

Journal of Nonlinear Science and Applications

Print: ISSN 2008-1898 Online: ISSN 2008-1901

Feng-Liu type fixed point results for multivalued mappings on JS-metric spaces

Ishak Altun^{a,b,*}, Nasir Al Arifi^c, Mohamed Jleli^d, Aref Lashin^{e,f}, Bessem Samet^d

^aCollege of Science, King Saud University, Riyadh, Saudi Arabia.

^bDepartment of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey.

^cGeology and Geophysics Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia.

^dDepartment of Mathematics, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia.

^ePetroleum and Gas Engineering Department, College of Engineering, King Saud University, P. O. Box 800, Riyadh 11421, Saudi Arabia.

^fBenha University, Faculty of Science, Geology Department, P. O. Box 13518, Benha, Egypt.

Communicated by C. Alaca

Abstract

In this paper, we present a fixed point theorem for multivalued mappings on generalized metric space in the sense of Jleli and Samet [M. Jleli, B. Samet, Fixed Point Theory Appl., **2015** (2015), 61 pages]. In fact, we obtain as a spacial case both *b*-metric version and dislocated metric version of Feng-Liu's fixed point result. \bigcirc 2016 All rights reserved.

Keywords: Fixed point, multivalued mapping, generalized metric space, *b*-metric space, dislocated metric space.

2010 MSC: 54H25, 47H10.

1. Introduction and Preliminaries

Let X be any nonempty set. An element $x \in X$ is said to be a fixed point of a multivalued mapping $T: X \to P(X)$ if $x \in Tx$, where P(X) denotes the family of all nonempty subsets of X. Let (X, d) be a

^{*}Corresponding author

Email addresses: ishakaltun@yahoo.com (Ishak Altun), nalarifi@ksu.edu.sa (Nasir Al Arifi), jleli@ksu.edu.sa (Mohamed Jleli), arlashin@ksu.edu.sa (Aref Lashin), bsamet@ksu.edu.sa (Bessem Samet)

metric space. We denote the family of all nonempty closed and bounded subsets of X by CB(X) and the family of all nonempty closed subsets of X by C(X). For $A, B \in C(X)$, let

$$H(A,B) = \max\left\{\sup_{x\in A} d(x,B), \sup_{y\in B} d(y,A)\right\},\,$$

where $d(x, B) = \inf \{ d(x, y) : y \in B \}$. Then *H* is called generalized Pompei-Hausdorff distance on C(X). It is well known that *H* is a metric on CB(X), which is called Pompei-Hausdorff metric induced by *d*. We can find detailed information about the Pompeiu-Hausdorff metric in [3, 10].

Let $T: X \to CB(X)$. Then, T is called multivalued contraction if there exists $L \in [0, 1)$ such that $H(Tx, Ty) \leq Ld(x, y)$ for all $x, y \in X$ (see [16]). In 1969, Nadler [16] proved that every multivalued contraction on complete metric space has a fixed point. Then, the fixed point theory of multivalued contraction has been further developed in different directions by many authors, in particular, by Reich [17], Mizoguchi-Takahashi [15], Klim-Wardowski [14], Berinde-Berinde [2], Ćirić [4] and many others [5, 6, 12, 18]. Also, Feng and Liu [8] gave the following theorem without using generalized Pompei-Hausdorff distance. To state their result, we give the following notation for a multivalued mapping $T: X \to C(X)$: let $b \in (0, 1)$ and $x \in X$ define

$$I_{b}^{x}(T) = \{ y \in Tx : bd(x, y) \le d(x, Tx) \}$$

Theorem 1.1 ([8]). Let (X, d) be a complete metric space and $T : X \to C(X)$. If there exists a constant $c \in (0, 1)$ such that there is $y \in I_b^x(T)$ satisfying

$$d(y, Ty) \le cd(x, y)$$

for all $x \in X$. Then T has a fixed point in X provided that c < b and the function $x \to d(x,Tx)$ is lower semicontinuous.

As mentioned in Remark 1 of [8], we can see that Theorem 1.1 is a real generalization of Nadler's.

The aim of this paper is to present Feng-Liu type fixed point results for multivalued mappings on some generalized metric space such as *b*-metric spaces and dislocated metric spaces. To do this, we will consider JS-metric on a nonempty set.

