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1. Introduction

Fixed point problems have been found with an explosive growth in theoretical advances, algorithmic
development and applications across all the discipline of pure and applied sciences, see [4, 5, 7, 8, 10–17, 27]
and the references therein. Analysis of these problems requires a blend of techniques from non-smooth
analysis, convex analysis, functional analysis and numerical analysis. As a result of the interaction between
different branches of mathematical and engineering sciences, we now have a variety of techniques to suggest
and analyze various iterative algorithms for solving these problems and related convex optimization prob-
lems. Variational inclusions involving two operators are useful and important extension and generalizations
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of the variational inequalities with a wide range of applications in economics, decision sciences, network,
mathematical, and engineering sciences, see [1, 2, 6, 18, 21, 25–27] and the references therein. It is well
known that the projection method and its variant forms including the Wiener-Hopf equations cannot be
extended and modified for solving the variational inclusions, which motivate us to use new techniques and
methods. Resolvent techniques recently have been investigated by many authors in the framework of Hilbert
spaces, see [3, 22–24, 27–32] and the references therein. The given operator is decomposed into the sum of
two monotone operators whose resolvent is easier to evaluate than the resolvent of the original sum operator.
Such type of methods are called the operator splitting methods and have proved to be very effective for
solving inclusion problems involving two operators.

In this paper, we study a general iterative process for common solutions of quasi-variational inclusion and
fixed point problems. Strong convergence theorems are established in the framework of Hilbert spaces. The
organization of this paper is as follows. In Section 2, we provide some necessary preliminaries. In Section
3, the strong convergence theorem is established in the framework of Hilbert spaces. Some sub-results and
applications are provided to support our main results.

2. Preliminaries

Throughout this paper, we always assume that H is a real Hilbert space, whose inner product and norm
are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let B be a mapping on H. Recall that the following definitions.

B is said to be monotone iff
〈Bx−By, x− y〉 ≥ 0 ∀x, y ∈ H.

B is said to be r-strongly monotone iff there exists a constant r > 0 such that

〈Bx−By, x− y〉 ≥ r‖x− y‖2 ∀x, y ∈ H.

B is said to be r-inverse-strongly monotone iff there exists a constant r > 0 such that

〈Bx−By, x− y〉 ≥ r‖Bx−By‖2 ∀x, y ∈ H.

Recall that a set-valued mapping M : H → 2H is called monotone if for all x, y ∈ H, f ∈ Mx and
g ∈ My implies 〈x− y, f − g〉 ≥ 0. The monotone mapping M : H → 2H is maximal if the graph of G(M)
of M is not properly contained in the graph of any other monotone mapping.

Consider the following so-called quasi-variational inclusion problem: find an u ∈ H for a given element
f ∈ H such that

f ∈ Bu+Mu, (2.1)

where B : H → H and M : H → 2H are two nonlinear mappings, see, for example, [9] and the references
therein. A special case of problem (2.1) is to find an element u ∈ H such that

0 ∈ Bu+Mu. (2.2)

In this paper, we use V I(H,B,M) to denote the solution of problem (2.2). A number of problems arising
in structural analysis, mechanics, and economic can be studied in the framework of this class of variational
inclusions.

Next, we consider two special cases of problem (2.2).

(1) If M = ∂φ : H → 2H , where φ : H → R ∪ {+∞} is a proper convex lower semi-continuous function
and ∂φ is the sub-differential of φ, then problem (2.2) is equivalent to find u ∈ H such that

〈Bu, v − u〉+ φ(v)− φ(u) ≥ 0 ∀v ∈ H,

which is said to be the mixed quasi-variational inequality.



X. Meng, S. Y. Cho, X. Qin, J. Nonlinear Sci. Appl. 9 (2016), 4137–4147 4139

(2) If φ is the indicator function of C, then problem (2.2) is equivalent to the classical variational inequality
problem, denoted by V I(C,B), which is to find u ∈ C such that

〈Bu, v − u〉 ≥ 0 (2.3)

for all v ∈ C.

