
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 3920–3930

Research Article

A new viscosity approximation method for common
fixed points of a sequence of nonexpansive mappings
with weakly contractive mappings in Banach spaces

Wei-Qi Deng

School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming 650221, China.

Communicated by R. Saadati

Abstract

By use of a new viscosity approximation method, we construct an explicit iterative algorithm
for finding common fixed points of a sequence of nonexpansive mappings with weakly contractive
mappings in the framework of Banach spaces. A strong convergence theorem is obtained for solving
a kind of variational inequality problems. Our results improve and extend the corresponding ones of
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1. Introduction

Let C be a nonempty closed convex subset of a Banach space X. A mapping T : C → C is said
to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ ∀x, y ∈ C.

Alber and Guerre-Delabriere [1] defined the weakly contractive maps in Hilbert spaces, and Rhoades
[5] showed that the result of [1] is also valid in the complete metric spaces as follows.
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Definition 1.1. Let (X, d) be a complete metric space. A mapping f : X → X is called weakly
contractive if

d(f(x), f(y)) ≤ d(x, y)− ψ(d(x, y)) ∀x, y ∈ X,

where x, y ∈ X and ψ : [0,∞) → [0,∞) is a continuous and nondecreasing function such that
ψ(0) = 0 if and only if t = 0 and limt→∞ ψ(t) =∞.

Definition 1.2 ([6]). Let C be a nonempty closed convex subset of a Banach space X and Tn : C →
C, where n ∈ {1, 2, · · ·}. Then the mapping sequence {Tn} is called uniformly asymptotically regular
on C, if for all m ∈ {1, 2, · · ·} and any bounded subset K of C we have

lim
n→∞

sup
x∈K
‖Tm(Tnx)− Tnx‖ = 0. (1.1)

Theorem 1.3 ([6]). Let f : X → X be a weakly contractive mapping, where (X, d) is a complete
metric space, then f has a unique fixed point.

In 2010, Razani and Homaeipour [4] considered the iterative sequence {xm} generated by

xm = tmf(xm) + (1− tm)Tmxm ∀m ≥ 1 (1.2)

and proved the following strong convergence theorem for {xm}, where f is a weakly contractive and
{Tm} is a uniformly asymptotically regular sequence of nonexpansive mappings in a reflexive Banach
space X.

Theorem 1.4 ([4]). Let X be a reflexive Banach space which admits a weakly sequentially continuous
duality mapping J from X to X∗. Suppose that C is a nonempty closed convex subset of X and
{Tm} : C → C is a uniformly asymptotically regular sequence of nonexpansive mappings with F :=
∩∞m=1F (Tm) 6= ∅. Let f : C → C be a weakly contractive mapping. Suppose {xm} is defined by
(1.1), where {tm} is a sequence of positive numbers in (0, 1) satisfying limm→∞ tm = 0. Then {xm}
converges strongly to a common fixed point p ∈ F which is the unique solution to the following
variational inequality:

〈f(p)− p, J(y − p)〉 ≤ 0 ∀y ∈ F.

Remark 1.5. Note that the iteration sequence {xm} generated by (1.2) is an implicit one that will lead
to complicated computations. Additionally, a stronger condition was imposed on the involved map-
pings, that is, {Tm} was assumed to be a uniformly asymptotically regular sequence of nonexpansive
mappings, and hence the corresponding result was less applicable.

Inspired and motivated by the study mentioned above, in this paper, by use of a new viscosity
approximation method, we construct an explicit iteration scheme for finding common fixed points
of a sequence of nonexpansive mappings. A strong convergence theorem for solving some variational
inequality problems is established in the framework of Banach spaces.

2. Preliminaries

Throughout the paper, let X be a real Banach space. We say that X is strictly convex if the
following implication holds for x, y ∈ X:

‖x‖ = ‖y‖ = 1, x 6= y ⇒
∥∥∥∥x+ y

2

∥∥∥∥ < 1.



W.-Q. Deng, J. Nonlinear Sci. Appl. 9 (2016), 3920–3930 3922

X is also said to be uniformly convex if for any ε > 0, there exists a δ > 0 such that

‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ.

The following results are well known, which can be founded in [7].

(i) A uniformly convex Banach space X is reflexive and strictly convex.

(ii) If C is a nonempty convex subset of a strictly convex Banach space X and T : C → C is a
nonexpansive mapping, then the fixed point set F (T ) of T is a closed convex subset of C.

