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Abstract

In this paper, we study the following fractional Schrödinger-poisson systems involving fractional Lapla-
cian operator {

(−∆)su+ V (|x|)u+ φ(|x|, u) = f(|x|, u), x ∈ R3,
(−∆)tφ = u2, x ∈ R3,

(1)

where (−∆)s(s ∈ (0, 1)) and (−∆)t(t ∈ (0, 1)) denotes the fractional Laplacian. By variational methods, we
obtain the existence of a sequence of radial solutions. c©2016 All rights reserved.
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1. Introduction

This paper is concerned with the existence and multiplicity of radial solutions to the following fractional
Schrödinger-poisson systems{

(−∆)su+ V (|x|)u+ φ(|x|, u) = f(|x|, u), x ∈ R3,
(−∆)tφ = u2, x ∈ R3,

(1.1)

where s, t ∈ (0, 1), V , φ is potential functions and f is a continuous function with some suitable growth
conditions. Here (−∆)s and (−∆)t is the so-called fractional Laplacian operator of order s, t ∈ (0, 1), which
can be characterized as (−∆)su = F−1(|ξ|2sFu), (−∆)tu = F−1(|ξ|2tFu), F denotes the usual Fourier
transform in R3.
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In the recent years, the study of fractional calculus and fractional integro-differential equations applied to
physics and other areas has grown, see, e.g. [10, 18–20, 24, 25, 34]. Very recently, the fractional Schrödinger
equation like equation (1.1) was introduced by Laskin (see [12, 13] and [14]), and comes from an expansion of
the Feynman path integral from Brownian-like to Lévy-like quantum mechanical paths. In Laskin’s studies,
the Feynman path integral leads to the classical Schrödinger equation and the path integral over Lévy tra-
jectories leads to the fractional Schrödinger equation. The fractional Schrödinger equation appears in many
areas such as quantum mechanics, financial market, phase transitions, anomalous diffusions, crystal dislo-
cations, soft thin films, semipermeable membranes, flame propagations, conservation laws, ultra-relativistic
limits of quantum mechanics, quasi-geostrophic flows, minimal surfaces, materials science, water waves. For
details see [5, 7, 11] for an introduction to its applications.

If s = t = 1, the system (1.1) reduces to the classical Schrödinger-Poisson system{
−∆u+ V (|x|)u+ φ(|x|, u) = f(|x|, u), x ∈ R3,
−∆φ = u2, x ∈ R3.

Several papers have dealt with this problem, see, e.g.,[1, 7] and references therein. In [28], the authors
proved the existence of a ground state solutions for the case when f is superlinear at infinity. Moreover,
infinitely many high energy solutions for the superlinear case were obtained in [7, 15] via the fountain
theorem. In [7], the following Ambrosetti-Rabinowitz condition ((AR) for short) was assumed, i.e., there
exists θ > 4 and L > 0 such that

0 < θF (x, u) ≤ uf(x, u), ∀x ∈ R3, |u| > L, (1.2)

where F is the primitives of f . It is well-known that the condition (AR) is crucial in verifying the boundedness
of the (PS)c, c ∈ R, sequence of the corresponding functional. Without condition (AR), this problem
becomes more complicated. In [7], by using the variant fountain theorem, the authors only considered the
case, where f(x, u) is odd in u and F (x, u) ≥ 0 for all x ∈ R3, u ∈ R. The natural question is whether
system (1.1) has infinitely many high energy solutions if f is odd but does not satisfy F (x, u) ≥ 0. To
answer these questions, we assume the following more natural conditions (F3) or (F4) and give a positive
answer. So, we generalize the result in [7], and deal with the Schrödinger-Poisson with fractional Laplacian
operator.

Moreover, the other main difficulty is to drive the boundedness of the (PS)c sequence of the corresponding
functional. To overcome this difficulty, we will employ the condition (F3) or (F4) to ensure the boundedness
of the (PS)c (or (C)c) sequence. If f(x, u) is odd in u, we obtain infinitely many high energy solutions by
using the symmetric mountain pass theorem ([22, Theorem 9.12]).

