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Abstract

The Mellin integral transform is an important tool in mathematics and is closely related to Fourier
and bi-lateral Laplace transforms. In this article we aim to investigate the Mellin transform in a class of
quaternions which are coordinates for rotations and orientations. We consider a set of quaternions as a set
of generalized functions. Then we provide a new definition of the cited Mellin integral on the provided set
of quaternions. The attributive Mellin integral is one-to-one, onto and continuous in the quaternion spaces.
Further properties of the discussed integral are given on a quaternion context. c©2016 All rights reserved.
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1. Preliminaries, definitions and notations

Quaternions were devised by William Hamilton in his extensions to vector algebras to satisfy the prop-
erties of division rings. Quaternions are four-element vectors that can be used to encode rotations in a
3-dimension coordinate system. Compared to vector calculus, quaternions have further advantages in phys-
ical laws as relativistic, classical and quantum mechanics that can nicely be written using quaternions. The
ultimate reason for such attentiveness is attributed to the fact that that quaternionic multiplication turns
the three-sphere of unit quaternions into a group, acting by rotations of the three-space of purely imaginary
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quaternions, by the relation v → qvq−1. A one more reason for the renewed interest is related to the fact
that the resulting substitution of matrices by quaternions speeds up frequently the numerical calculations
of the composition of rotations, their square roots, and some standard operations that must be performed
when controlling everything from aircrafts to robots. The more interesting application of the quaternionic
formalism is the motion of two spheres rolling on each other without slipping with infinite friction.

Numbers of the form α0 + α1i + α2j + α3k, with α0, α1, α2, α3 ∈ R are called quaternions. They are
added, subtracted, and multiplied according to the usual laws of arithmetic, except for the commutative law
of multiplication.

Quaternions are also written in the condensed notation q = α0 + ŵ, where ŵ = α1i + α2j + α3k is a
vector in R3 called the pure part of the quaternion and α0 being its real part.

The addition rule for quaternions is component-wise addition: If p = α0 + ŵ, ŵ = α1i + α2j + α3k

and q = β0 + ϑ̂; ϑ̂ = β1i + β2j + β3k, then p + q = (α0 + β0) +
(
ŵ + ϑ̂

)
, where

(
ŵ + ϑ̂

)
= (α1 + β1) i +

(α2 + β2) j + (α3 + β3) k.
The multiplication rule for quaternions is the same as for polynomials, extended by the multiplicative

properties of i; j; k given as

pq = (α0β0 − α1β1 − α2β2 − α3β3) + (α2β3 − β2α3 + α0β2 + β0α1) i

+ (α3β2 − β3α1 + α0β2 + β0α2) j + (α1β2 − β2α2 + α0β3 + β0α3) k.
(1.1)

The set (Q,+, .) of quaternions with the base {1, i, j, k} and the identities i2 = j2 = k2 = −1, ij = k;
ji = −k; j k = i; kj = −i; ki = j, ik = −j; supplied with the usual operations + and . defines a non-
commutative division ring.

The conjugate element of a quaternion q is given as q∗ = α0 − ŵ. The quantity α2
0 + α2

1 + α2
2 + α2

3, also
denoted by N (q) = ‖q‖2 , is called the reduced norm of q. Clearly, q is nonnull if N (q) 6= 0, in which case
q−1 = q∗

N(q) is the multiplicative inverse of q. The norm is a real-valued function and the norm of a product
of two quaternions satisfies the property

‖pq‖2 = ‖p‖2 ‖q‖2 .

Division of a quaternion by a real-valued scalar is just componentwise division. The conjugate and magnitude
of a product of two quaternions p and q satisfy the following properties

‖pq‖2 = ‖p‖2 ‖q‖2 ; (p∗)∗ = p; (p+ q)∗ = p∗ + q∗. (1.2)

To take possession of the complete account of quaternions we refer to [12, 14, 17].
The Mellin transform is a standard tool for analyzing behaviors of many functions in mathematics and

mathematical physics, such as zeta functions and in connection with various spectral problems. It is closely
related to the Fourier and bi-lateral Laplace transforms, and is used in many diverse areas of mathematics,
including analytic number theory, the study of difference equations, asymptotic expansions, and the study
of special functions.