Let S be a nonlinear mapping on H. F (S) stands for the fixed point set of S. Recall that S is said to
be α-contractive iff there exists a constant α ∈ (0, 1) such that

‖Sx− Sy‖ ≤ α‖x− y‖ ∀x, y ∈ H.

S is said to be non-expansive iff
‖Sx− Sy‖ ≤ ‖x− y‖ ∀x, y ∈ H.

S is said to be k-strictly pseudo-contractive iff there exists a constant k ∈ [0, 1) such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + k‖x− y − Sx+ Sy‖2 ∀x, y ∈ H.

The class of k-strictly pseudo-contractive mappings was introduced by Browder and Petryshn [5] in 1967.
A typical problem is to minimize a quadratic function over the set of the fixed points of a non-expansive

mapping on a real Hilbert space H:

min
x∈F (S)

(
1

2
〈Ax, x〉 − h(x)), (2.4)

where A is a linear bounded and strongly positive operator, F (S) is the fixed point set of non-expansive
mapping S and h is a potential function for γf , that is, h′(x) = γf(x) for x ∈ H.

Iterative methods for non-expansive mappings have recently been applied to solve convex minimization
problems. Marino and Xu [20] studied the following iterative scheme

x0 ∈ H, xn+1 = (I − αnA)Sxn + αnγf(xn), n ≥ 0,

where f is a α-contractive mapping. They proved {xn} generated by the above iterative scheme converges
strongly to the unique solution of the variational inequality

〈x− x∗, (A− γf)x∗〉 ≥ 0, x ∈ F (S),

which is the optimality condition for minimization problem (2.4).
Recently, Zhang, Lee and Chan [32] considered problem (2.2). To be more precise, they proved the

following theorem.

Theorem 2.1. Let H be a real Hilbert space, B : H → H an α-inverse-strongly monotone mapping,
M : H → 2H a maximal monotone mapping, and S : H → H a nonexpansive mapping. Suppose that the set
F (S)∩ V I(H,B,M) 6= ∅, where V I(H,B,M) is the set of solutions of variational inclusion (2.2). Suppose
x0 = x ∈ H and {xn} is the sequence defined by{

xn+1 = αnx0 + (1− αn)Syn,

yn = JM,λ(xn − λBxn, ) n ≥ 0,

where λ ∈ (0, 2α) and {αn} is a sequence in [0, 1] satisfying the following conditions:
(a) limn→∞ αn = 0,

∑∞
n=1 αn =∞;

(b)
∑∞

n=0 |αn+1 − αn| <∞.
Then, {xn} converges strongly to PF (S)∩V I(H,B,M)x0.

To prove our main results, we also need the following lemmas.
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Lemma 2.2 ([32]). Let M : H → 2H be a multi-valued maximal monotone mapping. Then the single-valued
mapping JM,λ : H → H defined by JM,λ(u) = (I + λM)−1(u) ∀u ∈ H is called the resolvent operator
associated with M , where λ is any positive number and I is the identity mapping. The resolvent operator
JM,λ associated with M is single-valued and non-expansive for all λ > 0. u ∈ H is a solution of variational
inclusion (2.2) if and only if u = JM,λ(u− λBu, ) ∀λ > 0, that is,

V I(H,B,M) = F (JM,λ(I − λB)) ∀λ > 0.

Lemma 2.3 ([19]). Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1− γn)αn + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
(a)

∑∞
n=1 γn =∞;

(b) lim supn→∞ δn/γn ≤ 0 or
∑∞

n=1 |δn| <∞.
Then, limn→∞ αn = 0.

Lemma 2.4 ([4]). Let H be a real Hilbert space H. Let T be a strictly pseudo-contractive mapping with fixed
points. Then, I − T is demiclosed at zero, that is, xn ⇀ x and xn − Txn → 0, we have x ∈ F (T ).