Recently, for the investigations about radial solutions, in the spirit of [4], Dipierro et al.[9] proved the
existence of a positive and spherically symmetric solution to the equation

(−∆)su+ u = |u|p−1u, x ∈ RN , (1.3)

for subcritical exponents 1 < p < (N + 2s)/(N − 2s), which generalized the results in [4] from the classical
Schrödinger equation to the fractional Schrödinger equation. On the other hand, the approach which they
used is a constrained minimization in [4]. But this approach cannot expect to work when V is non-constant.
When the nonlinearity f satisfies the general hypotheses introduced by Berestycki and Lions [4], Chang and
Wang [6] and Secchi [23] also proved the existence of a radially symmetric solution with the help of the
Pohozaev identity for (1.1).

Motivated by the above facts, in the present paper we will study the fractional Schrödinger equation
(1.1) with non-constant potential V and without (AR) type superlinear condition. Moreover, we use some
original arguments in [2, 3, 17] to establish the existence of infinitely many radial solutions. To state our
results, we make the following assumptions:

(V ) V ∈ C([0,+∞)) is bounded from below by a positive constant V0;
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(F1) f ∈ C([0,∞)× R,R), and there exist constants a1, a2 > 0 and q ∈ (2, 2∗s) such that

|f(r, u)| ≤ a1 + a2|u|q−1, ∀r ≥ 0, u ∈ R,

where 2∗s = 2N
N−2s ; f(r, u) = o(|u|) as |u| → 0 uniformly in r;

(F2) lim|u|→∞
F (r,u)
|u|4 =∞, a.e. for r ∈ [0,+∞). There exists L ≥ 0 such that

F (r, u) ≥ 0, ∀u ∈ R and |u| ≥ L;

(F3) there exists L > 0 such that

F(r, u) =
1

4
uf(r, u)− F (r, u) ≥ 0, ∀r ≥ 0, and |u| ≥ L;

(F4) there exist θ ≥ 1 such that

θF(r, u) ≥ F(r, τu), ∀r ≥ 0, u ∈ R, and τ ∈ [0, 1];

(F5) f(r,−u) = −f(r, u) for any u ∈ R and r ≥ 0.

For convenience, let I(u) denote the energy of the solution u (I will be defined later). The main results
of this paper are the following theorems.

Theorem 1.1. Assume that (F1), (F2), (F3), (F5) and (V ) hold. Then when s, t ∈ (0, 1) satisfying 4s+2t ≥ 3,
the problem (1.1) has a sequence of radial solutions {un} such that I(un)→∞ as n→∞.

Theorem 1.2. Assume that (F1), (F2), (F4), (F5) and (V ) hold. Then when s, t ∈ (0, 1) satisfying 4s+2t ≥ 3,
the problem (1.1) has a sequence of radial solutions {un} such that I(un)→∞ as n→∞.

Remark 1.3. The (AR) conditions implies (F2) and (F3) were introduced in [21, 24, 26, 27, 31–33, 33]. And
our conditions are weaker than (AR) condition used in [2, 3, 17, 30].

Remark 1.4. Condition (F4), which is weaker than the assumption that: (F ′4) f(|x|,u)
u3

is increasing in u > 0
and decreasing in u < 0. Which is originally due to Jeanjean[11] for semilinear problem in RN .

2. Preliminaries

In the sequel, s will denote a fixed number, s ∈ (0, 1), we denote by ‖ · ‖p the usual norm of the space
Lp(R3), c, ci or Ci stand for different positive constants.

Recall that the fractional Sobolev space is defined by

Hs(R3) =

{
u ∈ L2(R3) :

|u(x)− u(y)|
|x− y|

3
2

+s
∈ L2(R3 × R3)

}
,

and endowed with the standard norm

‖u‖Hs =

(∫
R3

|u|2dx+

∫
R3

∫
R3

|u(x)− u(y)|2

|x− y|3+2s
dxdy

) 1
2

,

while

[u]Hs =

(∫
R3

∫
R3

|u(x)− u(y)|2

|x− y|3+2s
dxdy

) 1
2
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is the Gagliardo (semi)norm. The space Hs(R3) can also be described by means of the Fourier transform.
Indeed, it is defined by

Hs(R3) = {u ∈ L2(R3) :

∫
R3

(1 + |ξ|2)s|Fu(ξ)|2)dξ <∞},

and the norm is defined as

‖u‖Hs =

(∫
R3

(1 + |ξ|2)s|Fu(ξ)|2)dξ

) 1
2

.