The one-dimensional direct and inverse Mellin transforms are defined by [23]

ϕ̂ (y) =

∫ ∞
0
ϕ (x)xy−1dx,

ϕ̂−1 (x) = (1/ (2πi))

∫ c+i∞

c−i∞
ϕ̂ (y)x−ydy, c = Re(y)

 (1.3)

provided the integrals exist.
Mellin transforms, among other integrals (see [6, 13, 20, 22]), were further employed in solving integral

equations of fractional order. By using this theory, various explicit solutions of linear non-homogeneous ordi-
nary differential equations with three left-hand sided Liouville derivatives of fractional order were established
in literature. Indeed, as an example to this idea, if we consider the differential equation

δtα+2
(
Dα+2
− y

)
(t) + βtα+1

(
Dα+2
− y

)
(t) + γtα

(
Dα
−y
)

(t) = g (t) ,
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where δ, β, γ ∈ C, α > 0, Dα
− being the right-hand side Liouville fractional derivative of order α, then using

the identity

̂(
tα+k

(
Dα+k
− y

))
(z) = Γ (z + α+ k) ŷ (z) /Γ (z) ,

we write

(δΓ (z + α+ 2) /Γ (z) + γΓ (z + α) /Γ (z) + βΓ (z + α+ 1) /Γ (z)) ŷ (z) = ĝ (z) ,

that can be explicitly written in the form

Pα (z) ŷ (z) = ĝ (z) ,

where
Pα (z) = (Γ (z + α) /Γ (z))

(
δz2 + δα2 + γ + (δ + β + 2δα) z + (δ + β)α

)
.

Therefore, when considering the inverse Mellin transform for the above equation, the solution is given in the
form

y (t) = ̂(ĝ (z) /Pα (z))
−1
.

Over and above, an explicit solution to the Euler-type homogeneous differential equation having finite number
of fractional derivatives has been given by a Mellin transform technique; see [16, 23] for further investigation.

The Mellin-type convolution product of two integrable functions ϕ and ψ is given by [21](
ϕ̂‡ψ

)
(y) =

∫ ∞
0
ϕ (ζ)ψ

(
yζ−1

)
ζ−1dζ . (1.4)

The Mellin relationship with the convolution product is given by [18, 21]

ϕ̂‡ψ = ϕ̂ψ̂, (1.5)

where ϕ̂ and ψ̂ are the Mellin transforms of ϕ and ψ, respectively.
However, the Mellin transforms were extended to distributions in [21]and to Boehmians in [4]. The

modified Mellin transform was discussed in [19] and represented in the space of generalized functions in
[10]. By combining Fourier and Mellin transforms, the Fourier-Mellin transforms have many applications in
digital signals, image processing, and ship target recognition by sonar system and radar signals as well. In
addition, in combining Fourier and modified Mellin transforms the Fourier-Modified Mellin transform has
diverse applications in engineering and engineering mathematics as well; see [4, 19].

We organize this article as follows. In Section 2 we present a complex valued space Ω of quaternions and
establish a convolution theorem with an assigned convolution products. In Sections 3 and 4 we generate the
spaces ß and ßŗ of quaternions in a generalized sense. In Section 5 we give the representative of the Mellin
transform on the discussed spaces of quaternions. Further results are also established in this article.

2. The space Ω

Let q = α0 + α1i+ α2j + α3k be a quaternion in Q. Then q and its conjugate q∗ can be written as

q = u+ υj and q∗ = u∗ − υj, (2.1)

where u = α0 + α1i, υ = α2 + iα3 ∈ C and C is the field of complex numbers.
Remark 2.1. Let υ = α2 + iα3 ∈ C. Then we have

jυ = υ∗j and jυ∗ = υj, (2.2)

where υ∗ is the conjugate element of υ.
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Definition 2.2. Let q1 and q2 be in Q. Then q1 = u1 + υ1j and q2 = u2 + υ2j. Hence, on Q we define the
operator ] : Q×Q→ Q by

q1]q2 = q1q
∗
2. (2.3)

In view of the products assigned to Q and by (2.2) we get

q1]q2 = (u1u
∗
2 + υ1υ2)− (u1υ2 − υ1u

∗
2) j.

Following (2.1), every function ϕ : R→ Q can be written in terms of its components as

ϕ = ϕ1 + ϕ2j, (2.4)

where ϕ1 and ϕ2 are complex-valued functions.

We give some auxiliary results we recall are needful to our investigation.

Lemma 2.3. Let q1, q2, q3, q4 = α and q5 = β be in Q and k1, k2 ∈ R. Then we have

(i) q1]q2 = (q2]q1)∗ ;

(ii) q1] (k1q2 + k2q3) = k1q1]q2 + k2q1]q3;

(iii) q1] (q4q2 + q5q3) = (q1]q2) q∗4 + (q1]q3) q∗5;

(iv) (q4q1 + q5q2) ]q3 = q4 (q1]q3) + q5 (q2]q3) .

