Positive solutions to a class of q-fractional difference boundary value problems with ϕ-Laplacian operator

Jidong Zhao
Department of Foundation, Shandong Yingcai University, Jinan, Shandong 250104, P. R. China.

Communicated by R. Saadati

Abstract

By virtue of the upper and lower solutions method, as well as the Schauder fixed point theorem, the existence of positive solutions to a class of q-fractional difference boundary value problems with ϕ-Laplacian operator is investigated. The conclusions here extend existing results. © 2016 All rights reserved.

Keywords: Fractional q-difference, ϕ-Laplacian operator, upper and lower solutions method, Schauder fixed point theorem, positive solution.
2010 MSC: 34A08, 34B18, 39A13.

1. Introduction

In recent years, the fractional q-difference boundary value problems have received more attention as a new research direction by scholars both at home and abroad (see [1, [2, 4-6]). In [2], the author studied positive solutions to a class of q-fractional difference boundary value problems. In [6], the authors used u_{0}-concave operator fixed point theorem to study the following fractional difference boundary value problems

$$
\begin{cases}\left(D_{q}^{\alpha} y\right)(x)=-f(x, y(x)), & 0<x<1,2<\alpha \leq 3, \\ y(0)=\left(D_{q} y\right)(0)=0, & \left(D_{q} y\right)(1)=0 .\end{cases}
$$

An iterative sequence of positive solutions was established. In [4], the authors used a fixed point theorem on posets to study the existence and uniqueness of positive solutions to a class of q-fractional difference boundary value problems with p-Laplacian operator:

[^0]\[

\left\{$$
\begin{array}{l}
D_{q}^{\gamma}\left(\phi_{p}\left(D_{q}^{\alpha} u(t)\right)\right)+f(t, u(t))=0, \quad 0<t<1,2<\alpha<3 \\
u(0)=\left(D_{q} u\right)(0)=0, \quad\left(D_{q} u\right)(1)=\beta\left(D_{q} u\right)(\eta)
\end{array}
$$\right.
\]

Motivated by the aforementioned work, we investigate the existence of positive solutions to a class of q-fractional difference boundary value problems with ϕ-Laplacian operator:

$$
\left\{\begin{array}{l}
D_{q}^{\gamma}\left(\phi_{\mu}\left(D_{q}^{\alpha} u(t)\right)\right)=f(t, u(t)), \quad 0<t<1 \tag{1.1}\\
u(0)=u(1) \quad\left(D_{q} u\right)(0)=\left(D_{q} u\right)(1)=0
\end{array}\right.
$$

where $1<\alpha, \beta<2, D_{q}^{\gamma}$ is the Riemann-Liouville fractional order derivative, the nonlinear term $f(t, u(t)) \in$ $([0,1] \times[0,+\infty),(0,+\infty))$ and ϕ-Laplacian is defined by

$$
\phi_{\mu}(s)=|s|^{\mu-2} s, \mu>1,\left(\phi_{\mu}\right)^{-1}=\phi_{v}, 1 / \mu+1 / v=1
$$

2. Preliminaries

In the following section we give the definition of Riemann-Liouville fractional q-order derivative for $q \in[0,1]$. One can refer to [3] for other related definitions and basic knowledge.

Definition 2.1. The q-derivative of a function $f(x)$ is given by

$$
\left(D_{q} f\right)(x)=\frac{f(x)-f(q x)}{(1-q) x},\left(D_{q} f\right)(0)=\lim _{x \rightarrow 0}\left(D_{q} f\right)(x)
$$

and higher order q-derivatives are defined by

$$
\left(D_{q}^{0} f\right)(x)=f(x), \quad\left(D_{q}^{n} f\right)(x)=D_{q}\left(D_{q}^{n-1} f\right)(x), \quad n \in \mathbb{N}
$$

Definition 2.2. The q-integral of $f(x)$ on the interval $[0, b]$ is given by

$$
\left(I_{q} f\right)(x)=\int_{0}^{x} f(t) d_{q} t=x(1-q) \sum_{n=0}^{\infty} f\left(x q^{n}\right) q^{n}, \quad x \in[0, b]
$$

