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Abstract

In this note, we discuss the definition of the multivalued weak contraction mappings defined in a metric
space endowed with a graph as introduced by Hanjing and Suantai[A. Hanjing, S. Suantai, Fixed Point
Theory Appl., 2015 (2015), 10 pages]. In particular, we show that this definition is not correct and give the
correct definition of the multivalued weak contraction mappings defined in a metric space endowed with a
graph. Then we prove the existence of coincidence points for such mappings. c©2016 All rights reserved.
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1. Introduction

Let G be a directed graph (digraph) with set of vertices V (G) and set of edges E(G) contains all the
loops, that is, (x, x) ∈ E(G) for any x ∈ V (G). Such graphs are called reflexive. We also assume that G
has no parallel edges. In the sequel, we assume that (X, d) is a metric space and G is a directed reflexive
graph with set of vertices V (G) = X.

Generalizing the Banach contraction principle for multivalued mappings to metric spaces, Nadler [10]
obtained the following result.

Theorem 1.1 ([10]). Let (X, d) be a complete metric space. Denote by CB(X ) the set of all nonempty closed
bounded subsets of X. Let F : X → CB(X ) be a multivalued mapping. If there exists k ∈ [0, 1) such that,

H(F (x), F (y)) ≤ k d(x, y)
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for all x, y ∈ X, where H is the Hausdorff-Pompeiu distance on CB(X), then F has a fixed point in X, that
is, there exists x ∈ X such that x ∈ T (x).

A number of extensions and generalizations of Nadler’s fixed point theorem were obtained by different
authors; see for instance [6, 8] and references cited therein. Ran and Reurings [11] extended the Banach
contraction principle to partially ordered metric spaces. Therefore, it was natural to find an extension of
Nadler’s fixed point theorem to partially ordered metric spaces. Beg and Butt [2] gave the first attempt.
But their definition of multivalued monotone mappings was not correct which had the effect that the proof
of their version of Nadler’s fixed point theorem was wrong (see for example [1]).

Definition 1.2. Let (X, d) be a metric space. The Pompeiu-Hausdorff distance on CB(X ) is defined by

H(A,B) := max{sup
b∈B

d(b, A), sup
a∈A

d(a,B)}

for A,B ∈ CB(X ), where d(a,B) := inf
b∈B

d(a, b).

The following technical result is useful to explain our definition later on.

Lemma 1.3 ([10]). Let (X, d) be a metric space. For any A,B ∈ CB(X ), ε > 0 and a ∈ A, there exists
b ∈ B such that

d(a, b) ≤ H(A,B) + ε.

By symmetry, for any b ∈ B, there exists a ∈ A such that

d(a, b) ≤ H(A,B) + ε.

Note that from Lemma 1.3, whenever one uses multivalued mappings which involves the Pompeiu-
Hausdorff distance, then one must assume that the multivalued mappings have bounded values. Otherwise,
one has only to assume that the multivalued mappings have nonempty closed values.

In [10] Nadler introduced the concept of multivalued contraction mappings.

Definition 1.4. Let (X, d) be a metric space. The multivalued mapping T : X → CB(X ) is said to be a
multivalued contraction mapping if there exists k ∈ [0, 1) such that

H(T (x), T (y)) ≤ k d(x, y)

for all x, y ∈ X.

Using Lemma 1.3, we see that T is a multivalued contraction if there exists α ∈ [0, 1) such that for any
x, y ∈ X and a ∈ T (x), there exists b ∈ T (y) such that

d(a, b) ≤ α d(x, y).

In their attempt to establish some coincidence point and fixed point theorems as an extension to the
Mizoguchi-Takahashi fixed point theorem for Reich multivalued contraction mappings to metric spaces
endowed with a graph, Hanjing and Suanti [7] introduced the following definition:

Definition 1.5. Let (X, d) be a metric space and G be a reflexive digraph with no-parallel edges. Let
T : X → CB(X ) and g : X → X. Then T is said to be a weak G-contraction with respect to g if for any
x, y ∈ X such that x 6= y and (x, y) ∈ E(G), we have

(i) H(T (x), T (y)) ≤ α(d(x, y)) d(x, y) + h(g(y))d(g(y), T (x)),

(ii) if u ∈ T (x) and v ∈ T (y) are such that d(u, v) ≤ d(x, y), then (u, v) ∈ E(G),

where α : (0,+∞)→ [0, 1) satisfies lim sup
s→t+

α(s) < 1, for any t ∈ [0,+∞) and h : X → [0,+∞).
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This definition is not appropriate because of the condition (ii). The following example explains our
reasoning.