Then, the mapping ] defines an inner product on Q by Lemma 2.3.

Definition 2.4. Let Ω be the space of all functions ϕ = ϕ1 +ϕ2j, where ϕ1 and ϕ2 are complex valued such
that ‖ϕ‖Ω <∞,

‖ϕ‖Ω =

(∫ ∞
0

(
|ϕ1,2 (x)|2

)
dx

) 1
2

, (2.5)

where |ϕ1,2|2 = |ϕ1|2 + |ϕ2|2 .
Indeed, if ϕ1 and ϕ2 are complex valued functions, ϕ1 = θ1 + θ2i and ϕ2 = θ3 + θ4i, then, of course every

function ϕ can be written as ϕ = θ1 + θ2i+ θ3j + θ4k ∈ Ω.

Definition 2.5. Every sequence {ϕn} ∈ Ω is said to converge to ϕ ∈ Ω, that is, ϕn → ϕ in Ω as n→∞, if
ϕn = ϕ1n + ϕ2nj, ϕ = ϕ1 + ϕ2j, and ϕ1n → ϕ1 and ϕ2n → ϕ2 as n→∞.

Define � as
(ϕ � ψ) (x) =

∫ ∞
0

(ϕ]ψ) (x) dx. (2.6)

Then ϕ � ϕ = ‖ϕ‖Ω .
Also, we can easily inspect that

(ϕ � ψ) (x) =

∫ ∞
0

((ϕ∗1ψ1 + ϕ2ψ
∗
2)− (ϕ1ψ2 − ϕ2ψ

∗
1) j) (x) dx.

Indeed, the space (Ω, �) is a Hilbert space.

On behalf of the preceding analysis, we state the following definition.

Definition 2.6. Let ϕ ∈ Ω, ϕ = ϕ1 + ϕ2j. Then we define the Mellin transform of ϕ as

ϕ̂
∆
= ϕ̂1 + ϕ̂2j,

where ϕ̂1 and ϕ̂2 are the Mellin transforms of ϕ1 and ϕ2, respectively.
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Theorem 2.7. Let ϕ,ψ ∈ Ω, ϕ = ϕ1 + ϕ2j and ψ = ψ1 + ψ2j. Then we have(
ϕ̂]ψ

)
(y) = U

(
ϕ̂; ψ̂

)
(y) ,

where
U
(
ϕ̂; ψ̂

)
(y) =

(
ϕ̂1ψ̂1 − ϕ̂2ψ̂

∗
2

)
(y) +

(
ϕ̂1ψ̂1 + ϕ̂2ψ̂

∗
1

)
(y) j, (2.7)

θ̂ and θ̂∗i are the Mellin transforms of θ and θ∗i , respectively.

Proof. Proof of Theorem 2.7 follows from (2.3). Details are thus avoided.

3. The generalized space ß

Quaternions have become a common part of mathematics and physics culture, but quaternions nowhere
discussed in a generalized sense. In what follows we generate spaces of generalized functions named as
Boehmians in a quaternion concept. The complete account of Boehmian spaces can be obtained from the
cited papers [1–11, 15, 17].

Let D be the space of test functions of compact support over (0,∞) and {δn} be a sequence of D such
that (3.1)–(3.3) are satisfied ∫ ∞

0
δn (ζ) dζ = 1, n ∈ N; (3.1)∫ ∞

0
|δn (ζ)| dζ ≤ k, n ∈ N, k ∈ R; (3.2)

supp δn (ζ) ⊂ (αn, βn) , where αn, βn → 1 as n→∞. (3.3)

Then {δn} is said to be delta sequence. The collection of all delta sequences is denoted by ∆.

Theorem 3.1. Let ϕ, ψ ∈ Ω, ϕ = ϕ1 + ϕ2j, ψ = ψ1 + ψ2j and δ ∈ D. Then we have

(ϕ+ ψ) ]δ = ϕ]δ + ψ]δ.

Theorem 3.2. k (ϕ]δ) = (kϕ) ]δ = ϕ] (kδ) = (ϕ]δ) k, k ∈ R.

Proofs of Theorems 3.1 and 3.2 are straightforward. Proofs are therefore deleted.

Theorem 3.3. Let ϕn {ϕn = ϕ1n + ϕ2nj} and ϕ {ϕ = ϕ1 + ϕ2j} be in Ω for every n ∈ N and ϕn → ϕ
as n→∞. For an arbitrary δ ∈ D, we have

ϕn]δ → ϕ]δ in Ω as n→∞.