If the q-integral for the function $f(x)$ on the interval $[a, b]$ exists, then

$$
\begin{gathered}
\int_{a}^{b} f(t) d_{q} t=\int_{0}^{b} f(t) d_{q} t-\int_{0}^{a} f(t) d_{q} t \quad a \in[0, b] \\
\left(I_{q}^{0} f\right)(x)=f(x), \quad\left(I_{q}^{n} f\right)(x)=I_{q}\left(I_{q}^{n-1} f\right)(x), \quad n \in \mathbb{N}
\end{gathered}
$$

Definition 2.3. Let $\alpha>0$ and $f(x)$ be a function defined on $[0,1]$. The fractional q-integral of the Riemann-Liouville type is

$$
\begin{gathered}
\left(I_{q}^{0} f\right)(x)=f(x) \\
\left(I_{q}^{\alpha} f\right)(x)=\frac{1}{\Gamma_{q}(\alpha)} \int_{0}^{x}(x-q t)^{(\alpha-1)} f(t) d_{q} t, \quad \alpha>0, \quad x \in[0,1]
\end{gathered}
$$

where the $\Gamma_{q}(\alpha)$ function is defined by

$$
\Gamma_{q}(\alpha)=\frac{(1-q)^{(\alpha-1)}}{(1-q)^{\alpha-1}}
$$

and $(1-q)^{\alpha}$ is defined by

$$
(1-q)^{0}=1, \quad(1-q)^{\alpha}=\prod_{k=0}^{\alpha-1}\left(1-q^{k}\right), \quad \alpha \in \mathbb{N} \backslash\{0,-1,-2, \ldots\}
$$

Definition 2.4. The fractional q-derivative of the Riemann-Liouville type of order $\alpha>0$ is defined by

$$
\left(D_{q}^{\alpha} f\right)(x)=\left(D_{q}^{m} I_{q}^{m-\alpha} f\right)(x), \quad \alpha>0, \quad x \in[0,1]
$$

where m is the smallest integer greater than or equal to α. In the particular case,

$$
\left(I_{q}^{0} f\right)(x)=f(x)
$$

Let

$$
\left(G_{\alpha}\right)(t, s)=\frac{1}{\Gamma_{q}(\alpha)}\left\{\begin{array}{l}
(t(1-s))^{\alpha-1}-(t-s)^{\alpha-1}, \quad 0<s \leq t \leq 1 \tag{2.1}\\
(t(1-s))^{\alpha-1}, \quad 0<t \leq s \leq 1, \quad \alpha>0
\end{array}\right.
$$

G_{α} is a nonnegative continuous function on $[0,1] \times[0,1]$.
Lemma $2.5([2])$. Let $1<\alpha \leq 2$ and suppose that $y(t) \in \mathcal{C}[0,1]$. Then

$$
\left\{\begin{array}{l}
\left(D_{q}^{\alpha} u\right)(t)+y(t)=0, \quad 0<t<1 \\
u(0)=u(1)=0
\end{array}\right.
$$

is equivalent to

$$
u(t)=\int_{0}^{1} G_{\alpha}(t, q s) y(s) d_{q} s
$$

If $y(t) \geq 0, t \in[0,1]$, then $u(t) \geq 0, t \in[0,1]$.
Lemma 2.6 ([5]). Let $y(t) \in \mathcal{C}[0,1], 1<\alpha, \beta \leq 2$. Then the fractional q-difference

$$
\left\{\begin{array}{l}
D_{q}^{\beta}\left(\phi_{\mu}\left(D_{q}^{\alpha} u(t)\right)\right)=y(t), \quad 0<t<1 \tag{2.2}\\
u(0)=u(1)=0, \quad\left(D_{q}^{\alpha} u\right)(0)=\left(D_{q}^{\alpha} u\right)(1)=0
\end{array}\right.
$$

is equivalent to

$$
u(t)=\int_{0}^{1}\left(G_{\alpha}(t, q s) \phi_{v}\left(\int_{0}^{1} G_{\beta}(s, q \tau) y(\tau) d_{q} \tau\right)\right) d_{q} s
$$