By a gauge function we mean a continuous and strictly increasing function ϕ defined on [0,∞)
such that ϕ(0) = 0 and limr→∞ ϕ(r) =∞. The mapping Jϕ from X to 2X

∗
, defined by

Jϕx = {f ∈ X∗ : 〈x, f〉 = ‖x‖‖f‖, ‖f‖ = ϕ(‖x‖)} ∀x ∈ X, (2.1)

is called the duality mapping with the gauge function ϕ. In the case where ϕ(t) = t, then Jϕ = J,
which is the normalized duality mapping.

Proposition 2.1 ([8]).

(i) J = I if and only if X is a Hilbert space.

(ii) J is surjective if and only if X is reflexive.

(iii) Jϕ(λx) = signλ
(
ϕ(|λ|‖x‖)
‖x‖

)
Jx for all x ∈ X \ {0}, λ ∈ R; particularly, J(−x) = −J(x) for all

x ∈ X.

We say that a Banach space X has a weakly sequentially continuous duality mapping if there
exists a gauge function ϕ such that the duality mapping Jϕ is single-valued and continuous from the
weak topology to the weak∗ topology of X.

In what follows we shall make use of the following definitions and lemmas.

Let X be a reflexive Banach space which admits a weakly sequentially continuous duality mapping
J from X to X∗. The function φ : X ×X → R+ ∪ {0} is defined by

φ(x, y) := ‖x‖2 − 2〈x, Jy〉+ ‖y‖2.

It is obvious from the definition of the function φ that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2.

The function φ also has the following property:

φ(y, x) = φ(z, x) + φ(y, z) + 2〈z − y, J(x− z)〉. (2.2)

Lemma 2.2. Let X be a Banach space. Then for all x, y ∈ X and αi ∈ [0, 1] for i = 1, 2, · · ·, n such
that Σn

i=1αi = 1 the following inequality holds:∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥
2

≤
n∑
i=1

αi‖xi‖2. (2.3)
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Lemma 2.3 ([3]). Let {an}, {δn}, and {bn} be sequences of nonnegative real numbers satisfying

an+1 ≤ (1 + δn)an + bn, ∀n ≥ 1. (2.4)

If
∑∞

n=1 δn <∞ and
∑∞

n=1 bn <∞, then limn→∞ an exists.

Definition 2.4 ([10]). Let {An} : C → C be a sequence of mappings and A : C → C be a mapping.
{An} is said to be graph convergent to A if {graph(An)} (the sequence of graph of An) converges to
graph A in the sense of Kuratowski-Painleve, that is,

lim sup
n→∞

graph(An) ⊂ graph(An) ⊂ lim inf
n→∞

graph(An).

Definition 2.5.

(i) A multi-valued mapping A : X → X is said to be accretive if 〈Ax−Ay, J(x−y)〉 ≥ 0 ∀x, y ∈ X.
A mapping A : X → X is said to be maximal accretive if it is accretive, and for any x, u ∈ X
when

〈u− v, J(x− y)〉 ≥ 0 ∀(y, v) ∈ graph(A),

we have u ∈ Ax.

(ii) A mapping A : X → X is said to be strongly accretive if there exists a strictly increasing
function ϕ̃ : [0,∞)→ [0,∞) with ϕ̃(0) = 0 such that

〈Ax− Ay, J(x− y)〉 ≥ ϕ̃(‖x− y‖)‖x− y‖ ∀x, y ∈ X.

Definition 2.6. The normal cone NF (T ) to F (T ) is defined by

NF (T )(x) =

{
{u ∈ X : 〈y − x, Ju〉 ≤ 0 ∀y ∈ F}, x ∈ F (T );
∅, x ∈ F (T )c.

Finding an x∗ ∈ F (T ) such that

〈(I − f)x∗, J(x∗ − x)〉 ≤ 0 (∀x ∈ F (T ))

is equivalent to the following variational inclusion problem: finding an x∗ ∈ C such that

θ ∈ (I − f)x∗ +NF (T )(x
∗).

Lemma 2.7 ([2]).

(i) Let A : X → X be a maximal accretive operator. Then (t−1A) graph converges to NA−1(0) as
t→ 0 provided that A−1(0) 6= ∅.

(ii) Let {Bn : X → X} be a sequence of maximal accretive operators, which graph converges to an
operator B. If A is a strongly accretive operator, then {A+Bn} graph converges to A+B, and
A+B is maximal accretive.