Proof. As the proof of this theorem is straightforward, we omit the details.

Theorem 3.4. Let ϕn → ϕ in Ω as n→∞, where ϕ = ϕ1 +ϕ2j, ϕn = ϕ1n +ϕ2nj are in Ω. Let {δn} ∈ ∆.
Then we have

ϕn]δn → ϕ as n→∞.

Proof. On aid of the hypothesis of the theorem we write

‖ϕn]δn (x)− ϕ (x)‖2Ω =

∫ ∞
0

(
|ϕ1n]δn (x)− ϕ1 (x)|2 + |ϕ2n]δn (x)− ϕ2 (x)|2

)
dx

i.e. =

∫ ∞
0

∣∣∣∣ϕ1n

(
xζ−1

)
ζ−1δn (ζ) dζ − ϕ1 (x)

∫ ∞
0
δn (ζ) dζ

∣∣∣∣2 dx
+

∫ ∞
0

∣∣∣∣ϕ2n

(
xζ−1

)
ζ−1δn (ζ) dζ − ϕ2 (x)

∫ ∞
0
δn (ζ) dζ

∣∣∣∣2 dx.
By the parity of (3.1), it follows that
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‖ϕn]δn (x)− ϕ (x)‖2Ω =

∫ ∞
0

∣∣∣∣∫ ∞
0

(
ϕ1n

(
xζ−1

)
ζ−1 − ϕ1 (x)

)
δn (ζ) dζ

∣∣∣∣2 dx
+

∫ ∞
0

∣∣∣∣∫ ∞
0

(
ϕ2n

(
xζ−1

)
ζ−1 − ϕ2 (x)

)
δn (ζ) dζ

∣∣∣∣2 dx.
By aid of Jensens inequality we regulate the above equation to have

‖ϕn]δn (x)− ϕ (x)‖2Ω ≤
∫ ∞

0

∫ βn

αn

(∣∣ϕ1n

(
xζ−1

)
ζ−1
∣∣2 + |ϕ1 (x)|2

)
|δn (ζ)| dζdx

+

∫ ∞
0

∫ βn

αn

(∣∣ϕ2n

(
xζ−1

)
ζ−1
∣∣2 + |ϕ2 (x)|2

)
|δn (ζ)| dζdx.

By taking into account of (3.3), by simple computation we have ‖ϕn]δn (x)− ϕ (x)‖2Ω → 0 as n→∞. Hence,

ϕn]δn (x)→ ϕ (x) as n→∞ in Ω.

The previous formula finishes the proof of this theorem.

The Boehmian space ß is therefore described where every typical element in ß will be written as[
{ϕn}
{δn}

]
.

Differentiation in ß is given as

Dk

[
{ϕn}
{δn}

]
=

[{
Dkϕn

}
{δn}

]
, k ∈ N, Dk =

dk

dxk
.

Addition in ß is given as [
{ϕn}
{δn}

]
+

[
{gn}
{αn}

]
=

[
{ϕn} ] {αn}+ {gn} ] {δn}

{δn} ] {αn}

]
.

Scalar multiplication in ß is given as

k1

[
{ϕn}
{δn}

]
=

[
{k1ϕn}
{δn}

]
, k1 ∈ C.

δ convergence in ß is given as : βn
δ→ β in ß, if there exists a delta sequence {δn} such that

(βn]δn) , (β]δn) ∈ ß for every k, n ∈ N,

and
(βn]δk)→ (β]δk) as n→∞ in ß, for every k ∈ N.

The equivalent statement for δ convergence is given as :

βn
∆→ β as (n→∞) in ß if and only if there is ϕn,k, ϕk ∈ Ω and {δk} ∈ ∆ such that

[
{ϕn,k}
{δk}

]
,

β =

[
{ϕk}
{δk}

]
and, ∀k ∈ N, ϕn,k → ϕk in Ω as n→∞.

The concept of ∆ convergence in ß is given as: βn
∆→ β in ß if there exists {δn} ∈ ∆ such that

(βn − β) ]δn ∈ ß

for all n ∈ N, and
(βn − β) ]δn → 0 in ß

as n→∞.
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4. The Boehmian space ßŗ

Denote by Ą = {w : w = ϕ̂ for some ϕ ∈ Ω} , Ę =
{
{εn} : {εn} =

{
δ̂n

}
for some {δn} ∈ ∆

}
, and Ŗ ={

ε : ε = δ̂ for some δ ∈ D
}
.