Suppose

$$
E=\left\{u \mid u, \phi_{\mu}\left(D_{q}^{\alpha} u\right) \in \mathcal{C}^{2}[0,1]\right\}
$$

The following definitions are about the upper and lower solutions to problem 1.1.
Definition 2.7. A function $\varphi(t) \in E$ is called a lower solution to (1.1), if it satisfies

$$
\left\{\begin{array}{l}
D_{q}^{\beta}\left(\phi_{\mu}\left(D_{q}^{\alpha} \varphi(t)\right)\right) \leq f(t, \varphi(t)), \quad 0<t<1 \\
\varphi(0) \leq 0, \quad \varphi(1) \leq 0, \quad D_{q}^{\alpha} \varphi(0) \geq 0, \quad D_{q}^{\alpha} \varphi(1) \geq 0
\end{array}\right.
$$

Definition 2.8. A function $\varphi(t) \in E$ is called an upper solution to (1.1), if it satisfies

$$
\left\{\begin{array}{l}
D_{q}^{\beta}\left(\phi_{\mu}\left(D_{q}^{\alpha} \psi(t)\right)\right) \geq f(t, \psi(t)), \quad 0<t<1 \\
\psi(0) \leq 0, \quad \psi(1) \leq 0, \quad D_{q}^{\alpha} \psi(0) \geq 0, \quad D_{q}^{\alpha} \psi(1) \geq 0
\end{array}\right.
$$

3. Main results

According to Lemma 2.6, we can define an operator as follows:

$$
T u(t)=\int_{0}^{1}\left(G_{\alpha}(t, q s) \phi_{v}\left(\int_{0}^{1} G_{\beta}(s, q \tau) f(\tau, u(\tau)) d_{q} \tau\right)\right) d_{q} s, \quad u \in E
$$

By the continuity of G_{α}, G_{β}, f and using the Arzela-Ascoli theorem, we can get that $T: E \rightarrow E$ is completely
continuous operator, and the existence of a solution to problem (1.1) is equivalent to the existence of a fixed point of T.

Suppose that the following assumptions are satisfied
(H1) $f(t, u) \in \mathcal{C}([0,1] \times[0,+\infty),[0,+\infty))$, and f is increasing with respect to the second variable.
(H2) there exists a $c<1$ and a $k \in[0,1]$, such that

$$
f(t, k u) \geq k^{c(\mu-1)} f(t, u), \quad \forall t \in[0,1]
$$

where $\mu>1$.
Lemma 3.1. If u is a positive solution to (1.1), then there exist $m_{1}, m_{2}>0$, such that

$$
m_{1} \rho(t) \leq u(t) \leq m_{2} \rho(t)
$$

where

$$
\rho(t)=\int_{0}^{1}\left(G_{\alpha}(t, q s) \phi_{v}\left(\int_{0}^{1} G_{\beta}(s, q \tau) y(\tau) d_{q} \tau\right)\right) d_{q} s
$$

Proof. It follows from $u \in \mathcal{C}[0,1]$, so there exist an $M>0$ such that $|u(t)| \leq M, t \in[0,1]$. By (H2) we can take

$$
\begin{aligned}
& m_{1}=\min _{t \in[0,1], u \in[0, M]} \sqrt[v-1]{f(t, u(t))}>0 \\
& m_{2}=\max _{t \in[0,1], u \in[0, M]} \sqrt[v-1]{f(t, u(t))}>0
\end{aligned}
$$

So

$$
m_{1} \rho(t) \leq u(t)=\int_{0}^{1}\left(G_{\alpha}(t, q s) \phi_{v}\left(\int_{0}^{1} G_{\beta}(s, q \tau) y(\tau) d_{q} \tau\right)\right) d_{q} s \leq m_{2} \rho(t)
$$