Lemma 2.5 ([12]). Let H be a real Hilbert space and M : H → 2H be a maximal monotone mapping
and P : H → H be a hemi-continuous bounded monotone mapping with D(M) = H. Then, mapping
M + P : H → 2H is maximal monotone.

3. Main results

Theorem 3.1. Let H be a real Hilbert space and M : H → 2H a maximal monotone mapping. Let
B : H → H be a r-inverse-strongly monotone and let T be a k-strictly pseudo-contractive mapping on
H. Let f be a contraction of H into itself with the contractive coefficient α (0 < α < 1) and let A be a
strongly positive linear bounded self-joint operator with the coefficient γ̄ > 0. Assume that 0 < γ < γ̄/α and
Ω = F (T ) ∩ V I(H,B,M) 6= ∅. Let x1 ∈ H and {xn} be a sequence generated by{

yn = κTJM,λ(xn − λBxn) + (1− κ)JM,λ(xn − λBxn),

xn+1 = αnγf(xn) + (I − αnA)yn ∀n ≥ 1,

where κ ∈ (0, 1 − k], λ ∈ (0, 2r] and {αn} is a sequence in (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn = ∞,
and

∑∞
n=1 |αn+1 − αn| < ∞. Then, {xn} converges strongly to z ∈ Ω, which uniquely solves the following

variational inequality
〈Az − γf(z), z − w〉 ≤ 0 ∀w ∈ Ω. (3.1)

Proof. Putting S = κT + (1− κ)I, we see that S is nonexpansive with F (S) = F (T ). Indeed, we have

‖Sx− Sy‖2 = κ‖Tx− Ty‖2 + (1− κ)‖x− y‖2 − κ(1− κ)‖(Tx− Ty)− (x− y)‖2

≤ κ‖x− y‖2 + κk‖(Tx− Ty)− (x− y)‖2 + (1− κ)‖x− y‖2

− κ(1− κ)‖(Tx− Ty)− (x− y)‖2

≤ ‖x− y‖2 − κ[(1− κ)− k]‖(Tx− Ty)− (x− y)‖2

≤ ‖x− y‖2 ∀x, y ∈ H.

From the strong monotonicity of A− γf , we get the uniqueness of the solution of the variational inequality
(3.1). Suppose z1 ∈ Ω and z2 ∈ Ω both are solutions to (3.1). It follows that

〈Az2 − γf(z2), z2 − z1〉 ≤ 0



X. Meng, S. Y. Cho, X. Qin, J. Nonlinear Sci. Appl. 9 (2016), 4137–4147 4141

and
〈Az1 − γf(z1), z1 − z2〉 ≤ 0.

Adding up the two inequalities, we see that

〈z2 − z1, (A− γf)z1 − (A− γf)z2〉 ≥ 0.

The strong monotonicity of A − γf implies that z1 = z2 and the uniqueness is proved. Below we use z to
denote the unique solution of (3.1). From the condition on λ, we have

‖(I − λB)x− (I − λB)y‖2 = λ2‖Bx−By‖2 + ‖x− y‖2 − 2λ〈x− y,Bx−By〉
≤ ‖x− y‖2 − λ(2r − λ)‖Bx−By‖2

≤ ‖x− y‖2,

which implies mapping I − λB is nonexpansive. Taking x∗ ∈ Ω, we find from Lemma 2.2 that x∗ =
JM,λ(x∗ − λBx∗). It follows that

‖yn − x∗‖ ≤ ‖JM,λ(xn − λBxn)− JM,λ(x∗ − λBx∗)‖ ≤ ‖xn − x∗‖.

Note that from the conditions, we may assume, without loss of generality, that αn ≤ ‖A‖−1 for all n ≥ 1.
Since A is a strongly positive linear bounded self-adjoint operator, we have ‖A‖ = sup{|〈Ax, x〉| : x ∈
H, ‖x‖ = 1}. Now, for x ∈ C with ‖x‖ = 1, we see that

0 ≤ 1− αn‖A‖ ≤ 1− αn〈Ax, x〉 = 〈(I − αnA)x, x〉,

that is, I − αnA is positive. It follows that

‖I − αnA‖ = sup{〈(I − αnA)x, x〉 : x ∈ C, ‖x‖ = 1}
= sup{1− αn〈Ax, x〉 : x ∈ C, ‖x‖ = 1}
≤ 1− αnγ̄.

