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Abstract

By virtue of the upper and lower solutions method, as well as the Schauder fixed point theorem, the
existence of positive solutions to a class of q-fractional difference boundary value problems with φ-Laplacian
operator is investigated. The conclusions here extend existing results. c©2016 All rights reserved.
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1. Introduction

In recent years, the fractional q-difference boundary value problems have received more attention as a new
research direction by scholars both at home and abroad (see [1, 2, 4–6]). In [2], the author studied positive
solutions to a class of q-fractional difference boundary value problems. In [6], the authors used u0-concave
operator fixed point theorem to study the following fractional difference boundary value problems{

(Dα
q y)(x) = −f(x, y(x)), 0 < x < 1, 2 < α ≤ 3,

y(0) = (Dqy)(0) = 0, (Dqy)(1) = 0.

An iterative sequence of positive solutions was established. In [4], the authors used a fixed point theorem
on posets to study the existence and uniqueness of positive solutions to a class of q-fractional difference
boundary value problems with p-Laplacian operator:
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Dγ
q (φp(D

α
q u(t))) + f(t, u(t)) = 0, 0 < t < 1, 2 < α < 3,

u(0) = (Dqu)(0) = 0, (Dqu)(1) = β(Dqu)(η).

Motivated by the aforementioned work, we investigate the existence of positive solutions to a class of
q-fractional difference boundary value problems with φ-Laplacian operator:{

Dγ
q (φµ(Dα

q u(t))) = f(t, u(t)), 0 < t < 1,

u(0) = u(1) (Dqu)(0) = (Dqu)(1) = 0,
(1.1)

where 1 < α, β < 2, Dγ
q is the Riemann–Liouville fractional order derivative, the nonlinear term f(t, u(t)) ∈

([0, 1]× [0,+∞), (0,+∞)) and φ-Laplacian is defined by

φµ(s) = |s|µ−2s, µ > 1, (φµ)−1 = φv, 1/µ+ 1/v = 1.

2. Preliminaries

In the following section we give the definition of Riemann–Liouville fractional q-order derivative for
q ∈ [0, 1]. One can refer to [3] for other related definitions and basic knowledge.

Definition 2.1. The q-derivative of a function f(x) is given by

(Dqf)(x) =
f(x)− f(qx)

(1− q)x
, (Dqf)(0) = lim

x→0
(Dqf)(x),

and higher order q-derivatives are defined by

(D0
qf)(x) = f(x), (Dn

q f)(x) = Dq(D
n−1
q f)(x), n ∈ N.

Definition 2.2. The q-integral of f(x) on the interval [0, b] is given by

(Iqf)(x) =

∫ x

0
f(t)dqt = x(1− q)

∞∑
n=0

f(xqn)qn, x ∈ [0, b].

If the q-integral for the function f(x) on the interval [a, b] exists, then∫ b

a
f(t)dqt =

∫ b

0
f(t)dqt−

∫ a

0
f(t)dqt a ∈ [0, b].

(I0q f)(x) = f(x), (Inq f)(x) = Iq(I
n−1
q f)(x), n ∈ N.

Definition 2.3. Let α > 0 and f(x) be a function defined on [0, 1]. The fractional q-integral of the
Riemann–Liouville type is

(I0q f)(x) = f(x),

(Iαq f)(x) =
1

Γq(α)

∫ x

0
(x− qt)(α−1)f(t)dqt, α > 0, x ∈ [0, 1],

where the Γq(α) function is defined by

Γq(α) =
(1− q)(α−1)

(1− q)α−1
,

and (1− q)α is defined by

(1− q)0 = 1, (1− q)α =
α−1∏
k=0

(1− qk), α ∈ N \ {0,−1,−2, . . .}.
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Definition 2.4. The fractional q-derivative of the Riemann–Liouville type of order α > 0 is defined by

(Dα
q f)(x) = (Dm

q I
m−α
q f)(x), α > 0, x ∈ [0, 1],

where m is the smallest integer greater than or equal to α. In the particular case,

(I0q f)(x) = f(x).

Let

(Gα)(t, s) =
1

Γq(α)

{
(t(1− s))α−1 − (t− s)α−1, 0 < s ≤ t ≤ 1,

(t(1− s))α−1, 0 < t ≤ s ≤ 1, α > 0.
(2.1)

Gα is a nonnegative continuous function on [0, 1]× [0, 1].

Lemma 2.5 ([2]). Let 1 < α ≤ 2 and suppose that y(t) ∈ C[0, 1]. Then{
(Dα

q u)(t) + y(t) = 0, 0 < t < 1,

u(0) = u(1) = 0,

is equivalent to

u(t) =

∫ 1

0
Gα(t, qs)y(s)dqs.

If y(t) ≥ 0, t ∈ [0, 1], then u(t) ≥ 0, t ∈ [0, 1].