This completes the proof.
Theorem 3.2. Suppose that (H1) and (H2) are satisfied. Then 1.1) has a positive solution.
Proof. We prove the theorem in three steps as follows.
Step 1. The existence of upper and lower solutions for (1.1). Let

$$
\eta(t)=\int_{0}^{1}\left(G_{\alpha}(t, q s) \phi_{v}\left(\int_{0}^{1} G_{\beta}(s, q \tau) y(\tau) d_{q} \tau\right)\right) d_{q} s
$$

Then by Lemma 2.6, we obtain a positive solution to the problem

$$
\left\{\begin{array}{l}
D_{q}^{\beta}\left(\phi_{\mu}\left(D_{q}^{\alpha} u(t)\right)\right)=f(t, \rho(t)), \quad 0<t<1 \tag{3.1}\\
u(0)=u(1)=0, \quad D_{q}^{\alpha} u(0)=D_{q}^{\alpha} u(1)=0
\end{array}\right.
$$

Furthermore,

$$
\begin{equation*}
\eta(0)=\eta(1)=0, \quad D_{q}^{\alpha} \eta(0)=D_{q}^{\alpha} \eta(1)=0 \tag{3.2}
\end{equation*}
$$

By Lemma 3.1, there exist $k_{1}, k_{2}>0$, such that

$$
k_{1} \rho(t) \leq \eta(t) \leq k_{2} \rho(t), \quad \forall t \in[0,1]
$$

Let

$$
\xi_{1}(t)=\delta_{1} \eta(t), \quad \xi_{2}(t)=\delta_{2} \eta(t)
$$

where

$$
0<\delta_{1}<\min \left\{\frac{1}{k_{2}}, k_{1}^{\frac{c}{1-c}}\right\}, \quad \delta_{2}>\max \left\{\frac{1}{k_{1}}, k_{2}^{\frac{c}{1-c}}\right\}
$$

Then

$$
\begin{align*}
f\left(t, \xi_{1}(t)\right) & =f\left(t, \delta_{1}(t)\right)=f\left(t, \delta_{1} \frac{\eta(t)}{\rho(t)} \rho(t)\right) \\
& \geq\left(\delta_{1} \frac{\eta(t)}{\rho(t)}\right)^{c(\mu-1)} f(t, \rho(t)) \tag{3.3}\\
& \geq\left(\delta_{1} k_{1}\right)^{c(\mu-1)} f(t, \rho(t)) \geq \delta_{1}^{\mu-1} f(t, \rho(t))
\end{align*}
$$

and

$$
D_{q}^{\beta}\left(\phi_{\mu}\left(D_{q}^{\alpha} \xi_{1}(t)\right)\right)=D_{q}^{\beta}\left(\phi_{\mu}\left(D_{q}^{\alpha} \delta_{1} \eta(t)\right)\right)=\delta_{1}^{\mu-1} D_{q}^{\beta}\left(\phi_{\mu}\left(D_{q}^{\alpha} \eta(t)\right)\right)=\delta_{1}^{\mu-1} f(t, \rho(t))
$$

From (3.3), we have

$$
\xi_{1}(0)=\xi_{1}(1)=0, \quad D_{q}^{\alpha} \xi_{1}(0)=D_{q}^{\alpha} \xi_{1}(1)=0
$$

By Definition 2.7, $\xi_{1}(t)$ is a lower solution to (1.1).
On the other hand, by the definition of $\xi_{2}(t)$, we can obtain