Let X be a nonempty set and $D: X \times X \to [0, \infty]$ be a mapping. For every $x \in X$ define a set

$$C(D, X, x) = \{\{x_n\} \subset X : \lim_{n \to \infty} D(x_n, x) = 0\}.$$

In this case, we say that D is a generalized metric in the sense of Jleli and Samet [11] (for short JS-metric) on X if it satisfies the following conditions:

- (D₁) for every $(x, y) \in X \times X$, $D(x, y) = 0 \Rightarrow x = y$;
- (D₂) for every $(x, y) \in X \times X$, D(x, y) = D(y, x);
- (D₃) there exists c > 0 such that for every $(x, y) \in X \times X$ and $\{x_n\} \in C(D, X, x)$,

$$D(x,y) \le c \limsup_{n \to \infty} D(x_n,y).$$

In this case (X, D) is said to be JS-metric space. Note that, if $C(D, X, x) = \emptyset$ for all $x \in X$, then (D_3) is trivially hold. The class of JS-metric space is larger than many known class of metric space. For example, every standard metric space, every b-metric space, every dislocated metric space (in the sense of Hitzler-Seda [9]), and every modular space with the Fatou property is a JS-metric space. For more details see [11].

Let (X, D) be a JS-metric space, $x \in X$, and $\{x_n\}$ be a sequence in X. If $\{x_n\} \in C(D, X, x)$, then $\{x_n\}$ is said to be converges to x. If $\lim_{n,m\to\infty} D(x_n, x_{n+m}) = 0$, then $\{x_n\}$ is said to be Cauchy sequence. If every

Cauchy sequence in (X, D) is convergent, then (X, D) is said to be complete. By Proposition 2.4 of [11], we see that every convergent sequence in (X, D) has a unique limit. That is, if $\{x_n\} \in C(D, X, x) \cap C(D, X, y)$, then x = y.

After the introducing the JS-metric space, Jleli and Samet [11] presented some fixed point results including Banach contraction and Ćirić type quasicontraction mappings.

2. Main result

Let (X, D) be a JS-metric space and $U \subseteq X$. We say that U is sequentially open if for each sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} D(x_n, x) = 0$ for some $x \in U$ is eventually in U, that is, there exists $n_0 \in \mathbb{N}$ such that $x_n \in U$ for all $n \ge n_0$. Let τ_{JS} be the family of all sequentially open subsets of X, then it is easy to see that (X, τ_{JS}) is a topological space. Further, a sequence $\{x_n\}$ is convergent to x in (X, D) if and only if it is convergent to x in (X, τ_{JS}) . Let C(X) be the family of all nonempty closed subsets of (X, τ_{JS}) and let Λ be the family of all nonempty subsets A of X satisfying the following property: for all $x \in X$,

$$D(x,A) = 0 \Rightarrow x \in A,$$

where $D(x, A) = \inf\{D(x, y) : y \in A\}$. In this case, $C(X) = \Lambda$. Indeed, let $A \in C(X)$ and $x \in X$. If D(x, A) = 0, then there exists a sequence $\{x_n\}$ in A such that $\lim_{n\to\infty} D(x, x_n) = 0$. Therefore, by the definition of the topology τ_{JS} , for any $U \in \tau_{JS}$ including the point x, there exists $n_U \in \mathbb{N}$ such that $x_n \in U$ for all $n \ge n_U$. In this case, we have $U \cap A \neq \emptyset$, that is, $x \in \overline{A} = A$. Hence $C(X) \subseteq \Lambda$. Now, let $A \in \Lambda$. We will show that $A \in C(X)$. Let $x \in X \setminus A$ and $\{x_n\}$ be a sequence in X such that $\lim_{n\to\infty} D(x_n, x) = 0$. If there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{x_{n_k}\} \subset A$, then we get D(x, A) = 0. Since $A \in \Lambda$, then $x \in A$. This is a contradiction. Therefore, there exists $n_0 \in \mathbb{N}$ such that $x_n \in X \setminus A$ for all $n \ge n_0$. This shows that $X \setminus A \in \tau_{JS}$, and so $A \in C(X)$. As a consequence we get $C(X) = \Lambda$.

Now we will consider the following special cases for τ_{JS} :

Let (X, D) be a metric space. Then it is clear that τ_{JS} coincides with the metric topology τ_D .