It follows from Lemma 2.2 that

‖xn+1 − x∗‖ ≤ αn‖γf(xn)−Ax∗‖+ ‖I − αnA‖‖SJM,λ(xn − λBxn)− x∗‖
≤ αn‖γf(xn)−Ax∗‖+ (1− αnγ̄)‖JM,λ(xn − λBxn)− x∗‖
≤ αn‖γf(xn)−Ax∗‖+ +(1− αnγ̄)‖xn − x∗‖
≤ αn‖γf(xn)− γf(x∗)‖+ αn‖γf(x∗)−Ax∗‖

+ (1− αnγ̄)‖xn − x∗‖
≤ ααnγ‖xn − x∗‖+ αn‖γf(x∗)−Ax∗‖+ (1− αnγ̄)‖xn − x∗‖
= [1− αn(γ̄ − αγ)]‖xn − x∗‖+ αn‖γf(x∗)−Ax∗‖.

This implies that

‖xn − x∗‖ ≤ max{‖x1 − x∗‖,
‖γf(x∗)−Ax∗‖

γ̄ − αγ
},

which gives that sequence {xn} is bounded, so is {yn}. Next, we show that limn→∞ ‖xn+1 − xn‖ = 0. Note
that

‖yn+1 − yn‖ ≤ ‖JM,λ(xn − λBxn)− JM,λ(xn+1 − λBxn+1)‖
≤ ‖(xn − λBxn)− (xn+1 − λBxn+1)‖
≤ ‖xn − xn+1‖.

It follows that

‖xn+1 − xn‖ = ‖αn+1γf(xn+1)− αnγf(xn) + (I − αn+1A)yn+1 − (I − αnA)yn‖
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≤ αn+1γ‖f(xn+1)− f(xn)‖+ γ|αn+1 − αn|‖f(xn)‖+ ‖I − αn+1A‖‖yn+1 − yn‖
+ |αn+1 − αn|‖Ayn‖
≤ αn+1γα‖xn+1 − xn‖+ γ|αn+1 − αn|‖f(xn)‖+ (1− αn+1γ̄)‖yn+1 − yn‖

+ |αn+1 − αn|‖Ayn‖
≤ [1− αn(γ̄ − αγ)]‖xn+1 − xn‖+ |αn+1 − αn|(γ‖f(xn)‖+ ‖Ayn‖).

In view of Lemma 2.3, one has
lim
n→∞

‖xn+1 − xn‖ = 0. (3.2)

Since
xn+1 − yn = αn(γf(xn)−Ayn),

which implies from the restriction imposed on {αn} that

lim
n→∞

‖xn+1 − yn‖ = 0. (3.3)

Combing (3.2) with (3.3), one finds that

lim
n→∞

‖yn − xn‖ = 0. (3.4)

On the other hand, one has

‖xn+1 − x∗‖2 ≤
(
αn‖γf(xn)−Ax∗‖+ (1− αnγ̄)‖SJM,λ(xn − λBxn)− x∗‖

)2
≤ αn‖γf(xn)−Ax∗‖2 + (1− αnγ̄)‖JM,λ(xn − λBxn)− x∗‖2

+ 2αn(1− αnγ̄)‖γf(xn)−Ax∗‖‖JM,λ(xn − λBxn)− x∗‖
≤ αn‖γf(xn)−Ax∗‖2 + (1− αnγ̄)‖(xn − λBxn)− (x∗ − λBx∗)‖2

