that there exists another point y∗ in A0(t) such that M(y∗, T y∗, t) = M(A,B, t). Note that,

M(Tx∗, Ty∗, t) ≥ ψ(min{M(Tx∗, T y∗, t),M(Tx∗, Tx∗, t),M(Ty∗, T y∗, t)}),

which further implies that

M(Tx∗, Ty∗, t) ≥ ψ(M(Tx∗, Ty∗, t)) > M(Tx∗, T y∗, t),

a contradiction.

Corollary 3.2. Let T : A→ B with A0(t) 6= φ, and T (A0(t)) ⊆ B0(t) for any t > 0. If

M(u, Tx, t) = M(A,B, t)
M(v, Ty, t) = M(A,B, t)

}
implies that M(Tu, Tv, t) ≥ ψ[M(Tx, Ty, t)].

Then T has a unique best proximity point x∗ in A0(t) provided that A0(t) is fuzzy proximal T−orbitally
complete and T is one to one on A0(t).

Proof. Note that,

M(Tx, Ty, t) = min{M(Tx, Ty, t),M(Tx, Tu, t),M(Ty, Tv, t)}.

The mapping T satisfies all the condition of Theorem 3.1. Thus, the result follows.

Example 3.3. Let X = [0, 1] × R, A = {(0, x) : 0 ≤ x ≤ 1, x ∈ R} and B = {(1, y) : 0 ≤ y ≤ 1, y ∈ R}.
Note that

Md(A,B, t) =
t

t+ 1
, A0(t) = A and B0(t) = B.

Define T : A→ B by T (0, α) = (1, α4 ). Obviously, T (A0(t)) ⊆ B0(t). If u = (0, α), v = (0, β), x = (0, γ) and
y = (0, δ) ∈ A satisfy

M(u, Tx, t) = M(A,B, t), and M(v, Ty, t) = M(A,B, t),

then α =
γ

4
, and β =

δ

4
. It is straightforward to check that
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M(Tu, Tv, t) ≥ ψ(M(Tx, Ty, t))

holds, where ψ(t) =
√
t. Hence T satisfies all the conditions of Corollary 3.2. Moreover (0, 0) is a best

proximity point of T .

4. Optimal coincidence point of fuzzy proximal quasi contraction mappings

Theorem 4.1. Let g : A → A be a fuzzy expansive mapping and T : A → B with A0(t) 6= φ, T (A0(t)) ⊆
B0(t) and A0(t) ⊆ g(A0(t)) for any t > 0. If B is fuzzy approximatively compact with respect to A and the
pair (g, T ) is generalized fuzzy proximal quasi-contraction of type − 1. Then the pair (g, T ) has a unique
optimal coincidence point x∗ in A0(t).

Proof. By Lemma 2.8, PFP (x0) is nonempty. Let x0 be a given point in A0(t). As T (A0(t)) ⊆ B0(t)
and A0(t) ⊆ g(A0(t)), we can choose an element x1 ∈ A0(t) such that M(gx1, Tx0, t) = M(A,B, t). Also,
Tx1 ∈ T (A0(t)) ⊆ B0(t), and A0(t) ⊆ g(A0(t)), it follows that there exists an element x2 ∈ A0(t) such
that M(gx2, Tx1, t) = M(A,B, t). Continuing this way, we can obtain a sequence {xn} in A0(t) such that
it satisfies

M(gxn, Txn−1, t) = M(A,B, t) and M(gxn+1, Txn, t) = M(A,B, t). (4.1)

Note that
M(gxn, gxn+1, t) ≥ ψ(min{M(xn−1, xn, t),M(xn−1, xn, t),M(xn, xn+1, t)}).

Thus, we have

M(gxn, gxn+1, t) ≥ ψ(min{M(xn−1, xn, t),M(xn, xn+1, t)}), for all n ∈ N. (4.2)

Suppose that

min{M(xn−1, xn, t),M(xn, xn+1, t)} = M(xn, xn+1, t) ≤M(xn−1, xn, t). (4.3)

Since g is fuzzy expansive mapping, then by (4.2), we have

M(xn, xn+1, t) ≥M(gxn, gxn+1, t) ≥ ψ(M(xn, xn+1, t)) > M(xn, xn+1, t),

a contradiction and hence M(xn, xn+1, t) ≥ ψ(M(xn−1, xn, t)). If we set M(xn, xn+1, t) = τn(t) for all t > 0,
n ∈ N ∪ {0}, then we have

τn(t) ≥ ψ(τn−1(t)) > τn−1(t). (4.4)

Thus {τn(t)} is an increasing sequence for all t > 0. Consequently, there exists τ(t) ≤ 1 such that
lim

n→+∞
τn(t) = τ(t). We now claim that τ(t) = 1. If not, there exist some t0 > 0 such that τ(t0) < 1.