Let (X, D) be a *b*-metric space. In this case, there are three topologies on X as follows: First is sequential topology τ_s , which is defined as in Definition 3.1 (3) of [1]. Second is the τ_D topology [13], which is the family of all open subsets of X in the usual sense, that is, a subset U of X is open if for any $x \in U$, there exists $\varepsilon > 0$ such that

$$B(x,\varepsilon) := \{ y \in X : D(x,y) < \varepsilon \} \subseteq U.$$

Third is the τ^D topology, which the family of all finite intersections of

$$\mathcal{C} = \{ B(x,\varepsilon) : x \in X, r > 0 \},\$$

satisfies conditions (B1)–(B2) of ([7], Proposition 1.2.1) is a base of τ^D . By Proposition 3.3 of [1], we know that $\tau_s = \tau_D \subset \tau^D$. Also by Definition 2.1 and Theorem 3.4 of [1], we can see that $\tau_{JS} = \tau_s$.

Let (X, D) be a dislocated metric space in the sense of Hitzler and Seda [9]. In this case, the set of balls does not in general yield a conventional topology. However, by defining a new membership relation, which is more general than the classical membership relation from set theory, Hitzler and Seda [9] constructed a suitable topology on dislocated metric space as follows: Let X be a set. A relation $\triangleleft \subseteq X \times P(X)$ is called *d*-membership relation on X if it satisfies the following property: for all $x \in X$ and $A, B \in P(X)$,

$$x \triangleleft A$$
 and $A \subseteq B$ implies $x \triangleleft A$

Let \mathcal{U}_x be a nonempty collection of subsets of X for each $x \in X$. If the following conditions are satisfied, then the pair $(\mathcal{U}_x, \triangleleft)$ is called *d*-neighbourhood system for x:

- (i) if $U \in \mathcal{U}_x$, then $x \triangleleft U$;
- (ii) if $U, V \in \mathcal{U}_x$, then $U \cap V \in \mathcal{U}_x$;

- (iii) if $U \in \mathcal{U}_x$, then there is $V \subseteq U$ with $V \in \mathcal{U}_x$ such that for all $y \triangleleft V$ we have $U \in \mathcal{U}_y$;
- (iv) if $U \in \mathcal{U}_x$ and $U \subseteq V$, then $V \in \mathcal{U}_x$.

The *d*-neighbourhood system $(\mathcal{U}_x, \triangleleft)$ generates a topology on *X*. This topological space is called *d*-topological space and indicated as $(X, \mathcal{U}, \triangleleft)$, where $\mathcal{U} = \{\mathcal{U}_x : x \in X\}$.

Now, let (X, D) be a dislocated metric space in the sense of Hitzler and Seda [9]. Define a membership relation \triangleleft as the relation

$$\{(x, A) : \text{there exists } \varepsilon > 0 \text{ for which } B(x, \varepsilon) \subseteq A\}.$$
(2.1)

In this case, by Proposition 3.5 of [9], we know that $(\mathcal{U}_x, \triangleleft)$ is *d*-neighbourhood system for *x* for each $x \in X$, where \mathcal{U}_x be the collection of all subsets *A* of *X* such that $x \triangleleft A$. By taking into account the Definition 2.2, Definition 3.8 and Proposition 3.9 of [9] we can see that the *d*-topology generated by (2.1) on (X, D) coincides with the topology τ_{JS} .

Let (X, D) be a generalized metric space and $T : X \to C(X)$ be a multivalued mapping. For a constant $b \in (0, 1)$ and $x \in X$, we will consider the following set in our main result:

$$I_b^x(T) = \{ y \in Tx : bD(x, y) \le D(x, Tx) \}.$$

Theorem 2.1. Let (X, D) be a complete generalized metric space and $T : X \to C(X)$ be multivalued mapping. Suppose there exists a constant c > 0 such that for any $x \in X$ there is $y \in I_b^x(T)$ satisfying

$$D(y, Ty) \le cD(x, y). \tag{2.2}$$

If there exists $x_0 \in X$ such that $D(x_0, Tx_0) < \infty$, then it can be constructed a sequence $\{x_n\}$ in X satisfying:

- (i) $x_{n+1} \in Tx_n;$
- (ii) $D(x_n, x_{n+1}) < \infty;$

(iii)
$$bD(x_{n+1}, x_{n+2}) \le cD(x_n, x_{n+1})$$
 and $bD(x_{n+1}, Tx_{n+1}) \le cD(x_n, Tx_n)$.