Now, we introduce the definition of Schwartz function S (is dense in Hs(R3)), that is, the rapidly
decreasing C∞ function on R3. If u ∈ S, the fractional Laplacian (−∆)s acts on u as

(−∆)su(x) = C(s)P.V.

∫
R3

u(x)− u(y)

|x− y|3+2s
dy

= C(s) lim
ε→0+

∫
R3\B(0,ε)

u(x)− u(y)

|x− y|3+2s
dy,

the symbol P.V. represents the principal value integrals, the constant C(s) depends only on the space
dimension and the order s. In [8], the authors show that for u ∈ S,

(−∆)su = F−1(|ξ|2sFu),

and that

[u]2Hs =
2

C(s)

∫
R3

|ξ|2s|Fu|2dξ.

Moreover, by the Plancherel formula in Fourier analysis, we get

[u]2Hs =
2

C(s)
‖(−∆)

s
2 ‖22.

Therefore, the norms on Hs(R3) defined below,

u 7→
(∫

R3

|u|2dx+

∫
R3

∫
R3

|u(x)− u(y)|2

|x− y|3+2s
dxdy

) 1
2

u 7→
(∫

R3

(1 + |ξ|2)s|Fu(ξ)|2)dξ

) 1
2

u 7→
(∫

R3

|u|2dx+

∫
R3

|ξ|2s|Fu(ξ)|2)dξ

) 1
2

u 7→
(∫

R3

|u|2dx+ ‖(−∆)
s
2u‖22

) 1
2

,

are all equivalent.
For our problem (1.1), we define the working space H as follows

H =

{
u ∈ Hs(R3) :

∫
R3

|ξ|2s|Fu|2dξ +

∫
R3

V (|x|)|u|2dx < +∞
}
,

and it is endowed with the inner product and norm given by

(u, v) =

∫
R3

|ξ|2sFu(ξ)Fv(ξ)dξ +

∫
RN

V (|x|)uvdx,



H. Luo, X. Tang, J. Nonlinear Sci. Appl. 9 (2016), 3808–3821 3812

and

‖u‖ =

(∫
R3

|ξ|2s|Fu(ξ)|2dξ +

∫
R3

V (|x|)|u|2dx
) 1

2

.

The homogeneous Sobolev space Dt,2(R3) is defined by

Dt,2(R3) = {u ∈ L2∗t (R3) : |ξ|tû(ξ) ∈ L2(R3)},

which is the completion of C∞0 (R3) under the norm

‖u‖2Dt,2 =

∫
R3

|(−∆)
t
2u|2dx =

∫
R3

|ξ|2t|û(ξ)|2dξ,

and the inner product

(u, v)Dt,2 =

∫
R3

(−∆)
t
2u(−∆)

t
2 vdx.

For the proof of Theorem 1.1, we denote by E the radial symmetric functions space of H, namely,

E := Hr = {u ∈ H : u(x) = u(|x|)} .

For the proof of Theorem 1.2, following [2], we choose an integer 2 ≤ m ≤ N
2 with 2m 6= N − 1, write

elements of R3 = Rm × Rm × R3−2m as x = (x1, x2, x3) with x1, x2 ∈ Rm and x3 ∈ R3−2m. Consider the
action of

Gm := O(m)×O(m)×O(3− 2m),

on H is defined by
gu(x) := u(g−1x).

Let τ ∈ O(N) be the involution given by τ(x1, x2, x3) = (x2, x1, x3). The action of G := {id, τ} on

Fix(Gm) := {u ∈ H : gu = u, ∀g ∈ Gm},

is defined by

hu(x) :=

{
u(x), if h = id,
−u(h−1x), if h = τ.

Set
E := Fix(G) = {u ∈ Fix(Gm) : hu = u, ∀ h ∈ G}.

Note that 0 is the only radially symmetric function in E for this case. Moreover, we need the following
embedding theorem also due to [16].

Lemma 2.1. E embeds continuously into Lp(R3) for 2 ≤ p ≤ 2∗s := 6
3−2s , and E embeds compactly into

Lp(R3) for all p ∈ (2, 2∗s).