$$
\begin{aligned}
\delta_{2}^{\mu-1} f(t, \rho(t)) & =\delta_{2}^{\mu-1} f\left(t, \frac{\rho(t)}{\xi_{2}(t)} \xi_{2}(t)\right)=\delta_{2}^{\mu-1} f\left(t, \frac{\rho(t)}{\delta_{2} \xi_{2}(t)} \xi_{2}(t)\right) \\
& \geq \delta_{2}^{\mu-1}\left(\frac{\rho(t)}{\delta_{2} \eta(t)}\right)^{c(\mu-1)} f\left(t, \xi_{2}(t)\right) \geq \delta_{2}^{\mu-1}\left(\frac{\rho(t)}{\delta_{2} k_{2}}\right)^{c(\mu-1)} f\left(t, \xi_{2}(t)\right) \\
& \geq \delta_{2}^{\mu-1}\left(\frac{1}{\delta_{2} \eta(t)}\right)^{c(\mu-1)} f\left(t, \xi_{2}(t)\right) \geq \delta_{2}^{\mu-1}\left(\frac{1}{\delta_{2}}\right)^{\mu-1} f\left(t, \xi_{2}(t)\right) \\
& =f\left(t, \xi_{2}(t)\right)
\end{aligned}
$$

So

$$
\begin{aligned}
D_{q}^{\beta}\left(\phi_{\mu}\left(D_{q}^{\alpha} \xi_{2}(t)\right)\right) & =D_{q}^{\beta}\left(\phi_{\mu}\left(D_{q}^{\alpha} \delta_{2} \eta(t)\right)\right) \\
& =\delta_{2}^{\mu-1} D_{q}^{\beta}\left(\phi_{\mu}\left(D_{q}^{\alpha} \eta(t)\right)\right)=\delta_{2}^{\mu-1} f(t, \rho(t)) \\
& \geq f\left(t, \xi_{2}(t)\right)
\end{aligned}
$$

Similarly

$$
\xi_{2}(0)=\xi_{2}(1)=0, \quad D_{q}^{\alpha} \xi_{2}(0)=D_{q}^{\alpha} \xi_{2}(1)=0
$$

By Definition 2.8, $\xi_{2}(t)$ is an upper solution to (1.1.).
Step 2. We prove that the following problem has a positive solution:

$$
\left\{\begin{array}{l}
D_{q}^{\beta}\left(\phi_{\mu}\left(D_{q}^{\alpha} u(t)\right)\right)=g(t, u(t)), \quad 0<t<1 \tag{3.4}\\
u(0)=u(1)=0, \quad D_{q}^{\alpha} u(0)=D_{q}^{\alpha} u(1)=0
\end{array}\right.
$$

where

$$
g(t, u(t))=\left\{\begin{array}{l}
f\left(t, \xi_{1}(t)\right), \quad u(t)<\xi_{1}(t) \\
f(t, u(t)), \quad \xi_{1}(t) \leq u(t) \leq \xi_{2}(t) \\
f\left(t, \xi_{2}(t)\right), \quad u(t)>\xi_{2}(t)
\end{array}\right.
$$

By Lemma 2.6, we need the following operator

$$
A u(t)=\int_{0}^{1}\left(G_{\alpha}(t, q s) \phi_{v}\left(\int_{0}^{1} G_{\beta}(s, q \tau) g(\tau, u(\tau)) d_{q} \tau\right)\right) d_{q} s, u \in \mathcal{C}[0,1]
$$

Now, we use the Schauder fixed point theorem to prove the existence of a fixed point of $A u(t)$. In fact $f(t, u)$ is increasing with respect to u, so for any $u \in \mathcal{C}([0,1],[0,+\infty))$, there exist $g(t, u(t))$ such that

$$
f\left(t, \xi_{1}(t)\right) \leq g(t, u(t)) \leq f\left(t, \xi_{2}(t)\right)
$$

Since G_{α}, G_{β} and f are continuous, then by the Arzela-Ascoli theorem, A is a compact operator. Thus, by using the Schauder fixed point theorem, A has a fixed point, i.e., equation (3.4) has a positive solution, denoted by u^{*}.

Step 3.