Example 1.6. Consider the space R2 endowed with the Euclidean distance d. Then consider the graph G
obtained by the pointwise ordering of R2 defined by

((x1, x2), (y1, y2)) ∈ E(G) iff x1 ≤ y1 & x2 ≤ y2.

Let A be the unit ball of R2, that is, A = {(x1, x2) ∈ R2; d2(x, 0) = x21 +x22 ≤ 1}. Consider the multivalued
map T : R2 → CB(R2) defined by T (x) = A. Then we have H(T (x), T (y)) = 0 for any x, y ∈ R2. Since
T is a constant multivalued mapping, then it is a contraction according to Nadler’s definition. Therefore,
T must be a weak G-contraction with respect to the identity map. The condition (i) is obviously satisfied
but the condition (ii) fails. Indeed, set x = (2, 0) and y = (2, 2). Then x 6= y and (x, y) ∈ E(G). Since
d(x, y) = 2, (ii) will hold if and only if for any u, v ∈ A such that d(u, v) ≤ 2, we must have (u, v) ∈ E(G).
This is not the case, if we take

u = (1, 0) and v = (0, 1),

then u, v ∈ A, d(u, v) =
√

2, (u, v) 6∈ E(G) and (v, u) 6∈ E(G).

To give the correct definition of a multivalued weak G-contraction with respect to a function g : X → X,
we need the following remark.

Remark 1.7. Let (X, d) be a metric space. Let T : X → CB(X ) and g : X → X. Assume there exists
α : (0,+∞)→ [0, 1) with lim sup

s→t+
α(s) < 1, for any t ∈ [0,+∞) and h : X → [0,+∞) such that

H(T (x), T (y)) ≤ α(d(x, y)) d(x, y) + h(g(y))d(g(y), T (x))

for any x, y ∈ X. Using Lemma 1.3, we can easily prove that for any x, y ∈ X and a ∈ T (x), there exists
b ∈ T (y) such that

d(a, b) ≤ β(d(x, y)) d(x, y) + h(g(y))d(g(y), T (x)),

where β = 1
2(1 + α) which satisfies lim sup

s→t+
β(s) < 1, for any t ∈ [0,+∞).

The following definition is more appropriate than Definition 1.5.

Definition 1.8. Let (X, d) be a metric space and G be a reflexive digraph with no-parallel edges. Denote
by C(X ) the set of all nonempty closed subsets of X. Let T : X → C(X ) and g : X → X. Then T is said to
be weak G-contraction with respect to g if for any x, y ∈ X such that x 6= y and (x, y) ∈ E(G), we have

(i) if a ∈ T (x), there exists b ∈ T (y) such that (a, b) ∈ E(G) and

(ii) d(a, b) ≤ α(d(x, y)) d(x, y) + h(g(y)) d(g(y), T (x)),

where α : (0,+∞)→ [0, 1) satisfies lim sups→t+ α(s) < 1, for any t ∈ [0,+∞) and h : X → [0,+∞). A point
x ∈ X is a coincidence point of g and T if g(x) ∈ T (x). If g is the identity map on X, then x = g(x) ∈ T (x)
is called a fixed point of T . The set of fixed points of T and the set of coincidence points of g and T are
denoted by Fix(T ), Coin(g, T ), respectively.

The aim of this paper is to obtain sufficient conditions for the existence of coincidence points for the
multivalued weak G-contraction mappings in metric spaces.

2. Main Results

Let (X, d) be a complete metric space and G be a reflexive digraph defined on X. We say that the triplet
(X, d,G) has Property (P) if for any sequence {xn} in X, if xn → x and (xn, xn+1) ∈ E(G) for all n ∈ N,
there exists a subsequence {xnk

} of {xn} with (xnk
, x) ∈ E(G) for some k ∈ N.
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Theorem 2.1. Let (X, d) be a complete metric space and (X, d,G) has Property (P). Let g : X → X be a
continuous self-mapping and T : X → C(X ) be a weak G-contraction mapping with respect to g. Suppose
that g(y) ∈ T (x) for all (x, y) ∈ E(G) with y ∈ T (x) and there is x0 ∈ X such that (x0, y) ∈ E(G) for some
y ∈ T (x0). Then Coin(g, T ) ∩ Fix(T ) 6= ∅.