It follows from Lemma 2.1 that there exists constant γp > 0 such that

‖u‖p ≤ γp‖u‖, ∀ u ∈ E, p ∈ [2, 2∗s].

Lemma 2.2. For any t ∈ (0, 1), Dt,2(R3) is continuously embedded into L2∗t (R3), i.e., there exists St > 0
such that

(

∫
R3

|u|2∗t dx)
2
2∗t ≤ St

∫
R3

|(−∆)
t
2u|2dx, ∀u ∈ Dt,2(R3).

It is easy to reduce (1.1) to a single equation. Indeed, if 2t+ 4s ≥ 3, then 12
3+2t ≤ 2∗s = 6

3−2s , so we can
use the following embedding:

E ↪→ L
12

3+2t (R3),



H. Luo, X. Tang, J. Nonlinear Sci. Appl. 9 (2016), 3808–3821 3813

and the Hölder inequality, for every u ∈ E∫
R3

u2vdx ≤ (

∫
R3

|u|
12

3+2t
dx)

3+2t
6 (

∫
R3

|v|2∗t dx)
1
2∗t

≤ St‖u‖2
L

12
3+2t
‖v‖Dt,2

≤ StC 12
3+2t
‖u‖2‖v‖Dt,2 .

(2.1)

Thus, by the Lax-Milgram theorem, there exists a unique φtu ∈ Dt,2(R3) such that∫
R3

v(−∆)tφtudx =

∫
R3

(−∆)
t
2φtu(−∆)

t
2 vdx =

∫
R3

u2vdx, v ∈ Dt,2(R3). (2.2)

Therefore, φtu satisfies the Poisson equation

(−∆)tφtu = u2, x ∈ R3,

and we write the integral expression for φtu in the form:

φtu(x) = ct

∫
R3

u2(y)

|x− y|3−2t
dy, x ∈ R3, (2.3)

The ct is called t-Riesz potential, where

ct = π−
3
2 2−2tΓ(3

2 − 2t)

Γ(t)
.

It follows from (2.3) that φtu(x) ≥ 0 for all x ∈ R3.
Combining (2.1) and (2.2), we have

‖φtu‖2Dt,2 =

∫
R3

|(−∆)
t
2φtu|2dx

=

∫
R3

(−∆)
t
2φtu(−∆)

t
2φtudx

=

∫
R3

(−∆)tφtuφ
t
udx

=

∫
R3

u2φtudx

≤ St‖u‖2
L

12
3+2t
‖φtu‖Dt,2 ,

(2.4)

with the embedding E ↪→ L
12

3+2t (R3) (if 2t+ 4s ≥ 3) we have:

‖φtu‖Dt,2 ≤ St‖u‖2
L

12
3+2t
≤ C1‖u‖2.

Hence, by Lemma 2.1, Lemma 2.2 and the Hölder inequality we have∫
R3

φtuu
2dx ≤ (

∫
R3

|φtu|2
∗
t dx)

1
2∗t (

∫
R3

|u2|
6

3+2tdx)
3+2t

6

≤ C̃1‖φtu‖Dt,2‖u‖2

≤ C̃2‖u‖4,

(2.5)

where C̃1, C̃2 > 0. Substituting (2.3) into (1.1), we can rewrite (1.1) in the following equivalent form

(−∆)su+ V (x)u+ φtuu = f(x, u), x ∈ R3.
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Next, on E we define the following energy functional

I(u) =
1

2
‖u‖2 +

1

4

∫
R3

φtuu
2dx−

∫
R3

F (|x|, u)dx, (2.6)

and we have the following fact.

Lemma 2.3. Assume that (V ) and (F1)–(F2) hold, then I ∈ C1(E,R) and

〈I ′(u), v〉 = (u, v) +

∫
R3

φtuuvdx−
∫
R3

f(|x|, u)vdx. (2.7)

Furthermore, the critical points of I are solutions of problem (1.1).

Proof. For convenience, set

J (u) =

∫
R3

F (|x|, u)dx.

