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Abstract

In this paper, we present a fixed point theorem for multivalued mappings on generalized metric space in
the sense of Jleli and Samet [M. Jleli, B. Samet, Fixed Point Theory Appl., 2015 (2015), 61 pages]. In fact,
we obtain as a spacial case both b-metric version and dislocated metric version of Feng-Liu’s fixed point
result. c©2016 All rights reserved.
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1. Introduction and Preliminaries

Let X be any nonempty set. An element x ∈ X is said to be a fixed point of a multivalued mapping
T : X → P (X) if x ∈ Tx, where P (X) denotes the family of all nonempty subsets of X. Let (X, d) be a
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metric space. We denote the family of all nonempty closed and bounded subsets of X by CB(X) and the
family of all nonempty closed subsets of X by C(X). For A,B ∈ C(X), let

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
,

where d(x,B) = inf {d(x, y) : y ∈ B}. Then H is called generalized Pompei-Hausdorff distance on C(X). It
is well known that H is a metric on CB(X), which is called Pompei-Hausdorff metric induced by d. We can
find detailed information about the Pompeiu-Hausdorff metric in [3, 10].

Let T : X → CB(X). Then, T is called multivalued contraction if there exists L ∈ [0, 1) such that
H(Tx, Ty) ≤ Ld(x, y) for all x, y ∈ X (see [16]). In 1969, Nadler [16] proved that every multivalued con-
traction on complete metric space has a fixed point. Then, the fixed point theory of multivalued contraction
has been further developed in different directions by many authors, in particular, by Reich [17], Mizoguchi-
Takahashi [15], Klim-Wardowski [14], Berinde-Berinde [2], Ćirić [4] and many others [5, 6, 12, 18]. Also,
Feng and Liu [8] gave the following theorem without using generalized Pompei-Hausdorff distance. To state
their result, we give the following notation for a multivalued mapping T : X → C(X): let b ∈ (0, 1) and
x ∈ X define

Ixb (T ) = {y ∈ Tx : bd(x, y) ≤ d(x, Tx)}.

Theorem 1.1 ([8]). Let (X, d) be a complete metric space and T : X → C(X). If there exists a constant
c ∈ (0, 1) such that there is y ∈ Ixb (T ) satisfying

d(y, Ty) ≤ cd(x, y)

for all x ∈ X. Then T has a fixed point in X provided that c < b and the function x → d(x, Tx) is lower
semicontinuous.

As mentioned in Remark 1 of [8], we can see that Theorem 1.1 is a real generalization of Nadler’s.
The aim of this paper is to present Feng-Liu type fixed point results for multivalued mappings on some

generalized metric space such as b-metric spaces and dislocated metric spaces. To do this, we will consider
JS-metric on a nonempty set.

Let X be a nonempty set and D : X ×X → [0,∞] be a mapping. For every x ∈ X define a set

C(D,X, x) = {{xn} ⊂ X : lim
n→∞

D(xn, x) = 0}.

In this case, we say that D is a generalized metric in the sense of Jleli and Samet [11] (for short JS-metric)
on X if it satisfies the following conditions:

(D1) for every (x, y) ∈ X ×X, D(x, y) = 0⇒ x = y;

(D2) for every (x, y) ∈ X ×X, D(x, y) = D(y, x);

(D3) there exists c > 0 such that for every (x, y) ∈ X ×X and {xn} ∈ C(D,X, x),

D(x, y) ≤ c lim sup
n→∞

D(xn, y).

In this case (X,D) is said to be JS-metric space. Note that, if C(D,X, x) = ∅ for all x ∈ X, then
(D3) is trivially hold. The class of JS-metric space is larger than many known class of metric space. For
example, every standard metric space, every b-metric space, every dislocated metric space (in the sense of
Hitzler-Seda [9]), and every modular space with the Fatou property is a JS-metric space. For more details
see [11].

Let (X,D) be a JS-metric space, x ∈ X, and {xn} be a sequence in X. If {xn} ∈ C(D,X, x), then {xn}
is said to be converges to x. If limn,m→∞D(xn, xn+m) = 0, then {xn} is said to be Cauchy sequence. If every
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Cauchy sequence in (X,D) is convergent, then (X,D) is said to be complete. By Proposition 2.4 of [11], we
see that every convergent sequence in (X,D) has a unique limit. That is, if {xn} ∈ C(D,X, x)∩C(D,X, y),
then x = y.

After the introducing the JS-metric space, Jleli and Samet [11] presented some fixed point results in-
cluding Banach contraction and Ćirić type quasicontraction mappings.