+ 2αn(1− αnγ̄)‖γf(xn)−Ax∗‖‖JM,λ(xn − λBxn)− x∗‖
≤ αn‖γf(xn)−Ax∗‖2 + (1− αnγ̄)‖xn − x∗‖2 − (1− αnγ̄)λ(2r − λ)‖Bxn −Bx∗‖2

+ 2αn(1− αnγ̄)‖γf(xn)−Ax∗‖‖JM,λ(xn − λBxn)− x∗‖
≤ αn‖γf(xn)−Ax∗‖2 + ‖xn − x∗‖2 − (1− αnγ̄)λ(2r − λ)‖Bxn −Bx∗‖2

+ 2αn‖γf(xn)−Ax∗‖‖JM,λ(xn − λBxn)− x∗‖.

Hence, we have

(1− αnγ̄)λ(2r − λ)‖Bxn −Bx∗‖2 ≤ αn‖γf(xn)−Ax∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

+ 2αn‖γf(xn)−Ax∗‖‖JM,λ(xn − λBxn)− x∗‖
≤ αn‖γf(xn)−Ax∗‖2 + (‖xn − x∗‖+ ‖xn+1 − x∗‖)‖xn − xn+1‖

+ 2αn‖γf(xn)−Ax∗‖‖JM,λ(xn − λBxn)− x∗‖.

From (3.2), one has
lim
n→∞

‖Bxn −Bx∗‖ = 0. (3.5)

Since JM,λ is firmly nonexpansive, one has

‖JM,λ(xn − λBxn)− x∗‖2 ≤ 〈(xn − λBxn)− (x∗ − λBx∗), JM,λ(xn − λBxn)− x∗〉

≤ 1

2

(
‖(xn − λBxn)− (x∗ − λBx∗)‖2 + ‖JM,λ(xn − λBxn)− x∗‖2

− ‖xn − JM,λ(xn − λBxn)− λ(Bxn −Bx∗)‖2
)
.
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Therefore, we arrive at

‖JM,λ(xn − λBxn)− x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − JM,λ(xn − λBxn)‖2

− λ‖Bxn −Bx∗‖2 + 2λ‖xn − JM,λ(xn − λBxn)‖‖Bxn −Bx∗‖.

This implies that

‖xn+1 − x∗‖2 ≤
(
αn‖γf(xn)−Ax∗‖+ (1− αnγ̄)‖SJM,λ(xn − λBxn)− x∗‖

)2
≤ αn‖γf(xn)−Ax∗‖2 + (1− αnγ̄)‖JM,λ(xn − λBxn)− x∗‖2

+ 2αn(1− αnγ̄)‖γf(xn)−Ax∗‖‖JM,λ(xn − λBxn)− x∗‖
≤ αn‖γf(xn)−Ax∗‖2 + (1− αnγ̄)‖xn − x∗‖2 − (1− αnγ̄)‖xn − JM,λ(xn − λBxn)‖2

− λ(1− αnγ̄)‖Bxn −Bx∗‖2 + 2λ(1− αnγ̄)‖xn − JM,λ(xn − λBxn)‖‖Bxn −Bx∗‖
+ 2αn(1− αnγ̄)‖γf(xn)−Ax∗‖‖JM,λ(xn − λBxn)− x∗‖
≤ αn‖γf(xn)−Ax∗‖2 + ‖xn − x∗‖2 − (1− αnγ̄)‖xn − JM,λ(xn − λBxn)‖2

+ 2λ‖xn − JM,λ(xn − λBxn)‖‖Bxn −Bx∗‖
+ 2αn‖γf(xn)−Ax∗‖‖JM,λ(xn − λBxn)− x∗‖.

Hence, we have

(1− αnγ̄)‖xn − JM,λ(xn − λBxn)‖2 ≤ αn‖γf(xn)−Ax∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

+ 2λ‖xn − JM,λ(xn − λBxn)‖‖Bxn −Bx∗‖
+ 2αn‖γf(xn)−Ax∗‖‖JM,λ(xn − λBxn)− x∗‖
≤ αn‖γf(xn)−Ax∗‖2 + (‖xn − x∗‖+ ‖xn+1 − x∗‖)‖xn − xn+1‖

+ 2λ‖xn − JM,λ(xn − λBxn)‖‖Bxn −Bx∗‖
+ 2αn‖γf(xn)−Ax∗‖‖JM,λ(xn − λBxn)− x∗‖.

