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Abstract

In this article, the sum of a monotone mapping, an inverse strongly monotone mapping, and a strictly
pseudocontractive mapping are investigated based on two regularization iterative algorithms. Strong con-
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1. Introduction and Preliminaries

In this paper, we always assume that H is a real Hilbert space with inner product 〈x, y〉 and induced
norm ‖x‖ =

√
〈x, x〉 for x, y ∈ H and C is a nonempty convex and closed subset of H.

Let S : C → C be a mapping. In this paper, we use Fix(S) to stand for the set of fixed points of
mapping S. Recall that S is said to be contractive iff

‖Sx− Sy‖ ≤ α‖x− y‖, ∀x, y ∈ C.

We also say that S is an α-contractive mapping. S is said to be an Meir-Keeler contraction iff for every
ε > 0, there exists η > 0 such that ‖x − y‖ ≤ ε + η implies ‖Sx − Sy‖ ≤ ε, ∀x, y ∈ C. In 1969, Meir and
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Keeler [16] proved that every Meir-Keeler contraction has a unique fixed point in complete metric spaces;
see [16] and the references therein. S is said to be nonexpansive iff

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

If C is bounded convex and closed, then the set of fixed points of S is not empty; see [5, 13] and the references
therein. Fixed point theory of the class of nonexpansive mappings, which is powerful and efficient, has
been applied to variational inclusion problems of maximal monotone operators in the framework of infinite
dimensional Hilbert spaces. One of the most popular techniques for solving inclusion problems of nonlinear
mapping B goes back to the work of Browder [6]. The basic ideas is to reduce the inclusion problems to
a fixed point problem of mapping (I + hB)−1, which is called the classical resolvent of B. If B has some
monotonicity conditions, the classical resolvent of B is with full domain and nonexpansive, see [21, 22] and
the references therein.

S is said to be strictly pseudocontractive iff there is a constant λ ∈ [0, 1) such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + λ‖x− y − Sx+ Sy‖2, ∀x, y ∈ C.

We also say S is λ-strictly pseudocontractive. The class of λ-strictly pseudocontractive mappings was
introduced by Browder and Petryshyn [7] in 1967. It is clear that the class of λ-strictly pseudocontractive
mappings strictly include the class of nonexpansive mappings as a special cases. It is also known that every
λ-strict pseudocontraction is Lipschitz continuous; see [7] and the references therein.

S is said to be pseudocontractive iff

‖Sx− Sy‖2 ≤ ‖x− y‖2 + ‖x− y − Sx+ Sy‖2, ∀x, y ∈ C.

Let A : C → H be a mapping. Recall that A is said to be monotone iff

〈x− y,Ax−Ay〉 ≥ 0, ∀x, y ∈ C.

A is said to be strongly monotone iff there exists a positive constant κ > 0 such that

〈x− y,Ax−Ay〉 ≥ κ‖x− y‖2, ∀x, y ∈ C.

We also say that A is κ-strongly monotone. A is said to be inverse strongly monotone iff there exists a
positive constant κ > 0 such that

〈Ax−Ay, x− y〉 ≥ κ‖Ax−Ay‖2, ∀x, y ∈ C.

We also say that A is inverse κ-strongly monotone. From the above, we also see that A is inverse strongly
monotone iff A−1 is strongly monotone. Every inverse strongly monotone mapping is monotone and Lipschitz
continuous.

Recall that the classical variational inequality is to find a point x̄ in C such that

〈Ax̄, y − x̄〉 ≥ 0, ∀y ∈ C. (1.1)

The solution set of variational inequality (1.1) is denoted by V I(C,A) in this paper. Projection methods
have been recently investigated for solving variational inequality (1.1). It is known that x̄ is a solution
to (1.1) iff x̄ is a fixed point of mapping ProjC(I − hA), where ProjC is the metric projection from H
onto C, h is some positive real number and I denotes the identity on H. If A is strongly monotone, then
the existence of solutions of variational inequality (1.1) is guaranteed by the contractivity of the mapping
ProjC(I − hA). If A is inverse strongly monotone, then ProjC(I − hA) is nonexpansive. Mann iterative
process is an efficient and powerful process to study fixed points of nonexpansive mappings. However, Mann
iterative process is only weak convergence in infinite dimensional spaces; see [2] and the references therein.
Halpern iterative process (HIP) generates a sequence {xn} in the following manner:

xn+1 = αnx+ (1− αn)Txn, ∀n ≥ 0,

where x is a fixed element, {αn} is a control sequence in (0, 1). HIP was initially introduced in [11]. Halpern
showed that the following conditions
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(C1) limn→∞ αn = 0;

(C2)
∑∞

n=0 αn =∞,

are necessary in the sense if Halpern iterative process is strongly convergent for all nonexpansive mappings,
then {xn} must satisfy conditions (C1), and (C2). Recently, Halpbern iterative process has been exten-
sively investigated by many author for solving solutions of variational inequality (1.1) and fixed points of
nonexpansive mappings; see [8, 12, 15, 20, 25–27] and the references therein.