2. Main result

Let (X,D) be a JS-metric space and U ⊆ X. We say that U is sequentially open if for each sequence
{xn} in X such that limn→∞D(xn, x) = 0 for some x ∈ U is eventually in U , that is, there exists n0 ∈ N
such that xn ∈ U for all n ≥ n0. Let τJS be the family of all sequentially open subsets of X, then it is easy
to see that (X, τJS) is a topological space. Further, a sequence {xn} is convergent to x in (X,D) if and only
if it is convergent to x in (X, τJS). Let C(X) be the family of all nonempty closed subsets of (X, τJS) and
let Λ be the family of all nonempty subsets A of X satisfying the following property: for all x ∈ X,

D(x,A) = 0⇒ x ∈ A,

where D(x,A) = inf{D(x, y) : y ∈ A}. In this case, C(X) = Λ. Indeed, let A ∈ C(X) and x ∈ X. If
D(x,A) = 0, then there exists a sequence {xn} in A such that limn→∞D(x, xn) = 0. Therefore, by the
definition of the topology τJS , for any U ∈ τJS including the point x, there exists nU ∈ N such that xn ∈ U
for all n ≥ nU . In this case, we have U ∩A 6= ∅, that is, x ∈ A = A. Hence C(X) ⊆ Λ. Now, let A ∈ Λ. We
will show that A ∈ C(X). Let x ∈ X\A and {xn} be a sequence in X such that limn→∞D(xn, x) = 0. If
there exists a subsequence {xnk

} of {xn} such that {xnk
} ⊂ A, then we get D(x,A) = 0. Since A ∈ Λ, then

x ∈ A. This is a contradiction. Therefore, there exists n0 ∈ N such that xn ∈ X\A for all n ≥ n0. This
shows that X\A ∈ τJS , and so A ∈ C(X). As a consequence we get C(X) = Λ.

Now we will consider the following special cases for τJS :
Let (X,D) be a metric space. Then it is clear that τJS coincides with the metric topology τD.
Let (X,D) be a b-metric space. In this case, there are three topologies on X as follows: First is sequential

topology τs, which is defined as in Definition 3.1 (3) of [1]. Second is the τD topology [13], which is the
family of all open subsets of X in the usual sense, that is, a subset U of X is open if for any x ∈ U , there
exists ε > 0 such that

B(x, ε) := {y ∈ X : D(x, y) < ε} ⊆ U.

Third is the τD topology, which the family of all finite intersections of

C = {B(x, ε) : x ∈ X, r > 0},

satisfies conditions (B1)–(B2) of ([7], Proposition 1.2.1) is a base of τD. By Proposition 3.3 of [1], we know
that τs = τD ⊂ τD. Also by Definition 2.1 and Theorem 3.4 of [1], we can see that τJS = τs.

Let (X,D) be a dislocated metric space in the sense of Hitzler and Seda [9]. In this case, the set of balls
does not in general yield a conventional topology. However, by defining a new membership relation, which
is more general than the classical membership relation from set theory, Hitzler and Seda [9] constructed a
suitable topology on dislocated metric space as follows: Let X be a set. A relation ^ ⊆ X × P (X) is called
d-membership relation on X if it satisfies the following property: for all x ∈ X and A,B ∈ P (X),

x^A and A ⊆ B implies x^A.

Let Ux be a nonempty collection of subsets of X for each x ∈ X. If the following conditions are satisfied,
then the pair (Ux,^) is called d-neighbourhood system for x:

(i) if U ∈ Ux, then x^U ;

(ii) if U, V ∈ Ux, then U ∩ V ∈ Ux;
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(iii) if U ∈ Ux, then there is V ⊆ U with V ∈ Ux such that for all y^V we have U ∈ Uy;

(iv) if U ∈ Ux and U ⊆ V , then V ∈ Ux.

The d-neighbourhood system (Ux,^) generates a topology on X. This topological space is called d-
topological space and indicated as (X,U ,^), where U = {Ux : x ∈ X}.

Now, let (X,D) be a dislocated metric space in the sense of Hitzler and Seda [9]. Define a membership
relation ^ as the relation

{(x,A) : there exists ε > 0 for which B(x, ε) ⊆ A}. (2.1)

In this case, by Proposition 3.5 of [9], we know that (Ux,^) is d-neighbourhood system for x for each
x ∈ X, where Ux be the collection of all subsets A of X such that x^A. By taking into account the Definition
2.2, Definition 3.8 and Proposition 3.9 of [9] we can see that the d-topology generated by (2.1) on (X,D)
coincides with the topology τJS .

Let (X,D) be a generalized metric space and T : X → C(X) be a multivalued mapping. For a constant
b ∈ (0, 1) and x ∈ X, we will consider the following set in our main result:

Ixb (T ) = {y ∈ Tx : bD(x, y) ≤ D(x, Tx)}.

Theorem 2.1. Let (X,D) be a complete generalized metric space and T : X → C(X) be multivalued
mapping. Suppose there exists a constant c > 0 such that for any x ∈ X there is y ∈ Ixb (T ) satisfying

D(y, Ty) ≤ cD(x, y). (2.2)

If there exists x0 ∈ X such that D(x0, Tx0) <∞, then it can be constructed a sequence {xn} in X satisfying:

(i) xn+1 ∈ Txn;

(ii) D(xn, xn+1) <∞;

(iii) bD(xn+1, xn+2) ≤ cD(xn, xn+1) and bD(xn+1, Txn+1) ≤ cD(xn, Txn).

If this constructed sequence is Cauchy and the function f(x) = D(x, Tx) is lower semicontinuous, then T
has a fixed point.