Using (3.2) and (3.5), one gets that

lim
n→∞

‖xn − JM,λ(xn − λBxn)‖ = 0. (3.6)

Now, we are in a position to prove that

lim sup
n→∞

〈xn − z, (γf −A)z〉 ≤ 0,

where z = PΩ[I − (A− γf)]z. To see this, we choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈xn − z, (γf −A)z〉 = lim
i→∞
〈xni − z, (γf −A)z〉.

Since {xni} is bounded, there exists a subsequence {xnij
} of {xni} which converges weakly to w. Without

loss of generality, we can assume that xni ⇀ w. Next, we show that w ∈ F (S) ∩ V I(H,M,B). Note that

‖xn − Sxn‖ ≤ ‖xn − SJM,λ(xn − λBxn)‖+ ‖SJM,λ(xn − λBxn)− Sxn‖
≤ ‖xn − yn‖+ ‖JM,λ(xn − λBxn)− xn‖.

Using (3.4) and (3.6), one has limn→∞ ‖xn − Sxn‖ = 0. From Lemma 2.4, one gets w ∈ F (S) = F (T ).
Next, we prove x ∈ V I(H,M,B). In fact, since B is r-inverse-strongly monotone, it follows from B is

Lipschitz continuous. It follows from Lemma 2.5 that M +B is a maximal monotone operator. Let (u, v) ∈
G(M +A), that is, v −Bu ∈M(u). Setting tn = JM,λ(xn − λBxn), we have xn − λBxn ∈ tn + λMtn, that
is,

xn − tn
λ

−Bxn ∈Mtn.
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By virtue of the maximal monotonicity of M +B, we have

〈u− tn, v −Bu−
xn − tn
λ

+Bxn〉 ≥ 0.

Hence, we have

〈u− tn, v〉 ≥ 〈u− tn, Bu+
xn − tn
λ

−Bxn〉

= 〈u− tn, Bu−Btn +Btn −Bxn +
xn − tn
λ
〉

≥ 〈u− tn, Btn −Bxn〉+ 〈u− tn,
xn − tn
λ
〉.

From (3.6), we have 〈u− w, v〉 ≥ 0. Since B +M is maximal monotone, this implies that 0 ∈ (M +B)(w),
that is, w ∈ V I(H,M,B), and so w ∈ F (T ) ∩ V I(H,M,B).

Finally, we show that xn → z, as n→∞. Indeed,

‖xn+1 − z‖2 = ‖(I − αnA)(Syn − z) + αn(γf(xn)−Az)〉‖2

≤ ‖(I − αnA)(Syn − z)‖2 + 2αn〈γf(xn)−Az, xn+1 − z〉
≤ (1− αnγ̄)‖yn − z‖2 + 2αn〈γf(xn)−Az, xn+1 − z〉
≤ (1− αnγ̄)‖xn − z‖2 + 2αnγ〈f(xn)− f(z), xn+1 − z〉+ 2αn〈γf(z)−Az, xn+1 − z〉
≤ (1− αnγ̄)‖xn − z‖2 + 2αnγ‖f(xn)− f(z)‖‖xn+1 − z‖+ 2αn〈γf(z)−Az, xn+1 − z〉
≤ (1− αnγ̄)‖xn − z‖2 + 2αnγα‖xn − z‖‖xn+1 − z‖+ 2αn〈γf(z)−Az, xn+1 − z〉
≤ (1− αnγ̄)‖xn − z‖2 + αnγα(‖xn − z‖2 + ‖xn+1 − z‖2) + 2αn〈γf(z)−Az, xn+1 − z〉.