Recall that an operator B : H ⇒ H is said to be monotone iff, for all x, y ∈ H, x′ ∈ Bx and y′ ∈ By
imply 〈x − y, x′ − y′〉 ≥ 0. In this paper, we use B−1(0) to stand for the zero point of operator B. A
monotone mapping B : H ⇒ H is maximal iff the graph Graph(B) of B is not properly contained in the
graph of any other monotone mapping. It is known that a monotone mapping B is maximal if and only if,
for any (x, x′) ∈ H × H, 〈x − y, x′ − y′〉 ≥ 0, for all (y, y′) ∈ Graph(B) implies y′ ∈ Bx. If B is maximal
monotone, then (I+hB)−1 : H → Domain(B), where Domain(B) denote the domain of B, is single-valued
and firmly nonexpansive. Moreover, B−1(0) = Fix((I+hB)−1). One known example of maximal monotone
mapping is N +M , where N is the normal cone mapping

Nx := {x∗ ∈ H : 〈x∗, y − x〉 ≤ 0, ∀y ∈ C},

for x ∈ C and is empty otherwise, and M is a single valued maximal monotone mapping that is continuous
on C. Then, 0 ∈ Nx + Mx iff x ∈ C satisfies variational inequalities of 〈Mx, y − x〉 ≥ 0 for all y ∈ C.
Another example of maximal monotone mapping is ∂B, the subdifferential of a proper closed convex function
B : H → (−∞,∞] which is defined by

∂Bx := {x∗ ∈ H : Bx+ 〈y − x, x∗〉 ≤ By,∀y ∈ H}, ∀x ∈ H.

Rockafellar [22] proved that ∂B is a maximal monotone operator. It is easy to verify that 0 ∈ ∂Bv if and
only if Bv = minx∈H Bx. Recently, zero points of the sum of two monotone operators have been extensively
investigated based on iterative techniques since the problem is applicable in image recovery, signal processing,
and machine learning, which are mathematically modeled as a monotone mapping equation and this mapping
is decomposed as the sum of two monotone mappings; see [3, 4, 9, 10, 17–19] and the references therein.

In this article, we study the sum of a monotone mapping, an inverse strongly monotone mapping, and
a strictly pseudocontractive mapping based on two viscosity regularization iterative algorithms. Strong
convergence analysis of the iterative algorithms is obtained in the framework of real Hilbert spaces.

Before giving the main results, we provide the following lemmas which play an important role in this
article.

Lemma 1.1 ([14]). Let {µn} be a sequence of nonnegative numbers satisfying the condition µn+1 ≤ (1 −
sn)µn+snan+bn, ∀n ≥ 0, where {sn} is a number sequence in (0, 1) such that

∑∞
n=0 sn =∞, limn→∞ sn = 0,

{an} is a sequence such that lim supn→∞ an ≤ 0, and {bn} is a positive sequence such that
∑∞

n=0 bn < ∞.
Then limn→∞ µn = 0.

Lemma 1.2 ([3]). Let C be a nonempty convex and closed subset of a real Hilbert space H. Let A : C → H
be a monotone mapping, and B : H ⇒ H a maximal monotone operator. Then Fix((I + hB)−1(I − hA)) =
(B +A)−1(0), where h is some positive real number.

Lemma 1.3 ([1]). Let H be a Hilbert space, and B an maximal monotone mapping on H. For x ∈ E,

h > 0 and h′ > 0, we have (I + hB)−1x = (I + h′B)−1
(
h′

h x+
(

1− h′

h

)
(I + hB)−1x

)
.

Lemma 1.4 ([7]). Let C be a nonempty convex and closed subset of a real Hilbert space H. Let T : C → C
be a λ-strict pseudo-contraction. Then I − T is demiclosed at zero, that is, {xn} converges weakly to some
point x̄ and {xn − Txn} converges strongly to 0, then x̄ ∈ Fix(T ).
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Lemma 1.5 ([23]). Let H be a real Hilbert space and let {xn} and {yn} be bounded sequences in H. Let {λn}
be a sequence in (0, 1) with 1 > lim supn→∞ λn ≥ lim infn→∞ λn > 0. Suppose xn+1 = λnyn + (1−λn)xn for
all integers n ≥ 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

Lemma 1.6 ([24]). Let S be an Meir-Keeler contraction on a convex subset C of a Banach space E. Then
for each ε > 0, there exists Q ∈ (0, 1) such that

‖x− y‖ ≥ ε implies ‖Sx− Sy‖ ≤ Q‖x− y‖,∀x, y ∈ C. (1.2)

2. Main results

First, we give a strong convergence theorem with the aid of contractions.