Lemma 2.6 ([5]). Let y(t) ∈ C[0, 1], 1 < α, β ≤ 2. Then the fractional q-difference{
Dβ
q (φµ(Dα

q u(t))) = y(t), 0 < t < 1,

u(0) = u(1) = 0, (Dα
q u)(0) = (Dα

q u)(1) = 0
(2.2)

is equivalent to

u(t) =

∫ 1

0

(
Gα(t, qs)φv

(∫ 1

0
Gβ(s, qτ)y(τ)dqτ

))
dqs.

Suppose
E =

{
u|u, φµ(Dα

q u) ∈ C2[0, 1]
}
.

The following definitions are about the upper and lower solutions to problem (1.1).

Definition 2.7. A function ϕ(t) ∈ E is called a lower solution to (1.1), if it satisfies{
Dβ
q (φµ(Dα

q ϕ(t))) ≤ f(t, ϕ(t)), 0 < t < 1,

ϕ(0) ≤ 0, ϕ(1) ≤ 0, Dα
q ϕ(0) ≥ 0, Dα

q ϕ(1) ≥ 0.

Definition 2.8. A function ϕ(t) ∈ E is called an upper solution to (1.1), if it satisfies{
Dβ
q (φµ(Dα

q ψ(t))) ≥ f(t, ψ(t)), 0 < t < 1,

ψ(0) ≤ 0, ψ(1) ≤ 0, Dα
q ψ(0) ≥ 0, Dα

q ψ(1) ≥ 0.

3. Main results

According to Lemma 2.6, we can define an operator as follows:

Tu(t) =

∫ 1

0

(
Gα(t, qs)φv

(∫ 1

0
Gβ(s, qτ)f(τ, u(τ))dqτ

))
dqs, u ∈ E.

By the continuity of Gα, Gβ, f and using the Arzela–Ascoli theorem, we can get that T : E → E is completely
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continuous operator, and the existence of a solution to problem (1.1) is equivalent to the existence of a fixed
point of T .

Suppose that the following assumptions are satisfied

(H1) f(t, u) ∈ C([0, 1]× [0,+∞), [0,+∞)), and f is increasing with respect to the second variable.

(H2) there exists a c < 1 and a k ∈ [0, 1], such that

f(t, ku) ≥ kc(µ−1)f(t, u), ∀t ∈ [0, 1],

where µ > 1.

Lemma 3.1. If u is a positive solution to (1.1), then there exist m1,m2 > 0, such that

m1ρ(t) ≤ u(t) ≤ m2ρ(t),

where

ρ(t) =

∫ 1

0

(
Gα(t, qs)φv

(∫ 1

0
Gβ(s, qτ)y(τ)dqτ

))
dqs.

Proof. It follows from u ∈ C[0, 1], so there exist an M > 0 such that |u(t)| ≤M , t ∈ [0, 1]. By (H2) we can
take

m1 = min
t∈[0,1],u∈[0,M ]

v−1
√
f(t, u(t)) > 0,

m2 = max
t∈[0,1],u∈[0,M ]

v−1
√
f(t, u(t)) > 0.

So

m1ρ(t) ≤ u(t) =

∫ 1

0

(
Gα(t, qs)φv

(∫ 1

0
Gβ(s, qτ)y(τ)dqτ

))
dqs ≤ m2ρ(t).

This completes the proof.

Theorem 3.2. Suppose that (H1) and (H2) are satisfied. Then (1.1) has a positive solution.

Proof. We prove the theorem in three steps as follows.
Step 1. The existence of upper and lower solutions for (1.1). Let

η(t) =

∫ 1

0

(
Gα(t, qs)φv

(∫ 1

0
Gβ(s, qτ)y(τ)dqτ

))
dqs.

Then by Lemma 2.6, we obtain a positive solution to the problem{
Dβ
q (φµ(Dα

q u(t))) = f(t, ρ(t)), 0 < t < 1,

u(0) = u(1) = 0, Dα
q u(0) = Dα

q u(1) = 0.
(3.1)

Furthermore,
η(0) = η(1) = 0, Dα

q η(0) = Dα
q η(1) = 0. (3.2)

By Lemma 3.1, there exist k1, k2 > 0, such that

k1ρ(t) ≤ η(t) ≤ k2ρ(t), ∀t ∈ [0, 1].

Let
ξ1(t) = δ1η(t), ξ2(t) = δ2η(t),

where

0 < δ1 < min{ 1

k2
, k

c
1−c

1 }, δ2 > max{ 1

k1
, k

c
1−c

2 }.
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Then

f(t, ξ1(t)) = f(t, δ1(t)) = f(t, δ1
η(t)

ρ(t)
ρ(t))

≥ (δ1
η(t)

ρ(t)
)c(µ−1)f(t, ρ(t))

≥ (δ1k1)
c(µ−1)f(t, ρ(t)) ≥ δµ−11 f(t, ρ(t)).

(3.3)

and
Dβ
q (φµ(Dα

q ξ1(t))) = Dβ
q (φµ(Dα

q δ1η(t))) = δµ−11 Dβ
q (φµ(Dα

q η(t))) = δµ−11 f(t, ρ(t)).