It follows that

‖xn+1 − z‖2 ≤
(1− αnγ̄2) + αnγα

1− αnγα
‖xn − z‖2 +

2αn
1− αnγα

〈γf(z)−Az, xn+1 − z〉

≤ (1− 2αnγ̄ + αnγα

1− αnγα
‖xn − z‖2 +

α2
nγ̄

2

1− αnγα
‖xn − z‖2 +

2αn
1− αnγα

〈γf(z)−Az, xn+1 − z〉

≤
(
1− 2αn(γ̄ − αγ

1− αnγα
)
‖xn − z‖2

+
2αn(γ̄ − αγ
1− αnγα

( 1

γ̄ − αγ
〈γf(z)−Az, xn+1 − z〉+

1

2(γ̄ − αγ)
M
)
,

where M is an appropriate constant such that M ≥ supn≥1{‖xn − z‖}. Using Lemma 2.3, we find the
desired conclusion immediately. This completes the proof.

From Theorem 3.1, the following results are not hard to derive.

Corollary 3.2. Let H be a real Hilbert space and M : H → 2H a maximal monotone mapping. Let B : H →
H be a r-inverse-strongly monotone and let T be a nonexpansive mapping on H. Let f be a contraction of
H into itself with the contractive coefficient α (0 < α < 1) and let A be a strongly positive linear bounded
self-joint operator with the coefficient γ̄ > 0. Assume that 0 < γ < γ̄/α and Ω = F (T ) ∩ V I(H,B,M) 6= ∅.
Let x1 ∈ H and {xn} be a sequence generated by{

yn = TJM,λ(xn − λBxn),

xn+1 = αnγf(xn) + (I − αnA)yn ∀n ≥ 1,

where λ ∈ (0, 2r] and {αn} is a sequence in (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn =∞, and
∑∞

n=1 |αn+1−
αn| <∞. Then, {xn} converges strongly to z ∈ Ω, which uniquely solves the following variational inequality

〈Az − γf(z), z − w〉 ≤ 0 ∀w ∈ Ω.



X. Meng, S. Y. Cho, X. Qin, J. Nonlinear Sci. Appl. 9 (2016), 4137–4147 4145

Corollary 3.3. Let H be a real Hilbert space and M : H → 2H a maximal monotone mapping. Let
B : H → H be a r-inverse-strongly monotone. Let f be a contraction of H into itself with the contractive
coefficient α (0 < α < 1) and let A be a strongly positive linear bounded self-joint operator with the coefficient
γ̄ > 0. Assume that 0 < γ < γ̄/α and V I(H,B,M) 6= ∅. Let x1 ∈ H and {xn} be a sequence generated by

xn+1 = αnγf(xn) + (I − αnA)JM,λ(xn − λBxn) ∀n ≥ 1,

where λ ∈ (0, 2r] and {αn} is a sequence in (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn =∞, and
∑∞

n=1 |αn+1−
αn| <∞. Then, {xn} converges strongly to z ∈ Ω, which uniquely solves the following variational inequality

〈Az − γf(z), z − w〉 ≤ 0 ∀w ∈ V I(H,B,M).

4. Applications

If T is k-strictly pseudocontractive, then I − T is 1−k
2 -inverse-strongly monotone. We are in a position

to give a result on common fixed points of a pair of strictly pseudocontractive mappings.

Theorem 4.1. Let H be a real Hilbert space. Let T be a k-strictly pseudo-contractive mapping on H and
let S be a k̄-strictly pseudo-contractive mapping on H. Let f be a contraction of H into itself with the
contractive coefficient α (0 < α < 1) and let A be a strongly positive linear bounded self-joint operator with
the coefficient γ̄ > 0. Assume that 0 < γ < γ̄/α and Ω = F (T ) ∩ F (S) 6= ∅. Let x1 ∈ H and {xn} be a
sequence generated by{

yn = λSxn + (1− λ)xn,

xn+1 = αnγf(xn) + (I − αnA)
(
κTyn + (1− κ)yn

)
∀n ≥ 1,

where κ ∈ (0, 1−k], λ ∈ (0, 1− k̄], and {αn} is a sequence in (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn =∞,
and

∑∞
n=1 |αn+1 − αn| < ∞. Then, {xn} converges strongly to z ∈ Ω, which uniquely solves the following

variational inequality
〈Az − γf(z), z − w〉 ≤ 0 ∀w ∈ Ω.