Theorem 2.1. Let C be a nonempty convex closed subset of a real Hilbert space H. Let T be a λ-strictly
pseudocontractive mapping on C and S a fixed α-contractive mapping on C. Let B be a maximal monotone
operator on H and A : C → H an inverse κ-strongly monotone mapping. Assume (A+B)−1(0)∩Fix(T ) 6= ∅.
Let {αn}, {βn} and {γn} be real number sequences in [0, 1] and let {hn} be a positive real number sequence
in (0, 2κ). Let {xn} be a sequence in C in the following process: x0 ∈ C and{

zn = βn(1− αn)xn + αnSxn + (1− αn)(1− βn)Txn,

xn+1 = γnyn + (1− γn)xn, ∀n ≥ 0,

where {yn} is a sequence in C such that ‖yn − (I + hnB)−1(zn − hnAzn)‖ ≤ µn, where
∑∞

n=1 µn < ∞.
Assume that the control sequences {αn}, {βn}, {γn} and {hn} satisfy the following restrictions: limn→∞ |hn−
hn−1| = limn→∞ |βn − βn−1| = 0, limn→∞ αn = 0,

∑∞
n=0 αn = ∞, 0 < γ ≤ γn, 0 < h ≤ hn ≤ h′ < 2κ,

0 ≤ λ ≤ βn ≤ β < 1, where β, γ, h and h′ are four real numbers. Then {xn} converges in norm to a point
x̄ ∈ (A+B)−1(0) ∩ Fix(T ), where x̄ = Proj(A+B)−1(0)∩Fix(T )Sx̄.

Proof. First, we show that {xn}, {yn}, and {zn} are bounded sequences. Since A is inverse κ-strongly
monotone, we have

‖(I − hnA)x− (I − hnA)y‖2 = ‖x− y‖2 − 2hn〈x− y,Ax−Ay〉+ hn
2‖Ax−Ay‖2

≤ ‖x− y‖2 − hn(2κ− hn)‖Ax−Ay‖2.

By using the restriction imposed on {hn}, we have ‖(I − hnA)x− (I − hnA)y‖ ≤ ‖x− y‖. That is, I − hnA
is a nonexpansive mapping for every n. Fixing p ∈ (A+B)−1(0) ∩ Fix(T ), we find that

‖βnxn + (1− βn)Txn − p‖2 = βn‖xn − p‖2 + (1− βn)‖Txn − p‖2 − βn(1− βn)‖Txn − xn‖2

≤ βn‖xn − p‖2 + (1− βn)‖xn − p‖2 − (1− βn)(βn − λ)‖Txn − xn‖2

≤ ‖xn − p‖2.

Hence, we have
‖zn − p‖ ≤ αn‖Sxn − p‖+ (1− αn)‖βnxn + (1− βn)Txn − p‖

≤ αn‖Sxn − p‖+ (1− αn)‖xn − p‖
≤
(
1− αn(1− α)

)
‖xn − p‖+ αn‖Sp− p‖.

(2.1)

It follows from Lemma 1.2 that

‖xn+1 − p‖ ≤ γn‖yn − p‖+ (1− γn)‖xn − p‖
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≤ γn‖yn − (I + hnB)−1(zn − hnAzn)‖+ γn‖(I + hnB)−1(zn − hnAzn)− p‖
+ (1− γn)‖xn − p‖
≤ γn‖(I + hnB)−1(zn − hnAzn)− p‖+ (1− γn)‖xn − p‖+ γnµn

≤ γn‖zn − p‖+ (1− γn)‖xn − p‖+ γnµn

≤
(
1− αnγn(1− α)

)
‖xn − p‖+ αnγn‖Sp− p‖+ γnµn

≤ max ‖xn − p‖,
‖Sp− p‖

1− α
+ µn

...

≤ max{‖x0 − p‖,
‖Sp− p‖

1− α
}+

∞∑
i=0

µi <∞.

This proves that sequence {xn} is bounded, so are {yn} and {zn}.
Since Proj(A+B)−1(0)∩Fix(T )S is α-contractive, we find that it has a unique fixed point. Next, we denote

the unique fixed point by x̄. We are in a position to show that

lim sup
n→∞

〈x̄− Sx̄, x̄− zn〉 ≤ 0.

To show this inequality, we choose a subsequence {zni} of {zn} such that

lim sup
n→∞

〈x̄− Sx̄, x̄− zn〉 = lim
i→∞
〈x̄− Sx̄, x̄− zni〉 ≤ 0.