Taking limits as n→∞ on both sides of (4.4), we have

τ(t0) ≥ ψ(τ(t0)) > τ(t0),

a contradiction and hence τ(t) = 1. We now show that {xn} is a Cauchy sequence. Suppose on the contrary
that {xn} is not a Cauchy sequence, then there exist ε ∈ (0, 1) and t0 > 0 , mk, nk ∈ N, with mk > nk ≥ k
for all k ∈ N such that

M(xmk
, xnk

, t0) ≤ 1− ε.

Assume that mk is the least integer exceeding nk for which the above inequality holds, then we have

M(xmk−1, xnk
, t0) > 1− ε.

Note that

1− ε ≥M(xmk
, xnk

, t0),
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≥M(xmk
, xmk−1, t0) ∗M(xmk−1, xnk

, t0),

> τmk
(t0) ∗ (1− ε).

Taking limits as k →∞ on both sides of the above inequality, we obtain that lim
k→∞

M(xmk
, xnk

, t0) = 1− ε.
Now

M(xmk+1, xnk+1, t0) ≥M(xmk+1, xmk
, t0) ∗M(xmk

, xnk
, t0) ∗M(xnk

, xnk+1, t0),

and
M(xmk

, xnk
, t0) ≥M(xmk

, xmk+1, t0) ∗M(xmk+1, xnk+1, t0) ∗M(xnk+1, xnk
, t0),

imply that
lim
k→∞

M(xmk+1, xnk+1, t0) = 1− ε.

From (4.1), we have

M(gxmk+1, Txmk
, t0) = M(A,B, t0) and M(gxnk+1, Txnk

, t0) = M(A,B, t0).

Thus, we obtain that

M(xmk+1, xnk+1, t0) ≥M(gxmk+1, gxnk+1, t0)

≥ ψ(min{M(xmk
, xnk

, t0),M(xmk
, xmk+1, t0),M(xnk

, xnk+1, t0)}).

Taking limits as k →∞ on both sides of the above inequality, we get 1−ε ≥ ψ(1−ε) > 1−ε, a contradiction.
Hence {xn} is a Cauchy sequence. Since A0(t) is closed (Lemma 2.11), there exists an element x∗ in A0(t)
such that lim

n→∞
M(xn, x

∗, t) = 1. Now

M(gx∗, B, t) ≥M(gx∗, Txn, t)

≥M(gx∗, gxn+1, t) ∗M(gxn+1, Txn, t)

= M(gx∗, gxn+1, t) ∗M(A,B, t)

≥M(gx∗, gxn+1, t) ∗M(gx∗, B, t)

gives that
M(gx∗, B, t) ≥M(gx∗, Txn, t) ≥M(gx∗, gxn+1, t) ∗M(gx∗, B, t).

Note that {gxn} converges to g(x∗), and M(gx∗, Txn, t) → M(gx∗, B, t). As {Txn} ⊆ B and B is fuzzy
approximately compact with respect to A, {Txn} has a subsequence which converges to some y in B and
hence M(gx∗, y, t) = M(A,B, t), that is, gx∗ ∈ A0(t). Since A0 ⊆ g(A0), there exist some u ∈ A0(t) such
that

M(gu, Tx∗, t) = M(A,B, t) = M(gxn+1, Txn, t), for all n ∈ N.
We now show that u = x∗. If not, then

M(u, xn+1, t) ≥M(gu, gxn+1, t) ≥ ψ(min{M(x∗, xn, t),M(x∗, u, t),M(xn, xn+1, t)})

on taking limit as n→∞ gives

M(u, x∗, t) ≥ ψ(min{1,M(x∗, u, t), 1}) = ψ(M(x∗, u, t)) > M(x∗, u, t)

a contradiction. Hence M(gx∗, Tx∗, t) = M(gu, Tx∗, t) = M(A,B, t), that is, x∗ is the optimal coincidence
point of the pair (g, T ).