We state the following definition.

Definition 4.1. Let w ∈ Ą and ε ∈ Ŗ. Then we define (w ? ε) (ξ) = U (w, ε) (ξ) .

Theorem 4.2. Let w ∈ Ą and ε ∈ Ŗ. Then we have w ? ε ∈ Ą.

Proof. For each w ∈ Ą and ε ∈ Ŗ there are ϕ ∈ Ω and δ ∈ D such that w = ϕ̂ and ε = δ̂. Hence by Definition
4.1 and (2.7) we get

(w ? ε) (ξ) = U (w, ε) (ξ) = U
(
ϕ̂, δ̂
)

(ξ) =
(
ϕ̂]δ
)

(ξ) .

But since f]δ ∈ Ω, it follows w ? ε ∈ Ą. This completes the proof of the theorem.

Theorem 4.3. The mapping ? : Ą× Ŗ → Ą obeys the following identities:

(i) Let ε1 and ε2 ∈ Ŗ. Then we have ε1 ? ε2 ∈ Ŗ.

(ii) Let ε1 and ε2 ∈ Ŗ. Then we have ε1 ? ε2 = ε2 ? ε1.

(iii) Let w1, w2 ∈ Ą and ε ∈ Ŗ. Then we have (w1 + w2) ? ε = w1 ? ε+ w2 ? ε.

(vi) Let w ∈ Ą and ε1, ε2 ∈ Ŗ. Then we have w ? (ε1 ? ε2) = (w ? ε1) ? ε2.

Proof. Proof of this theorem can be obtained by similar computation to that of [8, 10]. We prefer to delete
the details.

Theorem 4.4. Let w1, w2 ∈ Ą and {εn} ∈ Ę be such that w1 ? εn = w2 ? εn, n ∈ N. Then we have w1 = w2.

Proof. Assume for every n ∈ N, w1 ? εn = w2 ? εn. Then we have

(w1 − w2) ? εn = 0 for all n ∈ N. (4.1)

Let ϕ1, ϕ2 ∈ Ω and {δn} ∈ ∆ such that ϕ̂1 = w1, ϕ̂2 = w2 and {εn} =
{
δ̂n

}
. From (4.1), Definition 4.1 and

Theorem 3.4 we get

0 =
(
ϕ̂1 − ϕ2

)
? εn =

(
̂(ϕ1 − ϕ2) ]δn

)
→
(

̂(ϕ1 − ϕ2)
)

as n→∞.

Hence
ϕ̂1 − ϕ̂2 → 0 as n→∞.

Therefore w1 → w2 as n→∞ . This completes the proof of the theorem.

Theorem 4.5. Let wn → w as n→∞ in Ą and ε ∈ Ŗ. Then we have

wn ? ε→ w ? ε as n→∞.

Proof. Let wn, w ∈ Ą for all n ∈ N and ε ∈ Ŗ. Then there are {ϕn} , ϕ ∈ Ω, and δ ∈ D such that

{ϕ̂n} = {wn} , ϕ̂ = w and δ̂ = ε.

Hence we simply write
wn ? ε− w ? ε = ̂((ϕn − ϕ) ]δ)→ 0 (as n→∞).

Therefore, our theorem has been completely proved.
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Theorem 4.6. Let wn → w as n→∞ in Ą and {εn} ∈ Ę. Then we have

wn ? εn → w as n→∞.

Proof. As the proof of this theorem is similar to that of Theorem 4.5, we prefer not to add more details.

The Boehmian space ßŗ is defined where every typical element in ßŗ will be written as[
{wn}
{εn}

]
.

Differentiation in ßŗ is given by

Dk

[
{wn}
{εn}

]
=

[{
Dkwn

}
{εn}

]
, Dk =

dk

dxk
.

Addition in ßŗ is given by [
{wn}
{εn}

]
+

[
{w∗n}
{ε∗n}

]
=

[
{wn} ? {ε∗n}+ {w∗n} ? {εn}

{εn} ? {ε∗n}

]
.

Scalar multiplication in ßŗ is given by

k

[
{wn}
{εn}

]
=

[
{kwn}
{εn}

]
, k ∈ C.

Convergence of type δ : A sequence of Boehmians {βn} in ßŗ is said to be δ convergent to a Boehmian β in
ßŗ, denoted by βn

δ→ β, if there exists a delta sequence {εn} such that

(βn ? εn) , (β ? εn) ∈ Ą for every k, n ∈ N

and
(βn ? εk)→ (β ? εk) as n→∞ in Ą for every k ∈ N.