By (F1) and (F2), for any ε > 0, there is Cε > 0 such that

|f(|x|, u)| ≤ ε|u|+ Cε|u|q−1 and |F (|x|, u)| ≤ ε

2
|u|2 +

Cε
q
|u|q. (2.8)

For any u, v ∈ E and 0 < |t| < 1, by mean value theorem and (2.5), there exists 0 < θ < 1 such that

|F (|x|, u+ tv)− F (|x|, u)|
|t|

≤ |f(|x|, u+ θtv)v|

≤ ε|u+ θtv||v|+ Cε|u+ θtv|q−1|v|
≤ ε|u||v|+ ε|v|2 + Cε|u+ θtv|q−1|v|
≤ ε|u||v|+ ε|v|2 + 2q−1Cε(|u|q−1|v|+ |v|q).

The Hölder inequality implies that

ε|u||v|+ ε|v|2 + 2q−1Cε(|u|q−1|v|+ |v|q) ∈ L1(R3).

Consequently, by the Lebesgue’s Dominated Theorem, we have

〈J ′(u), v〉 =

∫
R3

f(|x|, u)vdx, ∀ u, v ∈ E.

Next, we show that J ′ : E → E∗ is weak continuous. Assume that un ⇀ u in E, by Lemma 2.1, we get

un → u in Lp(R3), for p ∈ (2, 2∗s).

Note that
‖J ′(un)− J ′(u)‖E∗ = sup

‖v‖≤1
|〈J ′(un)− J ′(u), v〉|

≤ sup
‖v‖≤1

∫
RN
|f(|x|, un)− f(|x|, u)||v|dx.

By the Hölder inequality and Theorem A.4 in [29], we have

sup
‖v‖≤1

∫
RN
|f(|x|, un)− f(|x|, u)||v|dx→ 0, as n→∞,

thus,
‖J ′(un)− J ′(u)‖E∗ → 0, as n→∞.
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In a similar discussion, set

Ψ(u) =
1

4

∫
R3

φtuu
2dx,

we have

〈Ψ′(u), v〉 =

∫
R3

φtuuvdx, ∀ u, v ∈ E,

and Ψ′ is weak continuous.
Therefore, I ∈ C1(E,R) and

〈I ′(u), v〉 = (u, v) +

∫
R3

φtuuvdx−
∫
R3

f(|x|, u)vdx.

Moreover, it is a standard way to verify that critical points of I are solutions of problem (1.1) (see
[29]).

To prove our results, we need the principle of symmetric criticality theorem (see ([29], Theorem 1.28))
as follows.

Lemma 2.4. Assume that the action o the topological group G on the Hilbert space X is isometric. If
Φ ∈ C1(X,R) is invariant and if u is a critical point of Φ restricted to Fix(G), then u is a critical point of
Φ.

It follows from Lemma 2.4 that we know that if u is a critical point of Φ := I|E , then u is a critical
point of I. Moreover, we say that Φ ∈ C1(E,R) satisfies (C)c-condition if any sequence {un} such that

Φ(un)→ c, ‖Φ′(un)‖(1 + ‖un‖)→ 0,

has a convergent subsequence.

Lemma 2.5. Assume that (V ), (F1)–(F3) and 2t+ 4s ≥ 3 hold. Then Φ satisfies the (C)c-condition.

Proof. Let {un} ⊂ E be a (C)c-sequence, then

Φ(un)→ c > 0, 〈Φ′(un), un〉 → 0. (2.9)

To prove the boundedness of {un}, arguing by contradiction, assume that ‖un‖ → ∞. Let vn = un
‖un‖ ,

then ‖vn‖ = 1 and ‖vn‖p ≤ γp‖vn‖ = γp for 2 ≤ s < 2∗s. Passing to a subsequence, we may assume that
vn ⇀ v in E, vn → v in Lp for 2 < p < 2∗s and vn ⇀ v a.e. in R3.