To prove uniqueness, suppose that y∗ be another point A0(t) such that M(gy∗, T y∗, t) = M(A,B, t).
Note that

M(x∗, y∗, t) ≥M(gx∗, gy∗, t) ≥ ψ(min{(M(x∗, y∗, t),M(x∗, x∗, t),M(y∗, y∗, t)}),

and hence
M(x∗, y∗, t) ≥M(gx∗, gy∗, t) ≥ ψ(M(x∗, y∗, t)) > M(x∗, y∗, t)

gives a contradiction. The result follows.
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Corollary 4.2. If T : A→ B is fuzzy proximal quasi-contraction of first kind with A0(t) 6= φ and T (A0(t)) ⊆
B0(t) for any t > 0. Then T has a unique best proximity point x∗ in A0(t) provided that A0(t) is fuzzy
proximal T−orbitally complete.

Proof. Take gx = IA in the proof of Theorem 4.1.

Corollary 4.3. Let T : A→ B be a mapping with A0(t) 6= φ and T (A0(t)) ⊆ B0(t) for any t > 0. If

M(u, Tx, t) = M(A,B, t)
M(v, Ty, t) = M(A,B, t)

}
implies that

M(u, v, t) ≥ ψ(min{M(x, y, t),M(x, u, t),M(y, v, t),max{M(x, v, t),M(u, y, t)}}).

Then T has a unique best proximity point x∗ in A0(t) provided that A0(t) is fuzzy proximal T−orbitally
complete.

Proof. Let x0 ∈ A0(t). By Lemma 2.8, the set PFP (x0) is nonempty. Suppose that {xn} ∈ PFP (x0) is a
proximal fuzzy Picard sequence starting from x0 in A0(t). As

M(xn, Txn−1, t) = M(A,B, t) and M(xn+1, Txn, t) = M(A,B, t),

so we have

M(xn, xn+1, t) ≥ ψ(min{M(xn−1, xn, t),M(xn−1, xn, t),M(xn, xn+1, t),

max{M(xn−1, xn+1, t),M(xn, xn, t)}})
≥ ψ(min{M(xn−1, xn, t),M(xn, xn+1, t)}), for all n ∈ N.

Rest of the proof is similar to the proof of Corollary 4.2.

Corollary 4.4. If T : A → B is a fuzzy proximal quasi-contraction of first kind with A0(t) 6= φ and
T (A0(t)) ⊆ B0(t) for any t > 0.Then T has a unique best proximity point x∗ in A0(t) provided that B is
fuzzy approximative compact with respect to A.

Proof. By Lemma 2.11, A0(t) is closed subset of complete non-Archimedean fuzzy metric space (X,M, ∗),
which implies that A0(t) is fuzzy proximal T−orbitally complete. From Corollary 4.2, the result follows.

Corollary 4.5. Let g : A → A be a fuzzy isometric mapping and T : A → B with A0(t) 6= φ, T (A0(t)) ⊆
B0(t) and A0(t) ⊆ g(A0(t)) for any t > 0. If B is fuzzy approximately compact with respect to A and the pair
(g, T ) is generalized fuzzy proximal quasi-contraction of type− 1. Then the pair (g, T ) has a unique optimal
coincidence point x∗ in A0(t).

Corollary 4.6. Let g : A → A be a fuzzy expansive mapping and T : A → B with A0(t) 6= φ, T (A0(t)) ⊆
B0(t) and A0(t) ⊆ g(A0(t)) for any t > 0. If B is fuzzy approximately compact with respect to A and the
pair (g, T ) satisfies the following implication

M(gu, Tx, t) = M(A,B, t)
M(gv, Ty, t) = M(A,B, t)

}
implies that M(gu, gv, t) ≥ ψ(M(x, y, t)).

Then the pair (g, T ) has a unique optimal coincidence point x∗ in A0(t).

Proof. Note that
M(x, y, t) = min{M(x, y, t),M(x, u, t),M(y, v, t)},

and
M(u, v, t) ≥M(gu, gv, t).

The mapping T satisfies all condition of Theorem 4.1.
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Remark 4.7. If g = IA in Theorem 4.1, then we obtain the Lemma 1.9 in ([14]).