Equivalent for convergence of type δ :

βn
δ→ β as (n→∞) in ßŗ if and only if there is wn,k, wk ∈ Ą and {εk} ∈ δ such that

[
{wn,k}
{εk}

]
,

β =

[
{wk}
{εk}

]
, and for each k ∈ N,

wn,k → wk

as n→∞ in Ą.
Convergence of type ∆ : A sequence of Boehmians {βn} in ßŗ is said to be ∆ convergent to a Boehmian

β in ßŗ, denoted by βn
∆→ β, if there exists a {εn} ∈ Ŗ such that

(βn − β) ? εn ∈ ßŗ

for all n ∈ N, and (βn − β) ? εn → 0 as n→∞ in ßŗ.
Since the convolutions and the delta sequences used in ßŗ and ß are different, it is not possible to say

one space is contained into the other.

5. Mellin transform associated with quaternions

Definition 5.1. Let x =

[
{ϕn}
{δn}

]
∈ ß. Then we define its extended Mellin transform by

z
[
{ϕn}
{δn}

]
=

[
{wn}
{εn}

]
∈ ßŗ,

where {wn} = {ϕ̂n} and {εn} =
{
δ̂n

}
.
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To show this definition is well defined, we assume
[
{ϕn}
{δn}

]
=

[
{ϕ∗n}
{δ∗n}

]
in the sense of ß. Then

ϕn]δ
∗
m = ϕ∗m]δn.

Applying Mellin transform to both sides of the preceding equation yields

wn ? ε
∗
n = w∗m ? εm, where wn = ϕ̂n, w

∗
m = ϕ∗m, ε

∗
n = δ∗n and εn = δ̂n.

Hence
{wn}
{εn}

and
{w∗n}
{ε∗n}

are two equivalent classes in ßŗ. This proves our assertion.

Theorem 5.2. The Mellin transform z : ß→ ßŗ is one-to-one.

Proof. Assume that
[
{wn}
{εn}

]
=

[
{w∗n}
{ε∗n}

]
in ßŗ then by the concept of equivalence classes we have

wn ? ε
∗
n = w∗m ? εn.

Let ϕn, ϕ∗n and δ∗n, δn be the preimages of wn, w∗n and ε∗n, εn, respectively. Then we get ϕ̂n]δ∗n = ϕ̂∗n]δn for
each n ∈ N, and hence ϕn]δ∗n = ϕ∗n]δn which is interpreted to mean

{ϕn}
{δn}

∼ {ϕ
∗
n}

{δ∗n}
.

Therefore, the theorem is proved.

Theorem 5.3. The Mellin transform z : ß→ ßŗ is continuous with respect to convergence of type δ.

Proof. If xn ∈ ß is such that xn → 0 as n→∞, then, by [17] we have

xn =

[
{ϕn,i}
{δi}

]
, ϕn,i → 0 as n→∞, where ϕn,i ∈ Ω.

Employing the Mellin transform yields

wn,i → 0 as n→∞, wn,i = ϕ̂n,i.

The above formula completes the proof of our theorem.

Theorem 5.4. The mapping z : ß→ ßŗ is onto and linear.

Proof. Linearity is obvious. Let
[
{wn}
{εn}

]
be in ßŗ. Then wn ? εm = wm ? εn ∀n ∈ N.

Hence, it follows ϕ̂n]δm = ϕ̂m]δn for some {ϕn} , {ϕm} ∈ Ω and {δn} , {δm} ∈ ∆.
Therefore, [

{ϕn}
{δn}

]
∈ ß

is the preimage of
[
{wn}
{εn}

]
.

Thus, the theorem is completely proved.

Theorem 5.5. The Mellin transform z : ß→ ßŗ is continuous with respect to some convergence of type ∆.
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Proof. Assume xn
∆→ x ∈ ß. Then ∆-convergence implies that there is ϕn ∈ Ω and {δn} ∈ ∆ such that

(xn − x) ]δn =

[
{ϕn} ] {δn}
{δn}

]
and ϕn → 0 as n→∞. Applying Mellin transform implies

̂(xn − x) ? εn =

[
{wn} ? {εn}
{εn}

]
≈ wn → 0 as n→∞, (5.1)

where {εn} =
{
δ̂n

}
and {wn} = {ϕ̂n} .

Hence from (5.1), x̂n → x̂ as n→∞. This finishes the proof of the above theorem.
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