Proof. Let x0 ∈ X and x1 ∈ T (x0) such that (x0, x1) ∈ E(G). Thus by our assumption, we have g(x1) ∈
T (x0). If x0 = x1 or α(d(x0, x1)) = 0, then x0 ∈ Coin(g, T )∩Fix(T ). Suppose x0 6= x1 and α(d(x0, x1)) 6= 0.
Using the weak contractive assumption of T , there exists x2 ∈ T (x1) such that (x1, x2) ∈ E(G) and

d(x1, x2) ≤ α(d(x0, x1)) d(x0, x1) + h(g(x1)) d(g(x1), T (x0)) = α(d(x0, x1)) d(x0, x1).

By induction, we construct a sequence {xn} such that xn+1 ∈ T (xn), (xn, xn+1) ∈ E(G) and

d(xn, xn+1) ≤ α(d(xn−1, xn)) d(xn−1, xn)

for any n ∈ N. Since α(t) < 1, for any t ∈ [0,+∞), we conclude that {d(xn, xn+1)} is a decreasing sequence
of positive numbers. Let

t0 = lim
n→+∞

d(xn, xn+1) = inf
n∈N

d(xn, xn+1).

Since lim sups→t0+ α(s) < 1, there exist η < 1 and n0 ≥ 1 such that α(d(xn, xn+1)) ≤ η, for any n ≥ n0.
Then, we have

d(xn, xn+1) ≤
k=n−1∏
k=n0

α(d(xk, xk+1)) d(xn0 , xn0+1) ≤ ηn−n0 d(xn0 , xn0+1)

for any n ≥ n0. This will imply that
∑
d(xn, xn+1) is convergent. Hence {xn} is a Cauchy sequence. Since

X is complete, then {xn} converges to some point x ∈ X. Using Property (P), there exists a subsequence
{xφ(n)} such that (xφ(n), x) ∈ E(G). Using the weak contractive assumption of T , there exists yn ∈ T (x)
such that

d(xφ(n)+1, yn) ≤ α(d(xφ(n), x)) d(xφ(n), x) + h(g(x)) d(g(x), T (xφ(n)))

for any n ∈ N. Since xφ(n)+1 ∈ T (xφ(n)), then g(xφ(n)+1) ∈ T (xφ(n)) which implies

d(xφ(n)+1, yn) ≤ α(d(xφ(n), x)) d(xφ(n), x) + h(g(x)) d(g(x), g(xφ(n)+1))

for any n ∈ N. Since g is continuous, we conclude that limn→+∞ d(xφ(n)+1, yn) = 0. This will force {yn} to
also converge to x. Since T (x) is closed, we conclude that x ∈ T (x), that is, x is a fixed point of T . Thus
by our assumption, we have g(x) ∈ T (x). Therefore, x ∈ Coin(g, T ) ∩ Fix(T ) as claimed.

Remark 2.2. Notice that if T (x) is g-invariant (that is, g(T (x)) ⊆ T (x) for each x ∈ X), then our weaker
condition g(y) ∈ T (x) for all (x, y) ∈ E(G) with y ∈ T (x), is clearly satisfied.

Example 2.3. Let X = { 1
2n ; n ∈ N} ∪ {0} and d(x, y) = |x − y| for all x, y ∈ X. Let E(G) =

{(0, 0), ( 1
2n ,

1
2n ), ( 1

2n , 0), ( 1
22n
, 1
22n+1 ) ; n ∈ N}. Let α : (0,+∞) → [0, 1) be defined by α(t) = 1

2 for all
t ∈ (0,+∞). Let T : X → C(X ) be defined by:

T (x) =


{0} if x = 0,

{0} ∪ { 1
22n+5 ,

1
22n+6 ,

1
22n+7 ,

1
22n+9 ,

1
22n+11 , · · · } if x = 1

22n+1 , n ∈ N,
{1} if x = 1

22n
.

The multivalued mapping T is well defined on X. In fact, T (x) is compact for any x ∈ X. Let g : X → X
be defined by:

g(x) =


0 if x = 0,

1
2n+2 if x = 1

2n ,

1 if x = 1.
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Let h : X → [0,+∞) be defined by:

h(x) =


1 if x = 0,

2n+1 if x = 1
2n ,

0 if x = 1.

We claim that T : X → C(X ) is a weak G-contraction with respect to g. Indeed, let x, y ∈ X such that
(x, y) ∈ E(G).

Case 1. If x = y, then there is nothing to prove.