Proof. Putting B := I − S, we find B is 1−k̄
2 -inverse-strongly monotone. We also have V I(H,B) = F (S)

and λSxn+(1−λ)xn = JM,λ(xn−λSxn). From Theorem 3.1, we obtain the desired result immediately.

Let C be a nonempty closed and convex subset of H and B : C → H be a mapping. Recall that the
classical variational inequality is to find an x ∈ C such that 〈Bx, y − x〉 ≥ 0 ∀y ∈ C. The solution set
of the variational inequality is denoted by V I(C,A). It is known that x is a solution to the variational
inequality iff x is a fixed point of the mapping PC(I − λA), where I denotes the identity on H. Let iC be
a function defined by iC(x) = 0, x ∈ C, iC(x) = ∞, x /∈ C. It is easy to see that iC is a proper lower and
semicontinuous convex function on H, and the subdifferential ∂iC of iC is maximal monotone. Define the
resolvent JiC ,λ := (I + λ∂iC)−1 of the subdifferential operator ∂iC . Letting x = JiC ,λy, we find that

y ∈ x+ λ∂iCx⇐⇒ y ∈ x+ λNCx⇐⇒ x = PCy,

where NCx := {e ∈ H : 〈e, v− x〉 ∀v ∈ C}. Putting M = ∂iC in Theorems 3.1, we find the following results
immediately.

From the above and Theorem 3.1, we immediately find the results.

Theorem 4.2. Let C be a nonempty closed and convex subset of a real Hilbert space. Let B : C → H be a r-
inverse-strongly monotone and let T be a k-strictly pseudo-contractive mapping on C. Let f be a contraction
of C into itself with the contractive coefficient α (0 < α < 1) and let A be a strongly positive linear bounded
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self-joint operator with the coefficient γ̄ > 0. Assume that 0 < γ < γ̄/α and Ω = F (T ) ∩ V I(H,B,M) 6= ∅.
Let x1 ∈ C and {xn} be a sequence generated by{

yn = κTPC(xn − λBxn) + (1− κ)PC(xn − λBxn),

xn+1 = αnf(xn) + (1− αn)yn ∀n ≥ 1,

where κ ∈ (0, 1 − k], λ ∈ (0, 2r] and {αn} is a sequence in (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn = ∞,
and

∑∞
n=1 |αn+1 − αn| < ∞. Then, {xn} converges strongly to z ∈ Ω, which uniquely solves the following

variational inequality
〈Az − γf(z), z − w〉 ≤ 0 ∀w ∈ Ω.

For the class of nonexpansive mappings, we have the following results.

Corollary 4.3. Let C be a nonempty closed and convex subset of a real Hilbert space. Let B : C → H be a
r-inverse-strongly monotone and let T be a nonexpansive mapping on C. Let f be a contraction of C into
itself with the contractive coefficient α (0 < α < 1) and let A be a strongly positive linear bounded self-joint
operator with the coefficient γ̄ > 0. Assume that 0 < γ < γ̄/α and Ω = F (T ) ∩ V I(H,B,M) 6= ∅. Let
x1 ∈ C and {xn} be a sequence generated by

xn+1 = αnf(xn) + (1− αn)TPC(xn − λBxn) ∀n ≥ 1,

where λ ∈ (0, 2r] and {αn} is a sequence in (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn =∞, and
∑∞

n=1 |αn+1−
αn| <∞. Then, {xn} converges strongly to z ∈ Ω, which uniquely solves the following variational inequality

〈Az − γf(z), z − w〉 ≤ 0 ∀w ∈ Ω.
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