Lemma 2.8. Let f : X → X be a weakly contractive mapping and T : X → X be a nonexpansive
mapping. Then, the following results are obtained:

(i) the mapping (I − f) : X → X is strongly accretive;

(ii) the mapping (I − T ) : X → X is accretive, so it is maximal accretive.
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Remark 2.9. This conclusion results directly from Lemma 1.6 in [10].

Lemma 2.10. The unique solutions to the positive integer equation

n = in +
(mn − 1)mn

2
, mn ≥ in, n = 1, 2, · · · (2.5)

are

in = n− (mn − 1)mn

2
, mn = −

[
1

2
−
√

2n+
1

4

]
, n = 1, 2, · · ·,

where [x] denotes the maximal integer that is not larger than x.

Proof. It follows from (2.5) that

in = n− (mn − 1)mn

2
, in ≤ mn, n = 1, 2, 3, · · ·,

and hence

1 ≤ in = n− (mn − 1)mn

2
≤ mn, n = 1, 2, 3, · · ·, (2.6)

that is,
(mn − 1)mn

2
+ 1 ≤ n ≤ (mn + 1)mn

2
, n = 1, 2, 3, · · ·,

which implies that(
mn −

1

2

)2

≤ 2n− 7

4
,

(
mn +

1

2

)2

≥ 2n+
1

4
, n = 1, 2, 3, · · ·.

Thus √
2n+

1

4
− 1

2
≤ mn ≤

1

2
+

√
2n− 7

4
, n = 1, 2, 3, · · ·,

that is,

−
√

2n− 7

4
− 1

2
≤ −mn ≤

1

2
−
√

2n+
1

4
, n = 1, 2, 3, · · ·, (2.7)

while the difference of the two sides of the inequality above is

1−

(√
2n+

1

4
−
√

2n− 7

4

)
= 1− 2√

2n+ 1
4

+
√

2n− 7
4

∈ [0, 1), n = 1, 2, 3, · · ·.

Then, it follows from (2.7) that (2.6) holds obviously.

3. Main results

Theorem 3.1. Let X be a reflexive Banach space which admits a weakly sequentially continuous
duality mapping J from X to X∗. Suppose that C is a nonempty closed convex subset of X and
{Ti}∞i=1 : C → C is a sequence of nonexpansive mappings with the interior of F := ∩∞i=1F (Ti) 6= ∅.
Let f : C → C be a weakly contractive mapping. Starting from an arbitrary x1 ∈ C, define {xn} by

xn+1 = αnf(xn) + (1− αn)T ∗nxn ∀n ≥ 1, (3.1)

where {αn} is a decreasing sequence in (0, 1) satisfying the following conditions:
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(i)
∑∞

n=1 αn <∞;

(ii)
∑∞

n=1

(
α2
n−1/α

2
n − 1

)
<∞;

(iii)
∑∞

n=1(αn−1 − αn)/α2
n <∞;

and T ∗n = Tin with in being the solution to the positive integer equation: n = in + (mn−1)mn

2
(mn ≥

in, n = 1, 2, · · ·), that is, for each n ≥ 1, there exists a unique in such that

i1 = 1, i2 = 1, i3 = 2, i4 = 1, i5 = 2, i6 = 3, i7 = 1, i8 = 2, i9 = 3, i10 = 4, i11 = 1, · · ·.

If f 6= 0, then {xn} converges strongly to a point x∗ ∈ F which is the unique solution to the following
variational inequality:

〈(I − f)x∗, J(x− x∗)〉 ≥ 0 ∀x ∈ F. (3.2)

Proof. We divide the proof into several steps.

(I) limn→∞ ‖xn − p∗‖ exists ∀p∗ ∈ F .
For any p∗ ∈ F , from (3.1), we have

‖xn+1 − p∗‖ =‖αn(f(xn)− p∗) + (1− αn)T ∗n(xn − p∗)‖
≤αn‖f(xn)− p∗‖+ (1− αn)‖xn − p∗‖
≤αn‖f(xn)− f(p∗)‖+ αn‖f(p∗)− p∗‖+ (1− αn)‖xn − p∗‖
≤αn‖xn − p∗‖ − αnψ(‖xn − p∗‖) + αn‖f(p∗)− p∗‖+ (1− αn)‖xn − p∗‖
≤‖xn − p∗‖+ µn,

where µn = αn‖f(p∗)−p∗‖, and so
∑∞

n=1 µn <∞. So by Lemma 2.3 we conclude that limn→∞ ‖xn−
p∗‖ exists and hence {xn}, {f(xn)}, and {T ∗nxn} are bounded.