Since {zni} is bounded, there exists a subsequence {znij
} of {zni} which converges weakly to x̂. Without

loss of generality, we assume that zni ⇀ x̂.
Notice that

‖zn − zn−1‖ ≤
(
1− αn(1− α)

)
‖xn − xn−1‖+ |αn − αn−1|(‖Sxn−1‖+ ‖βn−1xn−1 + (1− βn−1)Txn−1‖)

+ (1− αn)|βn − βn−1|‖xn−1 − Txn−1‖
≤
(
1− αn(1− α)

)
‖xn − xn−1‖+ (|αn − αn−1|+ |βn − βn−1|)M,

where M is an appropriate constant such that M ≥ supn≥1{‖Sxn−1‖ + ‖xn−1‖ + ‖Txn−1‖}. Setting wn =
zn − hnAzn, one further has

‖wn − wn−1‖ ≤ ‖hn − hn−1‖‖Azn−1‖+ ‖zn − zn−1‖
≤ (1− αn(1− α)) ‖xn − xn−1‖+ |hn − hn−1|‖Azn−1‖

+M(|αn − αn−1|+ |βn − βn−1|).
(2.2)

On the other hand, one has from Lemma 1.3

‖yn−1 − yn‖ ≤ ‖(I + hnB)−1wn − (I + hn−1B)−1wn−1‖+ µn−1 + µn

= ‖(I + hn−1B)−1wn−1 − (I + hn−1B)−1

(
rn−1

hn
wn + (1− hn−1

hn
)(I + hnB)−1wn

)
‖

≤ ‖(1− hn−1

hn
)
(
(I + hnB)−1wn − wn−1

)
+
hn−1

hn
(wn−1 − wn) ‖

≤ |hn−1 − hn|
hn

‖(I + hnB)−1wn − wn‖+ ‖wn − wn−1‖.

(2.3)

Combining (2.2) with (2.3), one finds that

‖yn−1 − yn‖ − ‖xn − xn−1‖ ≤ |hn−1 − hn|‖Azn−1‖+ (|αn − αn−1|+ |βn − βn−1|)M

+
|hn−1 − hn|‖(I + hnB)−1wn − wn‖

hn
.
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Using the restrictions imposed on the control sequences, one finds

lim sup
n→∞

(‖yn−1 − yn‖ − ‖xn − xn−1‖) ≤ 0.

Using Lemma (1.5), one has limn→∞ ‖yn − xn‖ = 0. Since

‖zn − p‖2 ≤ αn‖Sxn − p‖2 + (1− αn)‖βnxn + (1− βn)Txn − p‖2

≤ αn‖Sxn − p‖2 + (1− αn)‖xn − p‖2,

one has from (2.1)

‖xn+1 − p‖2 ≤ γn‖yn − p‖2 + (1− γn)‖xn − p‖2

≤ γn‖yn − (I + hnB)−1(zn − hnAzn)‖2 + γn‖(I + hnB)−1(zn − hnAzn)− p‖2

+ (1− γn)‖xn − p‖2 + 2µnγn‖(I + hnB)−1(zn − hnAzn)− p‖
≤ γn‖(I + hnB)−1(zn − hnAzn)− p‖2 + (1− γn)‖xn − p‖2

+ 2µnγn‖(I + hnB)−1(zn − hnAzn)− p‖+ γnµ
2
n

≤ αnγn‖Sxn − p‖2 + ‖xn − p‖2 − hn(2κ− hn)γn‖Azn −Ap‖2

+ 2µnγn‖(I + hnB)−1(zn − hnAzn)− p‖+ γnµ
2
n.

It follows that

hn(2κ− hn)γn‖Azn −Ap‖2 ≤ αnγn‖Sxn − p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

+ 2µnγn‖(I + hnB)−1(zn − hnAzn)− p‖+ γnµ
2
n.

≤ (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖+ αn‖Sxn − p‖2

+ 2µnγn‖(I + hnB)−1(zn − hnAzn)− p‖+ γnµ
2
n.

Therefore, we have
lim
n→∞

‖Ap−Azn‖ = 0. (2.4)

In view of the firm nonexpansivity of (I + hnB)−1, one has

‖(I + hnB)−1(zn − hnAzn)− (I + hnB)−1(p− hnAp)‖2

≤ 〈(zn − hnAzn)− (p− hnAp), (I + hnB)−1(zn − hnAzn)− p〉

≤ 1

2

(
‖(I + hnB)−1(zn − hnAzn)− p‖2 + ‖zn − p‖2

− ‖zn − (I + hnB)−1(zn − hnAzn)− hn(Azn −Ap)‖2
)

≤ 1

2

(
‖zn − p‖2 + ‖(I + hnB)−1(zn − hnAzn)− p‖2

− ‖zn − (I + hnB)−1(zn − hnAzn)‖2 − h2
n‖Azn −Ap‖2

+ 2hn‖zn − (I + hnB)−1(zn − hnAzn)‖‖Azn −Ap‖
)

≤ 1

2

(
‖(I + hnB)−1(zn − hnAzn)− p‖2 − ‖zn − (I + hnB)−1(zn − hnAzn)‖2

+ 2hn‖(I + hnB)−1(zn − hnAzn)− zn‖‖Azn −Ap‖+ ‖zn − p‖2
)
.