To prove that u^{*} is also a solution to (1.1), we only need to prove that

$$
\begin{equation*}
\left.\xi_{1}(t) \leq u^{*}(t)\right) \leq \xi_{2}(t), \quad t \in[0,1] \tag{3.5}
\end{equation*}
$$

First we prove $u^{*}(t) \leq \xi_{2}(t), t \in[0,1]$; one can prove another inequality in the same way.
Suppose $u^{*}(t)>\xi_{2}(t), t \in[0,1]$; we have $g\left(t, u^{*}(t)\right)=f\left(t, \xi_{2}(t)\right)$. We obtain

$$
D_{q}^{\beta}\left(\phi_{\mu}\left(D_{q}^{\alpha} u^{*}(t)\right)\right)=f\left(t, \xi_{2}(t)\right)
$$

On the other hand, $\xi_{2}(t)$ is an upper solution, so we have

$$
D_{q}^{\beta}\left(\phi_{\mu}\left(D_{q}^{\alpha} \xi_{2}(t)\right)\right) \geq f\left(t, \xi_{2}(t)\right)
$$

Let $z(t)=\phi_{\mu}\left(D_{q}^{\alpha} \xi_{2}(t)\right)-\phi_{\mu}\left(D_{q}^{\alpha} u^{*}(t)\right), t \in[0,1]$. Therefore,

$$
\begin{aligned}
D_{q}^{\beta} z(t) & =D_{q}^{\beta}\left(\phi_{\mu}\left(D_{q}^{\alpha} \xi_{2}(t)\right)\right)-D_{q}^{\beta}\left(\phi_{\mu}\left(D_{q}^{\alpha} u^{*}(t)\right)\right) \\
& \geq f\left(t, \xi_{2}(t)\right)-f\left(t, \xi_{2}(t)\right)=0
\end{aligned}
$$

Combined with the boundary conditions, $z(0)=z(1)=0$ and by Lemma 2.5, we have $z(t) \leq 0, t \in[0,1]$, which implies that

$$
\phi_{\mu}\left(D_{q}^{\alpha} \xi_{2}(t)\right) \leq \phi_{\mu}\left(D_{q}^{\alpha} u^{*}(t)\right), \quad t \in[0,1]
$$

Since ϕ_{μ} is monotone increasing, we obtain $D_{q}^{\alpha}\left(\xi_{2}(t)\right) \leq D_{q}^{\alpha} u^{*}(t), t \in[0,1]$, that is $D_{q}^{\alpha}\left(\xi_{2}(t)-u^{*}(t)\right) \leq 0$, $t \in[0,1]$. Using Lemma 2.5, we get $\xi_{2}(t)-u^{*}(t) \geq 0, t \in[0,1]$, a contradiction.

Inequality (3.5) shows that u^{*} is also a positive solution to (1.1). Furthermore $f(t, 0) \neq 0$, that is to say, 0 is not a fixed point of the operator T, therefore, u^{*} is a positive solution to (1.1). This completes the proof.

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Nos. 61503227 and 61402271) and the Natural Science Foundation of Shandong Province (No. ZR2015JL023).

References

[1] B. Ahmad, J. Nieto, A. Alsaedi, H. Al-Hutami, Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditions, J. Franklin Inst., 351 (2014), 2890-2909. 1
[2] R. A. C. Ferreira, Positive solutions for a class of boundary value problems with q-fractional differences, Comput. Math. Appl., 61 (2011), 367-373. 1, 2.5
[3] V. Kac, P. Cheungssel, Quantum Calculus, Springer Press, New York, (2002). 2
[4] F. Miao, S. Liang, Uniqueness of positive solutions for fractional difference boundary-value problems with pLaplacian operator, Electron. J. Differ. Equ., 2013 (2013), 11 pages. 1
[5] W. Yang, Positive solution for q-fractional difference boundary value problems with ϕ-Laplacian operator, Bull. Malays. Math. Sci. Soc., 36 (2013), 1195-1203. 2.6
[6] L. Yang, H. Chen, L. P. Luo, Z. G. Luo, Successive iteration and positive solutions for boundary value problem of nonlinear q-fractional difference equation, J. Appl. Math. Comput., 42 (2013), 89-102. 1

[^0]: Email address: zhaojidong0914@163.com (Jidong Zhao)