(II) xn → x∗ ∈ C as n→∞.
From (3.1) and Lemma 2.2, we also have

‖xn+1 − p∗‖2 =‖αn(f(xn)− p∗) + (1− αn)T ∗n(xn − p∗)‖2

=αn‖f(xn)− p∗‖2 + (1− αn)‖T ∗n(xn − p∗)‖2

− αn(1− αn)‖f(xn)− T ∗nxn‖2

≤αn(‖f(xn)− f(p∗)‖+ ‖f(p∗)− p∗‖)2 + (1− αn)‖xn − p∗‖2

≤αn[(‖xn − p∗‖ − ψ(‖xn − p∗‖)) + ‖f(p∗)− p∗‖]2 + (1− αn)‖xn − p∗‖2

≤αn‖xn − p∗‖2 + (1− αn)‖xn − p∗‖2

+ αn(2‖f(p∗)− p∗‖ · ‖xn − p∗‖+ ‖f(p∗)− p∗‖2)
≤‖xn − p∗‖2 + νn,

(3.3)

where νn := αn(2‖f(p∗)− p∗‖ · ‖xn − p∗‖+ ‖f(p∗)− p∗‖2) and
∑∞

n=1 νn <∞, since {xn} is bounded
and

∑∞
n=1 αn <∞.

Furthermore, it follows from (2.2) that

φ(p, xn) = φ(xn+1, xn) + φ(p, xn+1) + 2〈xn+1 − p, J(xn − xn+1)〉 ∀p ∈ X.

This implies that

〈xn+1 − p, J(xn − xn+1)〉+
1

2
φ(xn+1, xn) =

1

2
(φ(p, xn)− φ(p, xn+1)). (3.4)
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Moreover, since the interior of F is nonempty, there exists a p∗ ∈ F and r > 0 such that (p∗+rh) ∈ F
whenever ‖h‖ ≤ 1. Thus, from (3.3) and (3.4) we obtain

0 ≤ 〈xn+1 − (p∗ + rh), J(xn − xn+1)〉+
1

2
φ(xn+1, xn) +

1

2
νn. (3.5)

Then from (3.4) and (3.5) we obtain

r〈h, J(xn − xn+1)〉 ≤〈xn+1 − p∗, J(xn − xn+1)〉+
1

2
φ(xn+1, xn) +

1

2
νn

=
1

2
(φ(p∗, xn)− φ(p∗, xn+1)) +

1

2
νn

and hence,

〈h, J(xn − xn+1)〉 ≤
1

2r
(φ(p∗, xn)− φ(p∗, xn+1)) +

1

2r
νn. (3.6)

Since h with ‖h‖ ≤ 1 is arbitrary, we have, by taking h = xn−xn+1

‖xn−xn+1‖ ,

‖xn − xn+1‖ ≤
1

2r
(φ(p∗, xn)− φ(p∗, xn+1)) +

1

2r
νn. (3.7)

So, if n > m, then we have

‖xm − xn‖ ≤
n−1∑
j=m

‖xj − xj+1‖

≤ 1

2r

n−1∑
j=m

(φ(p∗, xj)− φ(p∗, xj+1)) +
1

2r

n−1∑
j=m

νj

=
1

2r
(φ(p∗, xm)− φ(p∗, xn)) +

1

2r

n−1∑
j=m

νj.

(3.8)

But we know that {φ(p∗, xn)} converges, and
∑∞

n=1 νn < ∞. Therefore, we obtain from (3.8) that
{xn} is a Cauchy sequence. Since X is complete there exists an x∗ ∈ X such that xn → x∗ ∈ X as
n→∞. Thus, since {xn} ⊂ C and C is closed and convex, then x∗ ∈ C, that is,

xn → x∗ ∈ C (n→∞). (3.9)

(III) ‖xn − Tixn‖ → 0 for each i ≥ 1 as n→∞.