It follows that

‖(I + hnB)−1(zn − hnAzn)n − p‖2 ≤ ‖zn − p‖2 − ‖zn − (I + hnB)−1(zn − hnAzn)‖2

+ 2hn‖(I + hnB)−1(zn − hnAzn)− zn‖‖Azn −Ap‖.
(2.5)
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Thanks to (2.5), one sees

‖xn+1 − p‖2 ≤ γn‖yn − (I + hnB)−1(zn − hnAzn)‖2 + γn‖(I + hnB)−1(zn − hnAzn)− p‖2

+ (1− γn)‖xn − p‖2 + 2µnγn‖(I + hnB)−1(zn − hnAzn)− p‖
≤ γn‖(I + hnB)−1(zn − hnAzn)− p‖2 + (1− γn)‖xn − p‖2

+ 2µnγn‖(I + hnB)−1(zn − hnAzn)− p‖+ γnµ
2
n

≤ γn‖zn − p‖2 − γn‖zn − (I + hnB)−1(zn − hnAzn)‖2

+ 2hnγn‖(I + hnB)−1(zn − hnAzn)− zn‖‖Azn −Ap‖+ (1− γn)‖xn − p‖2

+ 2µnγn‖(I + hnB)−1(zn − hnAzn)− p‖+ γnµ
2
n

≤ αnγn‖Sxn − p‖2 + ‖xn − p‖2 − γn‖zn − (I + hnB)−1(zn − hnAzn)‖2

+ 2hnγn‖(I + hnB)−1(zn − hnAzn)− zn‖‖Azn −Ap‖
+ 2µnγn‖(I + hnB)−1(zn − hnAzn)− p‖+ γnµ

2
n.

This yields that

γn‖zn − (I + hnB)−1(zn − hnAzn)‖2 ≤ αnγn‖Sxn − p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

+ 2hnγn‖(I + hnB)−1(zn − hnAzn)− zn‖‖Azn −Ap‖
+ 2µnγn‖(I + hnB)−1(zn − hnAzn)− p‖+ γnµ

2
n

≤ αn‖Sxn − p‖2 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖
+ 2hn‖(I + hnB)−1(zn − hnAzn)− zn‖‖Azn −Ap‖
+ 2µn‖(I + hnB)−1(zn − hnAzn)− p‖+ µ2

n.

Since limn→∞ ‖yn − xn‖ = 0, we find that

lim
n→∞

‖xn+1 − xn‖ = 0. (2.6)

Using (2.4) and (2.6), we have

lim
n→∞

‖zn − (I + hnB)−1(zn − hnAzn)‖ = 0. (2.7)

On the other hand, one has

‖zn − xn‖ ≤ ‖zn − (I + hnB)−1(zn − hnAzn)‖+ ‖yn − xn‖+ µn.

From (2.7), one sees
lim
n→∞

‖zn − xn‖ = 0. (2.8)

It follows that xni ⇀ x̂. Note that

‖Txn − xn‖ ≤
1

(1− αn)(1− βn)
‖zn − xn‖+

αn

(1− αn)(1− βn)
‖Sxn − xn‖.

This yields from (2.8) and the restrictions imposed on control sequences {αn} and {βn} that

lim
n→∞

‖Txn − xn‖ = 0.

From Lemma 1.4, we conclude x̂ ∈ Fix(T ). We are in a position to conclude x̂ ∈ (A + B)−1(0). Putting
y′n = (I + hnB)−1(zn − hnAzn), one has zn − hnAzn − y′n ∈ hnBy′n. Let w1 be an element in Bw2. Since B
is maximal monotone, we find that〈

w1 −
zn − y′n
hn

+Azn, w2 − y′n
〉
≥ 0.