First, we consider the case that v 6= 0. Set

Ω := {x ∈ R3 : v(x) 6= 0},

then meas(Ω) > 0. For x ∈ Ω, we have |un| → ∞ as n→∞, so that, using (F2), for all x ∈ Ω,

F (|x|, un)

‖un‖4
=
F (|x|, un)

|un|4
|un|4

‖un‖4
=
F (|x|, un)

|un|4
|vn|4 → +∞, as n→∞,

and then, via Fatou’s Lemma, ∫
Ω

F (|x|, un)

‖un‖4
dx→ +∞ as n→∞. (2.10)

On the other hand, by (F2), there exists L > 0 such that

F (|x|, u) ≥ 0, ∀x ∈ R3, |u| > L. (2.11)
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Moreover, it follows from (F1) that for any ε > 0 there exists c(ε) > 0 such that for all x ∈ R3, |u| ≤ L,
we have

|f(|x|, u)| ≤ ε|u|+ c(ε)|u|p. (2.12)

Then, by the mean value theorem, for all |u| < L, we obtain,

|F (|x|, u)| = |F (|x|, u)− F (|x|, 0)| =
∫ 1

0
|f(|x|, ηu)u|dη

≤ ε

2
|u|2 +

c(ε)

p
|u|p

≤ c1|u|2,

(2.13)

where c1 = ε
2 + c(ε)L

p−2

p > 0. Combining this with (2.11), we have

F (|x|, u) ≥ −c1|u|2, ∀(x, u) ∈ R3 × R,

which implies that there exists c2 > 0 such that

F (|x|, un) ≥ −c2|un|2, for all x ∈ R3\Ω.

Hence,we obtain ∫
R3\Ω

F (|x|, un)

‖un‖4
dx ≥ − c2

‖un‖4

∫
R3\Ω

|un|2dx

≥ − c2

‖un‖4

∫
R3

|un|2dx

≥ −c3
‖un‖2

‖un‖4
, c3 > 0,

(2.14)

which implies that

lim inf
n→∞

∫
R3\Ω

F (|x|, un)

‖un‖4
dx ≥ 0. (2.15)

So, combining (2.10) with (2.15), one has

lim
n→∞

∫
R3

F (|x|, un)

‖un‖4
dx = lim

n→∞
(

∫
Ω

+

∫
R3\Ω

)
F (|x|, un)

‖un‖4
dx = +∞. (2.16)

It follows from (2.5), (2.16) and Fatou’s Lemma that

0 = lim
n→∞

c+ o(1)

‖un‖4
= lim

n→∞

Φ(un)

‖un‖4

= lim
n→∞

[
1

2‖un‖2
+

1

4

∫
R3

φtunu
2
n

‖un‖4
dx−

∫
R3

F (|x|, un)

‖un‖4
dx

]
=

1

4
C̃2 − lim

n→∞

∫
R3

F (|x|, un)

‖un‖4
dx

= −∞,

(2.17)

which is a contradiction.
Next, we consider the case that v = 0, then vn → 0 in Lp for 2 ≤ p < 2∗s. It follows from (2.12) and

(2.13) that, for all x ∈ R3 and |u| ≤ L,

|uf(|x|, u)− 4F (|x|, u)| ≤ (ε+ 4a1)|u|2 + c(ε)|u|p ≤ c4|u|2, (2.18)
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where c4 = (ε+ 4a1) + c(ε)Lp−2 > 0. This, together with (F3), obtain that

uf(|x|, u)− 4F (|x|, u) ≥ −c5|u|2, ∀(x, u) ∈ R3 × R, (2.19)

where c5 > 0 is a constant. Therefore, from (2.9) and (2.19), for the n large enough, we get

c+ o(1) = Φ(un)− 1

4
〈Φ′(un), un〉

=
1

4
‖un‖2 +

1

4

∫
R3

(f(|x|, un)un − 4F (|x|, un))dx

≥ 1

4
‖un‖2 −

1

4
c5

∫
R3

|un|2dx

=
1

4
(1− c5

∫
R3

|vn|2dx)‖un‖2

→∞, as n→∞,

(2.20)

which is a contradiction. In any case, we deduce a contradiction. Hence {un} is bounded in E.

Next, we verify {un} has a convergent subsequence. Passing to a subsequence if necessary, we may
assume un ⇀ u in E and un → u in Lp for all 2 ≤ p < 2∗s. According to (2.12), we have∫

R3

|f(|x|, un)− f(|x|, u)||un − u|dx ≤
∫
R3

(|f(|x|, un)|+ |f(|x|, u)|)|un − u|dx

≤
∫
R3

(
ε|un|+ Cε|un|q−1 + ε|u|+ Cε|u|q−1

)
|un − u|dx

≤ εC + Cε

(∫
R3

|un|qdx
) q−1

q
(∫

R3

|un − u|qdx
) 1
q

→ 0, as n→∞.