From (3.3), we have
ξ1(0) = ξ1(1) = 0, Dα

q ξ1(0) = Dα
q ξ1(1) = 0.

By Definition 2.7, ξ1(t) is a lower solution to (1.1).
On the other hand, by the definition of ξ2(t), we can obtain

δµ−12 f(t, ρ(t)) = δµ−12 f(t,
ρ(t)

ξ2(t)
ξ2(t)) = δµ−12 f(t,

ρ(t)

δ2ξ2(t)
ξ2(t))

≥ δµ−12 (
ρ(t)

δ2η(t)
)c(µ−1)f(t, ξ2(t)) ≥ δµ−12 (

ρ(t)

δ2k2
)c(µ−1)f(t, ξ2(t))

≥ δµ−12 (
1

δ2η(t)
)c(µ−1)f(t, ξ2(t)) ≥ δµ−12 (

1

δ2
)µ−1f(t, ξ2(t))

= f(t, ξ2(t)).

So

Dβ
q (φµ(Dα

q ξ2(t))) = Dβ
q (φµ(Dα

q δ2η(t)))

= δµ−12 Dβ
q (φµ(Dα

q η(t))) = δµ−12 f(t, ρ(t))

≥ f(t, ξ2(t)).

Similarly
ξ2(0) = ξ2(1) = 0, Dα

q ξ2(0) = Dα
q ξ2(1) = 0.

By Definition 2.8, ξ2(t) is an upper solution to (1.1).

Step 2. We prove that the following problem has a positive solution:{
Dβ
q (φµ(Dα

q u(t))) = g(t, u(t)), 0 < t < 1,

u(0) = u(1) = 0, Dα
q u(0) = Dα

q u(1) = 0.
(3.4)

where

g(t, u(t)) =


f(t, ξ1(t)), u(t) < ξ1(t),

f(t, u(t)), ξ1(t) ≤ u(t) ≤ ξ2(t),
f(t, ξ2(t)), u(t) > ξ2(t).

By Lemma 2.6, we need the following operator

Au(t) =

∫ 1

0

(
Gα(t, qs)φv

(∫ 1

0
Gβ(s, qτ)g(τ, u(τ))dqτ

))
dqs, u ∈ C[0, 1].

Now, we use the Schauder fixed point theorem to prove the existence of a fixed point of Au(t). In fact
f(t, u) is increasing with respect to u, so for any u ∈ C([0, 1], [0,+∞)), there exist g(t, u(t)) such that

f(t, ξ1(t)) ≤ g(t, u(t)) ≤ f(t, ξ2(t)).
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Since Gα, Gβ and f are continuous, then by the Arzela–Ascoli theorem, A is a compact operator. Thus,
by using the Schauder fixed point theorem, A has a fixed point, i.e., equation (3.4) has a positive solution,
denoted by u∗.

Step 3.
To prove that u∗ is also a solution to (1.1), we only need to prove that

ξ1(t) ≤ u∗(t)) ≤ ξ2(t), t ∈ [0, 1]. (3.5)

First we prove u∗(t) ≤ ξ2(t), t ∈ [0, 1]; one can prove another inequality in the same way.
Suppose u∗(t) > ξ2(t), t ∈ [0, 1]; we have g(t, u∗(t)) = f(t, ξ2(t)). We obtain

Dβ
q (φµ(Dα

q u
∗(t))) = f(t, ξ2(t)).

On the other hand, ξ2(t) is an upper solution, so we have

Dβ
q (φµ(Dα

q ξ2(t))) ≥ f(t, ξ2(t)).

Let z(t) = φµ(Dα
q ξ2(t))− φµ(Dα

q u
∗(t)), t ∈ [0, 1]. Therefore,

Dβ
q z(t) = Dβ

q (φµ(Dα
q ξ2(t)))−Dβ

q (φµ(Dα
q u
∗(t)))

≥ f(t, ξ2(t))− f(t, ξ2(t)) = 0.

Combined with the boundary conditions, z(0) = z(1) = 0 and by Lemma 2.5, we have z(t) ≤ 0, t ∈ [0, 1],
which implies that

φµ(Dα
q ξ2(t)) ≤ φµ(Dα

q u
∗(t)), t ∈ [0, 1].

Since φµ is monotone increasing, we obtain Dα
q (ξ2(t)) ≤ Dα

q u
∗(t), t ∈ [0, 1], that is Dα

q (ξ2(t) − u∗(t)) ≤ 0,
t ∈ [0, 1]. Using Lemma 2.5, we get ξ2(t)− u∗(t) ≥ 0, t ∈ [0, 1], a contradiction.

Inequality (3.5) shows that u∗ is also a positive solution to (1.1). Furthermore f(t, 0) 6= 0, that is to
say, 0 is not a fixed point of the operator T , therefore, u∗ is a positive solution to (1.1). This completes the
proof.
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