S. Y. Cho, A. Latif, X. Qin, J. Nonlinear Sci. Appl. 9 (2016), 3909–3919 3916

Hence, one has 0 ≤ 〈w1 +Ax̂,w2− x̂〉. This implies that Bx̂ 3 −Ax̂, that is, x̂ ∈ (A+B)−1(0). This proves
x̄ ∈ (A+B)−1(0). Hence, we have

lim sup
n→∞

〈x̄− Sx̄, x̄− zn〉 ≤ 0, (2.9)

Notice that

‖zn − x̄‖2 ≤ αn〈Sxn − Sx̄, zn − x̄〉+ αn〈Sx̄− x̄, zn − x̄〉+ (1− αn)‖xn − p‖‖zn − x̄‖
≤ (1− αn(1− α)) ‖xn − x̄‖‖zn − x̄‖+ αn〈x̄− Sx̄, x̄− zn〉,

from which it follows that

‖zn − x̄‖2 ≤ (1− αn(1− α))‖xn − x̄‖2 + 2αn〈x̄− Sx̄, x̄− zn〉.

This yields that

‖xn+1 − x̄‖2 ≤ γn‖yn − x̄‖2 + (1− γn)‖xn − x̄‖2

≤ γn‖yn − y′n‖2 + γn‖y′n − x̄‖2 + (1− γn)‖xn − x̄‖2 + 2γnµn‖y′n − x̄‖
≤ γn‖z′n − x̄‖2 + (1− γn)‖xn − x̄‖2 + 2γnµn‖y′n − x̄‖+ γnµ

2
n

≤ (1− αnγn(1− α))‖xn − x̄‖2 + 2αnγn〈x̄− Sx̄, x̄− zn〉
+ 2µn‖y′n − x̄‖+ µ2

n.

Since
∑∞

n=0 µn <∞, we conclude from Lemma 1.1 that {xn} converges in norm to x̄, where

x̄ = ProjFix(T )∩(A+B)−1(0)Sx̄,

that is, x̄ is the unique solution to the following variational inequality:

〈Sx̄− x̄, x̄− x′〉 ≥ 0, ∀x′ ∈ Fix(T ) ∩ (A+B)−1(0).

Next, we give another strong convergence theorem with the aid of Meir-Keeler contractions.

Theorem 2.2. Let C be a nonempty convex closed subset of a real Hilbert space H. Let T be a λ-strictly
pseudocontractive mapping on C and S̄ a Meir-Keeler contraction on C. Let B be a maximal monotone
operator on H and A : C → H an inverse κ-strongly monotone mapping. Assume (A+B)−1(0)∩Fix(T ) 6= ∅.
Let {αn}, {βn}, and {γn} be real number sequences in [0, 1] and let {hn} be a positive real number sequence
in (0, 2κ). Let {xn} be a sequence in C in the following process: x0 ∈ C and{

zn = βn(1− αn)xn + αnS̄xn + (1− αn)(1− βn)Txn,

xn+1 = γnyn + (1− γn)xn, ∀n ≥ 0,

where {yn} is a sequence in C such that ‖yn−(I+hnB)−1(zn−hnAzn)‖ ≤ µn, where
∑∞

n=1 µn <∞. Assume
that the control sequences {αn}, {βn}, {γn}, and {hn} satisfy the following restrictions: limn→∞ |hn −
hn−1| = limn→∞ |βn − βn−1| = 0, limn→∞ αn = 0,

∑∞
n=0 αn = ∞, 0 < γ ≤ γn, 0 < h ≤ hn ≤ h′ < 2κ,

0 ≤ λ ≤ βn ≤ β < 1, where β, γ, h, and h′ are four real numbers. Then {xn} converges in norm to a point
x̄ ∈ (A+B)−1(0) ∩ Fix(T ), where x̄ = Proj(A+B)−1(0)∩Fix(T )S̄x̄.

Proof. Set {
z̄n = βn(1− αn)x̄n + αnSx̄+ (1− αn)(1− βn)T x̄n,

x̄n+1 = γnȳn + (1− γn)x̄n, ∀n ≥ 0,

where {ȳn} is a sequence in C such that ‖ȳn − (I + hnB)−1(z̄n − hnAz̄n)‖ ≤ µn and x̄ is a fixed element in
C. From Theorem 2.1, one sees that {x̄n} converges in norm to x̄ = Proj(A+B)−1(0)∩Fix(T )Sx̄.
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Finally, we prove that xn → x̄ as n → ∞. To end this, we need to show that xn − x̄n → 0 as n → ∞.
Arguing by contradiction, we assume lim supn→∞ ‖xn − x̄n‖ = d > 0. Then we choose ε with 0 < ε < d.

Using Lemma 1.6, for such ε, there exists Q ∈ (0, 1) satisfying (1.2). We also choose m such that Q‖x̄n−x̄‖
1−Q < ε

for all n ≥ m. Note that ‖Sx− Sy‖ ≤ max{Q‖x− y‖, ε}, ∀x, y ∈ C.
We now consider the following two possible cases.