It follows from (3.1) and (3.7) that, as n→∞,

‖xn+1 − T ∗nxn‖ = αn‖f(xn)− T ∗nxn‖ → 0

and
‖xn+1 − xn‖ → 0,

which implies that, by induction, for any nonnegative integer j,

lim
n→∞

‖xn+j − xn‖ = 0. (3.10)

We then have, as n→∞,

‖xn − T ∗nxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − T ∗nxn‖ → 0. (3.11)
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For each i ≥ 1, since∥∥xn − T ∗n+ixn∥∥ ≤‖xn − xn+i‖+
∥∥xn+i − T ∗n+ixn∥∥

≤‖xn − xn+i‖+
∥∥xn+i − T ∗n+ixn+i∥∥+

∥∥T ∗n+ixn+i − T ∗n+ixn∥∥
≤2‖xn − xn+i‖+

∥∥xn+i − T ∗n+ixn+i∥∥ ,
it follows from (3.10) and (3.11) that

lim
n→∞

∥∥xn − T ∗n+ixn∥∥ = 0. (3.12)

Now, for each i ≥ 1, we claim that

lim
n→∞

‖xn − Tixn‖ = 0. (3.13)

As a matter of fact, setting
n = Nm + i,

where Nm = (m−1)m
2

, m ≥ i, we obtain that

‖xn − Tixn‖ ≤‖xn − xNm‖+ ‖xNm − Tixn‖
≤‖xn − xNm‖+

∥∥xNm − T ∗Nm+ixNm

∥∥+
∥∥T ∗Nm+ixNm − Tixn

∥∥
=‖xn − xNm‖+

∥∥xNm − T ∗Nm+ixNm

∥∥+ ‖TixNm − Tixn‖
≤2‖xn − xNm‖+

∥∥xNm − T ∗Nm+ixNm

∥∥
=2‖xn − xn−i‖+

∥∥xNm − T ∗Nm+ixNm

∥∥ .
Then, since Nm →∞ as n→∞, it follows from (3.10) and (3.12) that (3.13) holds obviously.

(IV) xn → x∗ ∈ F as n→∞, which is the unique solution to the following variational inequality:

〈(I − f)x∗, J(x− x∗)〉 ≥ 0 ∀x ∈ F.

It immediately follows from (3.9) and (3.13) that, as n→∞,

xn → x∗ ∈ F. (3.14)

Next, for any i ≥ 1, we consider the corresponding subsequence
{
x
(i)
k

}
k∈Ki

of {xn}, where Ki :=

{k ∈ N : k = i+ (m− 1)m/2,m ≥ i,m ∈ N}. For example, by Lemma 2.10 and the definition of K1,
we have K1 = {1, 2, 4, 7, 11, 16, · · ·} and i1 = i2 = i4 = i7 = i11 = i16 = · · · = 1. Since (T ∗k )(i) = Ti
whenever k ∈ Ki, it follows from (3.1) that∥∥∥x(i)k+1 − x

(i)
k

∥∥∥ =‖α(i)
k (f(x

(i)
k )− f(x

(i)
k−1)) + (1− α(i)

k )Ti(x
(i)
k − x

(i)
k−1)

+ (α
(i)
k − α

(i)
k−1)(f(x

(i)
k−1)− Tix

(i)
k−1)‖

≤α(i)
k

(∥∥∥x(i)k − x(i)k−1∥∥∥− ψ (∥∥∥x(i)k − x(i)k−1∥∥∥))
+
(

1− α(i)
k

)∥∥∥x(i)k − x(i)k−1∥∥∥+M
∣∣∣α(i)

k − α
(i)
k−1

∣∣∣
≤
∥∥∥x(i)k − x(i)k−1∥∥∥+M

∣∣∣α(i)
k − α

(i)
k−1

∣∣∣ ,
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where M := supk∈Ki

∥∥∥f(x
(i)
k−1)− Tix

(i)
k−1

∥∥∥ <∞.

Thus, we have ∥∥∥x(i)k+1 − x
(i)
k

∥∥∥(
α
(i)
k

)2 ≤

(
α
(i)
k−1

)2
(
α
(i)
k

)2
∥∥∥x(i)k − x(i)k−1∥∥∥(

α
(i)
k−1

)2 +
M
∣∣∣α(i)

k − α
(i)
k−1

∣∣∣(
α
(i)
k−1

)2
=
(

1 + η
(i)
k

) ∥∥∥x(i)k − x(i)k−1∥∥∥(
α
(i)
k−1

)2 + γ
(i)
k ,

where η
(i)
k :=

(
α
(i)
k−1/α

(i)
k

)2
−1, γ

(i)
k := M

∣∣∣α(i)
k − α

(i)
k−1

∣∣∣ /(α(i)
k

)2
,
∑

k∈Ki
η
(i)
k <∞, and

∑
k∈Ki

γ
(i)
k <∞.