If this constructed sequence is Cauchy and the function f(x) = D(x, Tx) is lower semicontinuous, then T has a fixed point.

Now consider the following important remarks, before giving the proof of Theorem 2.1.

Remark 2.2. If (X, D) is a metric space (or dislocated metric space in the sense of Hitzler and Seda [9]) and c < b, then the mentioned sequence in Theorem 2.1 is Cauchy. Indeed, since D has triangular inequality, for $m, n \in \mathbb{N}$ with m > n, we get from (iii),

$$D(x_n, x_m) \le D(x_n, x_{n+1}) + \dots + D(x_{m-1}, x_m)$$

$$\le \left(\frac{c}{b}\right)^n D(x_0, x_1) + \dots + \left(\frac{c}{b}\right)^{m-1} D(x_0, x_1)$$

$$\le \frac{(c/b)^n}{1 - (c/b)} D(x_0, x_1).$$

Since c < b, then $\{x_n\}$ is Cauchy sequence.

Remark 2.3. If (X, D) is a *b*-metric space with *b*-metric constant *s* and sc < b, then the mentioned sequence in Theorem 2.1 is Cauchy. Indeed, in this case, we have

$$D(x,y) \le s[D(x,z) + D(z,y)].$$

Therefore, for $m, n \in \mathbb{N}$ with m > n, we get from (iii),

$$D(x_n, x_m) \le sD(x_n, x_{n+1}) + \dots + s^{m-n}D(x_{m-1}, x_m)$$

$$\le s\left(\frac{c}{b}\right)^n D(x_0, x_1) + \dots + s^{m-n}\left(\frac{c}{b}\right)^{m-1} D(x_0, x_1)$$

$$= s\left(\frac{c}{b}\right)^n \frac{1 - (sc/b)^{m-n}}{1 - (sc/b)} D(x_0, x_1).$$

Since sc < b, then $\{x_n\}$ is Cauchy sequence.

Proof of Theorem 2.1. First observe that, since $Tx \in C(X)$ for all $x \in X$, $I_b^x(T)$ is nonempty. Let $x_0 \in X$ be such that $D(x_0, Tx_0) < \infty$. Then, from (2.2), there exists $x_1 \in I_b^{x_0}(T)$ such that

$$D(x_1, Tx_1) \le cD(x_0, x_1)$$

Note that, since $x_1 \in I_b^{x_0}(T)$, then $x_1 \in Tx_0$ and

$$bD(x_0, x_1) \le D(x_0, Tx_0) < \infty.$$

For $x_1 \in X$, there exists $x_2 \in I_b^{x_1}(T)$ such that

$$D(x_2, Tx_2) \le cD(x_1, x_2).$$

By the way, we can construct a sequence $\{x_n\}$ in X such that $x_{n+1} \in I_b^{x_n}(T)$ and

$$D(x_{n+1}, Tx_{n+1}) \le cD(x_n, x_{n+1}) \tag{2.3}$$

for all $n \in \mathbb{N}$. Note that, since $D(x_0, Tx_0) < \infty$, then $D(x_n, x_{n+1}) < \infty$ for all $n \in \mathbb{N}$. Again, since $x_{n+1} \in I_b^{x_n}(T)$, we have $x_{n+1} \in Tx_n$ and

$$bD(x_n, x_{n+1}) \le D(x_n, Tx_n) \tag{2.4}$$

for all $n \in \mathbb{N}$. Therefore from (2.3) and (2.4), we get

$$bD(x_{n+1}, x_{n+2}) \le D(x_{n+1}, Tx_{n+1}) \le cD(x_n, x_{n+1}), \tag{2.5}$$

and

$$D(x_{n+1}, Tx_{n+1}) \le cD(x_n, x_{n+1}) \le \frac{c}{b}D(x_n, Tx_n).$$
(2.6)