We now show that our result is proper generalization of the results in ([14]).

Example 4.8. Suppose that X = [0, 1] × R, A = {(0, x) : x ≥ 0 and x ∈ R} and B = {(1, y) : y ≥ 0 and
y ∈ R}. Note that

Md(A,B, t) =
t

t+ 1
, A0(t) = {(0, 0)} and B0(t) = {(1, 0)}.

Define T : A→ B and g : A→ A by

T (x, 0) = (1,
x

5
) and g(0, x) = 5(0, x).

Obviously, T (A0(t)) = B0(t) and A0(t) = g(A0(t)). Note that the points u = (0, x1), v = (0, x2), x = (0, y1)

and y = (0, y2) in A satisfy M(gu, Tx, t) = M(A,B, t) and M(gv, Ty, t) = M(A,B, t) if x1 =
y1
25

and

x2 =
y2
25
. Also, we have, M(gu, gv, t) ≥ ψ(M(x, y, t), where ψ(t) =

√
t. Thus all the conditions of the

Corollary 4.6 are satisfied. Moreover, (0, 0) is an optimal coincidence point of (g, T ) in A0(t).

Corollary 4.9. Let T : A→ B be a fuzzy expansive and fuzzy proximal quasi-contraction mapping of second
kind with A0(t) 6= φ and T (A0(t)) ⊆ B0(t) for any t > 0. Then T has a unique best proximity point x∗ in
A0(t) provided that T is one-to-one on A0(t) and ψ is decreasing on (0, 1).

Proof. Following the proof of Theorem 3.1 and Lemma 2.12, we have

M(Txn, Txn+1, t) ≥ ψ(M(Txn−1, Txn, t)).

As T is fuzzy expansive and ψ is decreasing, so we obtain that

M(xn, xn+1, t) ≥M(Txn, Txn+1, t) ≥ ψ(M(xn−1, xn, t)),

which implies that M(xn, xn+1, t) ≥ ψ(M(xn−1, xn, t)). Following arguments similar to those in proof of
Theorem 4.1, the result follows.

Corollary 4.10. Let (X,M, ∗) be a complete non-Archimedean fuzzy metric space and T : X → X a fuzzy
quasi-contraction mapping, that is, for any x, y ∈ X, we have

M(Tx, Ty, t) ≥ ψ(min{M(x, y, t),M(x, Tx, t),M(y, Ty, t),max{M(x, Ty, t),M(y, Tx, t)}}),

where ψ ∈ Ψ. Then T has a unique fixed point x∗ ∈ X. Moreover, for any x0 ∈ X, the sequence {Tnx0}
converges to x∗.

5. Best proximity and optimal coincidence point results in fuzzy metric space

It is worth mentioning that the results obtained in Sections 3 and 4 remain valid under imposition of
some mild conditions if we replace non-Archimedean fuzzy metric space with a fuzzy metric space.

Let A and B be two subset of a complete fuzzy metric space (X,M, ∗).

Theorem 5.1. Let T : A → B be a fuzzy proximal quasi-contraction of second kind with A0(t) 6= φ for
any t > 0 and T (A0(t)) ⊆ B0(t). Then T has a unique best proximity point x∗ in A0(t) provided that T is
one-to-one on A0(t).

Proof. The proof of this theorem in the setup of a complete fuzzy metric space is same as given in the proof
of Theorem 3.1.

In order to prove Theorem 4.1 in the framework of a complete fuzzy metric space, we proceed as follows:
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Theorem 5.2. Let g : A → A be a fuzzy expansive mapping, T : A → B with T (A0(t)) ⊆ B0(t), A0(t) ⊆
g(A0(t)) and A0(t) a nonempty closed set for any t > 0. If B is fuzzy approximately compact with respect to
A and the pair (g, T ) is generalized fuzzy proximal quasi-contraction of type− 1. Then the pair (g, T ) has a
unique optimal coincidence point x∗ in A0(t).