Now consider the following important remarks, before giving the proof of Theorem 2.1.

Remark 2.2. If (X,D) is a metric space (or dislocated metric space in the sense of Hitzler and Seda [9]) and
c < b, then the mentioned sequence in Theorem 2.1 is Cauchy. Indeed, since D has triangular inequality,
for m,n ∈ N with m > n, we get from (iii),

D(xn, xm) ≤ D(xn, xn+1) + · · ·+D(xm−1, xm)

≤
(c
b

)n
D(x0, x1) + · · ·+

(c
b

)m−1
D(x0, x1)

≤ (c/b)n

1− (c/b)
D(x0, x1).

Since c < b, then {xn} is Cauchy sequence.

Remark 2.3. If (X,D) is a b-metric space with b-metric constant s and sc < b, then the mentioned sequence
in Theorem 2.1 is Cauchy. Indeed, in this case, we have

D(x, y) ≤ s[D(x, z) +D(z, y)].

Therefore, for m,n ∈ N with m > n, we get from (iii),
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D(xn, xm) ≤ sD(xn, xn+1) + · · ·+ sm−nD(xm−1, xm)

≤ s
(c
b

)n
D(x0, x1) + · · ·+ sm−n

(c
b

)m−1
D(x0, x1)

= s
(c
b

)n 1− (sc/b)m−n

1− (sc/b)
D(x0, x1).

Since sc < b, then {xn} is Cauchy sequence.

Proof of Theorem 2.1. First observe that, since Tx ∈ C(X) for all x ∈ X, Ixb (T ) is nonempty. Let x0 ∈ X
be such that D(x0, Tx0) <∞. Then, from (2.2), there exists x1 ∈ Ix0

b (T ) such that

D(x1, Tx1) ≤ cD(x0, x1).

Note that, since x1 ∈ Ix0
b (T ), then x1 ∈ Tx0 and

bD(x0, x1) ≤ D(x0, Tx0) <∞.

For x1 ∈ X, there exists x2 ∈ Ix1
b (T ) such that

D(x2, Tx2) ≤ cD(x1, x2).

By the way, we can construct a sequence {xn} in X such that xn+1 ∈ Ixn
b (T ) and

D(xn+1, Txn+1) ≤ cD(xn, xn+1) (2.3)

for all n ∈ N. Note that, since D(x0, Tx0) <∞, then D(xn, xn+1) <∞ for all n ∈ N.
Again, since xn+1 ∈ Ixn

b (T ), we have xn+1 ∈ Txn and

bD(xn, xn+1) ≤ D(xn, Txn) (2.4)

for all n ∈ N. Therefore from (2.3) and (2.4), we get

bD(xn+1, xn+2) ≤ D(xn+1, Txn+1) ≤ cD(xn, xn+1), (2.5)

and
D(xn+1, Txn+1) ≤ cD(xn, xn+1) ≤

c

b
D(xn, Txn). (2.6)

Hence (i), (ii), and (iii) hold. Furthermore, from (2.5) and (2.6), we get

lim
n→∞

D(xn, xn+1) = lim
n→∞

D(xn, Txn) = 0.

Now, if {xn} is Cauchy sequence then by the completeness of (X,D), there exists z ∈ X such that
xn ∈ C(D,X, z), that is limn→∞D(xn, z) = 0. Therefore, by the lower semicontinuity of the function
f(x) = D(x, Tx), we get

0 ≤ D(z, Tz) = f(z) ≤ lim inf
n→∞

f(xn) = lim inf
n→∞

D(xn, Txn) = 0.

Since Tz ∈ C(X), we get z ∈ Tz.

By taking into account Remark 2.2 and Remark 2.3, we obtain the following results from Theorem 2.1.

Corollary 2.4 (Feng-Liu’s fixed point theorem). Let (X, d) be a complete metric space and T : X → C(X)
be multivalued mapping. Suppose there exists a constant c > 0 such that for any x ∈ X there is y ∈ Ixb (T )
satisfying

d(y, Ty) ≤ cd(x, y).

Then T has a fixed point provided that c < b and the function f(x) = d(x, Tx) is lower semicontinuous.
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Corollary 2.5 (Feng-Liu’s fixed point theorem on b-metric space). Let (X, d) be a complete b-metric space
with b-metric constant s and T : X → C(X) be multivalued mapping. Suppose there exists a constant c > 0
such that for any x ∈ X there is y ∈ Ixb (T ) satisfying

d(y, Ty) ≤ cd(x, y).

Then T has a fixed point provided that sc < b and the function f(x) = d(x, Tx) is lower semicontinuous.

Corollary 2.6 (Feng-Liu’s fixed point theorem on dislocated metric space). Let (X, d) be a complete dislo-
cated metric space and T : X → C(X) be multivalued mapping. Suppose there exists a constant c > 0 such
that for any x ∈ X there is y ∈ Ixb (T ) satisfying

d(y, Ty) ≤ cd(x, y).

Then T has a fixed point provided that c < b and the function f(x) = d(x, Tx) is lower semicontinuous.
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