Hence (i), (ii), and (iii) hold. Furthermore, from (2.5) and (2.6), we get

$$\lim_{n \to \infty} D(x_n, x_{n+1}) = \lim_{n \to \infty} D(x_n, Tx_n) = 0.$$

Now, if $\{x_n\}$ is Cauchy sequence then by the completeness of (X, D), there exists $z \in X$ such that $x_n \in C(D, X, z)$, that is $\lim_{n\to\infty} D(x_n, z) = 0$. Therefore, by the lower semicontinuity of the function f(x) = D(x, Tx), we get

$$0 \le D(z, Tz) = f(z) \le \liminf_{n \to \infty} f(x_n) = \liminf_{n \to \infty} D(x_n, Tx_n) = 0.$$

Since $Tz \in C(X)$, we get $z \in Tz$.

By taking into account Remark 2.2 and Remark 2.3, we obtain the following results from Theorem 2.1.

Corollary 2.4 (Feng-Liu's fixed point theorem). Let (X, d) be a complete metric space and $T : X \to C(X)$ be multivalued mapping. Suppose there exists a constant c > 0 such that for any $x \in X$ there is $y \in I_b^x(T)$ satisfying

$$d(y, Ty) \le cd(x, y).$$

Then T has a fixed point provided that c < b and the function f(x) = d(x, Tx) is lower semicontinuous.

$$d(y, Ty) \le cd(x, y).$$

Then T has a fixed point provided that sc < b and the function f(x) = d(x, Tx) is lower semicontinuous.

Corollary 2.6 (Feng-Liu's fixed point theorem on dislocated metric space). Let (X, d) be a complete dislocated metric space and $T: X \to C(X)$ be multivalued mapping. Suppose there exists a constant c > 0 such that for any $x \in X$ there is $y \in I_b^x(T)$ satisfying

$$d(y, Ty) \le cd(x, y).$$

Then T has a fixed point provided that c < b and the function f(x) = d(x, Tx) is lower semicontinuous.

Acknowledgment

The authors extend their appreciation to Distinguished Scientist Fellowship Program (DSFP) at King Saud University (Saudi Arabia).

References

- T. V. An, L. Q. Tuyen, N. V. Dung, Stone-type theorem on b-metric spaces and applications, Topology Appl., 185/186 (2015), 50–64.
- M. Berinde, V. Berinde, On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl., 326 (2007), 772–782.
- [3] V. Berinde, M. Păcurar, The role of the Pompeiu-Hausdorff metric in fixed point theory, Creat. Math. Inform., 22 (2013), 35–42.
- [4] Lj. B. Čirić, Multi-valued nonlinear contraction mappings, Nonlinear Anal., 71 (2009), 2716–2723. 1
- [5] Lj. B. Cirić, J. S. Ume, Common fixed point theorems for multi-valued nonself mappings, Publ. Math. Debrecen, 60 (2002), 359–371. 1
- [6] P. Z. Daffer, H. Kaneko, Fixed points of generalized contractive multi-valued mappings, J. Math. Anal. Appl., 192 (1995), 655–666. 1
- [7] R. Engelking, General Topology, Heldermann Verlag, Berlin, (1988). 2
- [8] Y. Feng, S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl., 317 (2006), 103–112. 1, 1.1, 1
- [9] P. Hitzler, A. K. Seda, Dislocated topologies, J. Electr. Eng., 51 (2000), 3–7. 1, 2, 2, 2.2
- [10] V. I. Istrățescu, Fixed Point Theory, an Introduction, D. Reidel Publishing Co., Dordrecht-Boston, (1981). 1
- [11] M. Jleli, B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl., 2015 (2015), 61 pages. 1
- [12] T. Kamran, Q. Kiran, Fixed point theorems for multi-valued mappings obtained by altering distances, Math. Comput. Modelling, 54 (2011), 2772–2777. 1
- [13] M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73 (2010), 3123–3129. 2
- [14] D. Klim, D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl., 334 (2007), 132–139. 1
- [15] N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., 141 (1989), 177–188. 1
- [16] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488. 1
- S. Reich, Some problems and results in fixed point theory, (Toronto, Ont., 1982), 179–187, Contemp. Math., 21, Amer. Math. Soc., Providence, RI, (1983).
- [18] T. Suzuki, Mizoguchi-Takahashi's fixed point theorem is a real generalization of Nadler's, J. Math. Anal. Appl., 340 (2008), 752–755. 1