Case 1. There exists some m′ ≥ m such that ‖xm′ − x̄m′‖ ≤ ε. Then,

‖xm′+1 − x̄m′+1‖ ≤ γm′‖ym′ − ȳm′‖+ (1− γm′)‖xm′ − x̄m′‖
≤ γm′‖ym′ − (I + hm′B)−1(zm′ − hm′Azm′)‖

+ γm′‖(I + hm′B)−1(zm′ − hm′Azm′)− (I + hm′B)−1(z̄m′ − hm′Az̄m′)‖
+ γm′‖(I + hm′B)−1(z̄m′ − hm′Az̄m′)− ȳm′‖+ (1− γm′)‖xm′ − x̄m′‖
≤ 2γm′µm′ + γm′‖zm′ − z̄m′‖+ (1− γm′)‖xm′ − x̄m′‖
≤ 2γm′µm′ + (1− αm′γm′)‖xm′ − x̄m′‖+ γm′αm′‖Sxm′ − Sx̄‖
≤ 2γm′µm′ + (1− αm′γm′)‖xm′ − x̄m′‖+ γm′αm′ max{Q‖xm′ − x̄‖, ε}

≤ 2γm′µm′ + max{(1− αm′γm′(1−Q))‖xm′ − x̄m′‖+ γm′αm′(1−Q)
Q‖x̄m′ − x̄‖

1−Q
,

(1− αm′γm′)‖xm′ − x̄m′‖+ γm′αm′ε}.

By induction, one finds that ‖x̄n − xn‖ ≤ ε for all n ≥ m′. This contradicts ε < d.

Case 2. ‖xm′ − x̄m′‖ ≥ ε, ∀n ≥ m.
For each n ≥ m, one sees that

‖xn+1 − x̄n+1‖ ≤ γn‖yn − ȳn‖+ (1− γn)‖xn − x̄n‖
≤ γn‖yn − (I + hnB)−1(zn − hnAzn)‖

+ γn‖(I + hnB)−1(zn − hnAzn)− (I + hnB)−1(z̄n − hnAz̄n)‖
+ γn‖(I + hnB)−1(z̄n − hnAz̄n)− ȳn‖+ (1− γn)‖xn − x̄n‖
≤ 2γnµn + γn‖zn − z̄n‖+ (1− γn)‖xn − x̄n‖
≤ 2γnµn + (1− αnγn)‖xn − x̄n‖+ γnαn‖Sxn − Sx̄‖
≤ 2γnµn + (1− αnγn(1−Q))‖xn − x̄n‖+ γnαn‖Sx̄n − Sx̄‖

≤ 2γnµn + (1− αnγn(1−Q))‖xn − x̄n‖+ γnαn(1−Q)
‖x̄n − x̄‖

1−Q
.

It follows that limn→∞ ‖xn − x̄n‖ = 0. This yields a contradiction. Hence, xn − x̄n → 0 as n → ∞.
Using the fact that ‖xn − x̄‖ ≤ ‖xn − x̄n‖+ ‖x̄n − x̄‖, we find the desired conclusion immediately.

Since every nonexpansive mapping is a 0-strictly pseudocontractive mapping, we have the following
result.

Corollary 2.3. Let C be a nonempty convex closed subset of a real Hilbert space H. Let T be a nonexpansive
mapping on C and S a fixed α-contractive mapping on C. Let B be a maximal monotone operator on H
and A : C → H an inverse κ-strongly monotone mapping. Assume (A + B)−1(0) ∩ Fix(T ) 6= ∅. Let
{αn}, {βn}, and {γn} be real number sequences in [0, 1] and let {hn} be a positive real number sequence in
(0, 2κ). Let {xn} be a sequence in C in the following process: x0 ∈ C, zn = αnSxn + (1− αn)Txn, xn+1 =
γnyn+(1−γn)xn, ∀n ≥ 0, where {yn} is a sequence in C such that ‖yn−(I+hnB)−1(zn−hnAzn)‖ ≤ µn where∑∞

n=1 µn < ∞. Assume that the control sequences {αn}, {γn}, and {hn} satisfy the following restrictions:
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limn→∞ |hn − hn−1| = 0, limn→∞ αn = 0,
∑∞

n=0 αn = ∞, 0 < γ ≤ γn, and 0 < h ≤ hn ≤ h′ < 2κ, where
γ, h and h′ are three real numbers. Then {xn} converges in norm to a point x̄ ∈ (A + B)−1(0) ∩ Fix(T ),
where x̄ = Proj(A+B)−1(0)∩Fix(T )Sx̄.