Case 2. If (x, y) = ( 1
2n , 0). In this case, T (0) = {0}. If n = 2k for some k ∈ N, then we have T (x) = {1}

and

(a) (1, 0) ∈ E(G),
(b) α(d( 1

2n , 0)) d( 1
2n , 0) + h(g(0)) d(g(0), {1}) = 1

2
1
2n + 1 ≥ d(1, 0).

If n = 2k+ 1 for some k ∈ N, then we have T (x) = {0}∪{ 1
22n+5 ,

1
22n+6 ,

1
22n+7 ,

1
22n+9 , · · · }. Let a ∈ T (x).

If a = 0, then clearly the two conditions of Definition 1.8 are satisfied. If a = 1
22k+s , for some

s ∈ {5, 6, 7, 9, · · · }. Then

(a) (a, 0) ∈ E(G),
(b) α(d( 1

2n , 0)) d( 1
2n , 0) + h(g(0)) d(g(0), T (x)) = 1

2
1

22k+1 ≥ d(a, 0) = 1
22k+s .

Case 3. If (x, y) = ( 1
22n
, 1
22n+1 ). In this case, T (x) = {1} and T (y) = {0} ∪ { 1

22n+5 ,
1

22n+6 ,
1

22n+7 ,
1

22n+9 , · · · }.
For a = 1, pick b = 0 ∈ T (y), then we have

(a) (1, 0) ∈ E(G),
(b) α(d( 1

22n
, 1
22n+1 )) d( 1

22n
, 1
22n+1 ) + h(g( 1

22n+1 )) d(g( 1
22n+1 ), T (x)) = 1

2
1

22n+1 + 22n+4(1 − 1
22n+3 ) >

d(1, 0) = 1.

Therefore, T : X → C(X ) is a weak G-contraction with respect to g. It is easy to check that if (x, y) ∈ E(G)
with y ∈ T (x), then g(y) ∈ T (x). Notice that g(T ( 1

22n+5 )) is not in T ( 1
22n+5 ), that is, T ( 1

22n+5 ) is not g-
invariant. From Theorem 2.1, we know that Coin(g, T )∩Fix(T ) 6= ∅. In fact, we have Coin(g, T )∩Fix(T ) =
{0, 1}.

Definition 2.4. Let (X, d) be a metric space and G be a reflexive digraph with no-parallel edges. Denote
by C(X ) the set of all nonempty closed subsets of X. The multivalued map T : X → C(X ) is said to be
L-weak G-contraction if for any x, y ∈ X such that x 6= y and (x, y) ∈ E(G), we have

(i) if a ∈ T (x), there exists b ∈ T (y) such that (a, b) ∈ E(G) and

(ii) d(a, b) ≤ α(d(x, y)) d(x, y) + L d(g(y), T (x)),

where α : (0,+∞)→ [0, 1) satisfies lim sups→t+ α(s) < 1, for any t ∈ [0,+∞) and L ≥ 0.

The following corollary is a direct consequence of Theorem 2.1 by setting h(x) = L for all x ∈ X and
some L ≥ 0.

Corollary 2.5. Let (X, d) be a complete metric space and (X, d,G) has Property (P). Let g : X → X be a
continuous mapping and T : X → C(X ) be a L-weak G-contraction mapping with respect to g. Suppose that
T (x) is g-invariant and there is x0 ∈ X such that (x0, y) ∈ E(G) for some y ∈ T (x0). Then Coin(g, T ) ∩
Fix(T ) 6= ∅.

The following fixed point result is a consequence of Theorem 2.1 by setting g(x) = x, the identity map.

Corollary 2.6. Let (X, d) be a complete metric space and (X, d,G) has Property (P). Let T : X → C(X )
be a weak G-contraction mapping with respect to the identity map g(x) = x. Suppose that there is x0 ∈ X
such that (x0, y) ∈ E(G) for some y ∈ T (x0). Then Fix(T ) 6= ∅ that is, ∃ x ∈ X such that x ∈ T (x).
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Remark 2.7.

(i) Once Theorem 2.1 are established, it is easy to extend them to the case of uniformly locally contractive
mappings in the sense of Edelstein [4] with or without a graph.

(ii) In Theorem 2.1, if we take G with E(G) = X ×X, we obtain Theorem 2.2 of Du [5].

(iii) In Theorem 2.1, if we take h = 0 and G with E(G) = X ×X, we obtain Mizoguchi-Takahasi Theorem
[9].

(iv) In Theorem 2.1, if we take g(x) = x, the identity map, h = L for some L ≥ 0 andG with E(G) = X×X,
we obtain Theorem 4 of Berinde-Berinde [3].
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