Proof. Following arguments similar to those in the proof of Theorem 4.1, we obtain a sequence {xn} in
(X,M, ∗). We now show that {xn} is a Cauchy sequence. Suppose on contrary that it is not a Cauchy
sequence. Then there exist ε ∈ (0, 1) and t0 > 0, mk, nk ∈ N, with mk > nk ≥ k for all k ∈ N
such that M(xmk

, xnk
, t0) ≤ 1 − ε. Assume that mk is the smallest such integer exceeding nk, that is,

M(xmk−1, xnk
, t0) > 1− ε. For all k, we have

1− ε ≥M(xmk
, xnk

, t0),

≥M(xmk
, xmk−1,

t0
2

) ∗M(xmk−1, xnk
,
t0
2

),

>τmk
(
t0
2

) ∗ (1− ε).

Taking limits as k →∞ on both sides of the above inequality, we obtain that lim
k→+∞

M(xmk
, xnk

, t0) = 1−ε.
Now

M(xmk+1, xnk+1, t0) ≥M(xmk+1, xmk
,
t0
3

) ∗M(xmk
, xnk

,
t0
3

) ∗M(xnk
, xnk+1,

t0
3

), and

M(xmk
, xnk

, t0) ≥M(xmk
, xmk+1,

t0
3

) ∗M(xmk+1, xnk+1,
t0
3

) ∗M(xnk+1, xnk
,
t0
3

),

imply that
lim

k→+∞
M(xmk+1, xnk+1, t0) = 1− ε.

Also, we have

M(xmk+1, xnk+1, t0) ≥M(gxmk+1, gxnk+1, t0)

≥ ψ(min{M(xmk
, xnk

, t0),M(xmk
, xmk+1, t0),M(xnk

, xnk+1, t0)}).

Taking limits as k →∞ in above inequality, we obtain that 1− ε ≥ ψ(1− ε) > 1− ε, a contradiction. Hence
{xn} is a Cauchy sequence. As A0(t) is closed, the sequence {xn} converges to some element x∗ in A0(t),
that is, lim

n→∞
M(xn, x

∗, t) = 1. Now

M(gx∗, B, t) ≥M(gx∗, Txn, t) ≥M(A,B, t) ≥M(gx∗, B, t)

implies that
M(gx∗, B, t) ≥M(gx∗, Txn, t) ≥M(gx∗, B, t).

As g is continuous and the sequence {xn} converges to x∗, the sequence {gxn} converges to g(x∗), and hence
M(gx∗, Txn, t) → M(gx∗, B, t). Since {Txn} ⊆ B, and B is a fuzzy approximately compact with respect
to A, {Txn} has a subsequence which converges to some y in B, therefore M(gx∗, y, t) = M(A,B, t), and
hence gx∗ ∈ A0(t). As A0 ⊆ g(A0), there exist some u ∈ A0(t), such that

M(gu, Tx∗, t) = M(A,B, t) = M(gxn+1, Txn, t), for all n ∈ N.

Suppose that u 6= x∗ . Since {g, T} is generalized fuzzy proximal quasi-contraction of type− 1 and g is fuzzy
expansive mapping, so we have

M(u, xn+1, t) ≥M(gu, gxn+1, t) ≥ ψ(min{M(x∗, xn, t),M(x∗, u, t),M(xn, xn+1, t)}).
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Taking limit as n→∞ on both sides of the above inequality, we have

M(u, x∗, t) ≥M(gu, gx∗, t) ≥ ψ(min{1,M(x∗, u, t), 1}) = ψ(M(x∗, u, t)) > M(u, x∗, t),

a contradiction and hence u = x∗. Now M(gx∗, Tx∗, t) = M(gu, Tx∗, t) = M(A,B, t) implies that x∗ is the
optimal coincidence point of the pair {g, T}. Uniqueness of optimal coincidence point follows on the same
lines given in Theorem 4.1.

Thus to prove results in complete fuzzy metric space when T is fuzzy proximal quasi contraction of
second kind, one needs an assumption of closeness on the set A0(t).

6. Conclusion

In this research article, we introduce a class of proximal quasi-contraction mappings and the concept of
proximal orbital completeness in fuzzy metric and non-Archimedean fuzzy metric spaces. Some optimal co-
incidence point results of fuzzy proximal quasi contraction and generalized fuzzy proximal quasi contraction
of type− 1 in non-Archimedean fuzzy metric space has been discussed. Also, we extended and generalized
various results of [4] and [14] in frame of fuzzy metric and non-Archimedean fuzzy metric spaces. The
Example 4.8 is provided to show that obtained results are proper generalizations of the concepts in [14].
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