(2.21)

Observe that
‖un − u‖2 = 〈un − u, un − u〉

= ‖un‖2 + ‖u‖2 − 2〈un, u〉

= 〈Φ′(un), un〉 −
∫
R3

φtunu
2
ndx+

∫
R3

f(|x|, un)undx

+ 〈Φ′(u), u〉 −
∫
R3

φtuu
2dx+

∫
R3

f(|x|, u)udx− 2〈un, u〉

= 〈Φ′(un)− Φ′(u), un − u〉 −
∫
R3

(φtunun − φ
t
uu)(un − u)dx

+

∫
R3

[f(|x|, un)− f(|x|, u)](un − u)dx.

(2.22)

Because Φ′ is weak continuous, it is clear that

〈Φ′(un)− Φ′(u), un − u〉 → 0, as n→∞. (2.23)

Moreover, by the Hölder inequality, Sobolev inequality, we have

|
∫
R3

φtunun(un − u)dx| ≤ (

∫
R3

|φtun |
2∗t dx)

1
2∗t (

∫
R3

|un|
12

3+2tdx)
3+2t
12 (

∫
R3

|un − u|
12

3+2tdx)
3+2t
12

≤ StC 12
3+2t
‖φun‖Dt,2‖un‖‖un − u‖

≤ c6‖un‖3‖un − u‖
→ 0, as n→∞.

(2.24)
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Similarly, we obtain ∫
R3

φtuu(un − u)dx→ 0, as n→∞. (2.25)

Thus, ∫
R3

(φtunun − φ
t
uu)(un − u)dx→ 0, as n→∞. (2.26)

From (2.21)–(2.26) , we get
‖un − u‖ → 0, as n→∞.

Lemma 2.6. Assume that (V ), (F1), (F2), (F4) hold. Then Φ satisfies the (C)c-condition.

Proof. Like in the proof of Lemma 2.5, it suffices to consider the case v 6= 0 and v = 0, the (C)c sequence
{un} is bounded in E.

If v 6= 0, the proof is identical to that of Lemma 2.5.
If v = 0, inspired by [11], we choose a sequence {η} ⊂ R such that

Φ(ηnun) = max
η∈[0,1]

Φ(ηun).

Fix any m > 0, letting wn =
√

4mvn, one has

wn → 0 in Lp(R3), 1 ≤ p < 2∗s,

wn → 0, a.e. x ∈ R3.
(2.27)

Then, by (2.12), (2.27) and Lebesgue dominated convergence theorem,

lim
n→∞

∫
R3

F (|x|, wn)dx ≤ lim
n→∞

(
ε

2

∫
R3

|wn|2dx+
c(ε)

p

∫
R3

|wn|pdx) = 0.

So, for n sufficiently large, we obtain

Φ(ηnun) ≥ Φ(wn) = 2m+
1

4

∫
R3

φtwnw
2
ndx−

∫
R3

F (|x|, wn)dx ≥ 2m,

which implies that liminfn→∞Φ(ηnun) ≥ 2m. By the arbitrariness of m, we have

lim
n→∞

Φ(ηnun) = +∞.

Since Φ(0) = 0 and Φ(un) → c as n → ∞, Φ(ηun) attains maximum at ηn ∈ (0, 1). Thus,
〈Φ′(ηnun), ηnun〉 = o(1) for large n. Therefore, using (F4),

Φ(un)− 1

4
〈Φ′(un), un〉 =

1

4
‖un‖2 +

1

4

∫
R3

(f(|x|, un)un − 4F (|x|, un))dx

=
1

4
‖un‖2 +

1

4

∫
R3

F(|x|, un)dx

≥ 1

4θ
‖ηnun‖2 +

1

4θ

∫
R3

F(|x|, ηnun)dx

=
1

θ
[
1

4
|ηnun‖2 +

1

4

∫
R3

(f(|x|, ηnun)ηnun − 4F (|x|, ηnun))dx]

=
1

θ
(Φ(ηnun)− 1

4
〈Φ′(ηnun), ηnun〉)→ +∞ as n→∞.