It follows from Lemma 2.3 that limKi3k→∞

∥∥∥x(i)k+1 − x
(i)
k

∥∥∥ /(α(i)
k

)2
exists and hence

{
y
(i)
k

}
:={(

x
(i)
k+1 − x

(i)
k

)
/
(
α
(i)
k

)2}
is bounded. Then there exists an Mi > 0 such that

∥∥∥x(i)k+1 − x
(i)
k

∥∥∥
Mi

(
α
(i)
k

)2 ≤ 1 ∀k ∈ Ki.

Taking h =
(
x
(i)
k − x

(i)
k+1

)
/Mi

(
α
(i)
k

)2
, we have, from (3.6),

∥∥∥x(i)k − x(i)k+1

∥∥∥2(
α
(i)
k

)2 ≤ Mi

2r

(
φ
(
p∗, x

(i)
k

)
− φ

(
p∗, x

(i)
k+1

))
+
Mi

2r
ν
(i)
k .

This implies that, as Ki 3 k →∞,

x
(i)
k − x

(i)
k+1

α
(i)
k

→ θ. (3.15)

Furthermore, from (3.1), we have

x
(i)
k − x

(i)
k+1

α
(i)
k

= ((I − f) +
1− α(i)

k

α
(i)
k

(I − Ti))x(i)k .

In addition, by Lemmas 2.7 and 2.8, (I − f) +
(

1− α(i)
k

)
/α

(i)
k (I − Ti) graph converges to (I −

f) +NF (Ti). Since the graph of (I − f) +NF (Ti) is weakly-strongly closed, we obtain that, by taking
into (3.15) and (3.14),

θ ∈ (I − f)x∗ +NF (Ti)(x
∗).

This implies that 〈(I − f)x∗, x∗ − x〉 ≤ 0 ∀x ∈ F (Ti), that is,

〈(I − f)x∗, x− x∗〉 ≥ 0 ∀x ∈ F

since F ⊂ F (Ti). The proof is completed.
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4. Applications

The so-called convex feasibility problem for a family of mappings {Ti}∞i=1 is to find a point in the
nonempty intersection ∩∞i=1F (Ti), which exactly illustrates the importance of finding common fixed
points of infinite families. The following example also clarifies the same thing.

Example 4.1. Let X be a smooth, strictly convex, and reflexive Banach space, C be a nonempty
and closed convex subset of X, and {fi}∞i=1 : C × C → R be a sequence of bifunctions satisfying the
conditions: for each i ≥ 1,

(A1) fi(x, x) = 0;

(A2) fi is monotone, i.e., fi(x, y) + fi(y, x) ≤ 0;

(A3) lim supt↓0 fi(x+ t(z − x), y) ≤ fi(x, y);

(A4) The mapping y 7→ fi(x, y) is convex and lower semicontinuous.

A system of equilibrium problems for {fi}∞i=1 is to find an x∗ ∈ C such that

fi(x
∗, y) ≥ 0 ∀y ∈ C, i ≥ 1,

whose set of common solutions is denoted by EP := ∩∞i=1EP (fi), where EP (fi) denotes the set of
solutions to the equilibrium problem for fi (i = 1, 2, · · ·). It is shown in Theorem 4.3 in [10] that
such a system of problems can be reduced to the approximation of some fixed point of a sequence of
nonexpansive mappings.

Example 4.2. Application to monotone variational inequalities.
Let H be a real Hilbert space. Set f = I − γG, where G : H → H is a η-Lipschitzian and

κ-strongly monotone mapping and γ ∈ (0, 2κ
η2

]. Now, we show that f : H → H is a nonexpansive
mapping. In fact, by the assumptions, we have

‖f(x)− f(y)‖2 =‖(x− y)− (γGx− γGy)‖2

=‖x− y‖2 − 2γ〈x− y,Gx−Gy〉+ γ2‖Gx−Gy‖2

≤‖x− y‖2 − 2γκ‖x− y‖2 + γ2η2‖x− y‖2

=(1− 2γκ+ γ2η2)‖x− y‖2

≤‖x− y‖2

for all x, y ∈ H. Hence, (3.2) is reduced to finding an x∗ ∈ F such that

〈Gx∗, x− x∗〉 ≥ 0 ∀x ∈ F,

where {Tn} is a sequence of nonexpansive mappings, whose common fixed points set is denoted by
F . This problem was first considered by Yamada and Ogura [9].
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