Corollary 2.4. Let C be a nonempty convex closed subset of a real Hilbert space H. Let T be a nonexpansive
mapping on C and S a Meir-Keeler contraction on C. Let B be a maximal monotone operator on H
and A : C → H an inverse κ-strongly monotone mapping. Assume (A + B)−1(0) ∩ Fix(T ) 6= ∅. Let
{αn}, {βn}, and {γn} be real number sequences in [0, 1] and let {hn} be a positive real number sequence in
(0, 2κ). Let {xn} be a sequence in C in the following process: x0 ∈ C, zn = αnSxn + (1− αn)Txn, xn+1 =
γnyn+(1−γn)xn, ∀n ≥ 0, where {yn} is a sequence in C such that ‖yn−(I+hnB)−1(zn−hnAzn)‖ ≤ µn, where∑∞

n=1 µn < ∞. Assume that the control sequences {αn}, {γn}, and {hn} satisfy the following restrictions:
limn→∞ |hn − hn−1| = 0, limn→∞ αn = 0,

∑∞
n=0 αn = ∞, 0 < γ ≤ γn, 0 < h ≤ hn ≤ h′ < 2κ, where γ, h,

and h′ are three real numbers. Then {xn} converges in norm to a point x̄ ∈ (A+B)−1(0) ∩ Fix(T ), where
x̄ = Proj(A+B)−1(0)∩Fix(T )Sx̄.

Let iC be the indicator function of C, that is,

iC(x) =

{
∞ x /∈ C,
0 x ∈ C.

Since iC is a proper lower and semicontinuous convex function on H, the subdifferential ∂iC of iC is maximal
monotone. So, we can define the resolvent of ∂iC for h > 0, i.e., (I + h∂iC)−1. Letting x = (I + h∂iC)−1y,
we find that

y ∈ x+ r∂iCx⇐⇒ y ∈ hNCx+ x⇐⇒ ProjCy = x,

where ProjC is the metric projection from H onto C and NCx := {e ∈ H : 〈e, v − x〉, ∀v ∈ C}.
Corollary 2.5. Let C be a nonempty convex closed subset of a real Hilbert space H. Let T be a λ-strictly
pseudocontractive mapping on C and S a fixed α-contractive mapping on C. Let A : C → H be an inverse
κ-strongly monotone mapping. Assume V I(C,A) ∩ Fix(T ) 6= ∅. Let {αn}, {βn}, and {γn} be real number
sequences in [0, 1] and let {hn} be a positive real number sequence in (0, 2κ). Let {xn} be a sequence in C
in the following process: x0 ∈ C and{

zn = βn(1− αn)xn + αnSxn + (1− αn)(1− βn)Txn,

xn+1 = γnyn + (1− γn)xn, ∀n ≥ 0,

where {yn} is a sequence in C such that ‖yn−ProjC(zn−hnAzn)‖ ≤ µn, where
∑∞

n=1 µn <∞. Assume that
the control sequences {αn}, {βn}, {γn}, and {hn} satisfy the following restrictions: limn→∞ |hn − hn−1| =
limn→∞ |βn − βn−1| = 0, limn→∞ αn = 0,

∑∞
n=0 αn = ∞, 0 < γ ≤ γn, 0 < h ≤ hn ≤ h′ < 2κ, and

0 ≤ λ ≤ βn ≤ β < 1, where β, γ, h and h′ are four real numbers. Then {xn} converges in norm to a point
x̄ ∈ V I(C,A) ∩ Fix(T ), where x̄ = ProjV I(C,A)∩Fix(T )Sx̄.

Corollary 2.6. Let C be a nonempty convex closed subset of a real Hilbert space H. Let T be a λ-strictly
pseudocontractive mapping on C and S a Meir-Keeler contraction on C. Let A : C → H be an inverse
κ-strongly monotone mapping. Assume V I(C,A) ∩ Fix(T ) 6= ∅. Let {αn}, {βn}, and {γn} be real number
sequences in [0, 1] and let {hn} be a positive real number sequence in (0, 2κ). Let {xn} be a sequence in C
in the following process: x0 ∈ C and{

zn = βn(1− αn)xn + αnSxn + (1− αn)(1− βn)Txn,

xn+1 = γnyn + (1− γn)xn, ∀n ≥ 0,

where {yn} is a sequence in C such that ‖yn−ProjC(zn−hnAzn)‖ ≤ µn where
∑∞

n=1 µn <∞. Assume that
the control sequences {αn}, {βn}, {γn}, and {hn} satisfy the following restrictions: limn→∞ |hn − hn−1| =
limn→∞ |βn − βn−1| = 0, limn→∞ αn = 0,

∑∞
n=0 αn = ∞, 0 < γ ≤ γn, 0 < h ≤ hn ≤ h′ < 2κ, and

0 ≤ λ ≤ βn ≤ β < 1, where β, γ, h and h′ are four real numbers. Then {xn} converges in norm to a point
x̄ ∈ V I(C,A) ∩ Fix(T ), where x̄ = ProjV I(C,A)∩Fix(T )Sx̄.
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