This contradicts (2.9). In any case, we deduce that the (C)c sequence {un} is bounded in E. This completes
the proof.
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3. Proof of Theorems 1.1 and 1.2

To prove our results, we need the following Symmetric Mountain Pass Theorem ([22], Theorem 9.12)

Lemma 3.1. Let X be an infinite dimensional Banach space, X = Y ⊕ Z, and Y is finite dimensional. If
Φ ∈ C1(X,R) satisfies (C)c-condition for all c > 0, and

(I1) Φ(0) = 0, Φ(−u) = Φ(u) for all u ∈ X;

(I2) there exist constants ρ, α > 0 such that Φ|∂Bρ∩Z ≥ α;

(I3) for any finite dimensional subspace X̃ ⊂ X, there is R = R(X̃) > 0 such that Φ(u) ≤ 0 on X̃ \BR.

Then Φ possesses an unbounded sequence of critical values.

Let {ei} is a total orthonormal basis of E and define Xi = Rei, then E =
⊕∞

i=1Xi, let

Yn =
n⊕
i=1

Xi, Zn =
∞⊕

j=n+1

Xi, n ∈ Z.

Then E = Yn ⊕ Zn, and Yn is a finite dimensional space.

Lemma 3.2. Assume that (F1), (F2), (F3) (or (F4)) hold. Then there are constants ρ, α > 0 such that
Φ|∂Bρ∩Zn ≥ α.

Proof. For any u ∈ Zn, from Lemma 2.1, (2.12) and φtu ≥ 0, we can choose ε > 0 small enough such that

Φ(u) =
1

2
‖u‖2 +

1

4

∫
R3

φtuu
2dx−

∫
R3

F (|x|, u)dx

≥ 1

2
‖u‖2 − ε

2
‖u‖22 −

Cε
q
‖u‖qq

≥ 1

2
‖u‖2 − γ2

2ε

2
‖u‖2 − γqqCε

q
‖u‖q.

Thus, we can choose constants ρ, α > 0 such that Φ|∂Bρ∩Zn ≥ α, the proof is complete.

Lemma 3.3. Assume that (F1), (F2), (F3) (or (F4)) hold, for any finite dimensional subspace Ẽ ⊂ E, there
holds

Φ(u)→ −∞, ‖u‖ → ∞, u ∈ Ẽ. (3.1)

Proof. Arguing indirectly, assume that for some sequence {un} ⊂ Ẽ with ‖un‖ → ∞, there exists M > 0
such that Φ(un) ≥ −M for all n ∈ N. Let vn = un

‖un‖ , then ‖vn‖ = 1. Passing to a subsequence, we may

assume that vn ⇀ v1 in E. Since Ẽ is finite dimensional, then vn → v1 ∈ Ẽ in E, vn → v1 a.e. on RN ,
and so ‖v1‖ = 1. Hence, we can conclude a contradiction by a similar fashion as (2.17). Then, the desired
conclusion is obtained.

Corollary 3.4. Assume that (F1), (F2), (F3) (or (F4)) hold, for any finite dimensional subspace Ẽ ⊂ E,
there exists R = R(Ẽ) > 0 such that

Φ(u) ≤ 0, ∀u ∈ Ẽ, ‖u‖ ≥ R. (3.2)

Proof of Theorem 1.1 (or 1.2). We only need to verify the conditions of Lemma 3.1. Let X = E, Y = Yn
and Z = Zn, then E = Y ⊕ Z. Moreover, Y is finite dimensional. From (F5), we know Φ is even. Clearly,
Φ(0) = 0. Lemma 2.5 (or Lemma 2.6) implies Φ satisfies (C)c-condition. Lemma 3.2 and Corollary 3.4 imply
(I2) and (I3) of Lemma 3.1 are satisfied. Thus, by Lemma 3.1, Φ possesses a sequence of radial critical
points {un} ⊂ E such that Φ(un)→∞ as n→∞, i.e., the problem (1.1) has a sequence of radial solutions
{un} such that Φ(un)→∞ as n→∞.
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