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Abstract

Some Epidemic models with fractional derivatives were proved to be well-defined, well-posed and more
accurate (Brockmann et al. [D. Brockmann, L. Hufnagel, Phys. Review Lett., 98 (2007), 17–27]; Doungmo
Goufo et al. [E. F. Doungmo Goufo, R. Maritz, J. Munganga, Adv. Diff. Equ., 2014 (2014), 9 pages];
Pooseh et al. [S. Pooseh, H. S. Rodrigues, D. F. M. Torres, In: Numerical Analysis and Applied Mathe-
matics, ICNAAM, American Institute of Physics, Melville, (2011), 739–742]), compared to models with the
conventional derivative. In this paper, an Ebola epidemic model with non linear transmission is analyzed.
The model is expressed with the conventional time derivative with a new parameter included, which happens
to be fractional. We proved that the model is well-defined, well-posed. Moreover, conditions for bounded-
ness and dissipativity of the trajectories are established. Exploiting the generalized Routh-Hurwitz Criteria,
existence and stability analysis of equilibrium points for Ebola model are performed to show that they are
strongly dependent on the non-linear transmission. In particular, conditions for existence and stability of
a unique endemic equilibrium to the Ebola system are given. Finally, numerical simulations are provided
for particular expressions of the non-linear transmission (with parameters κ = 0.01, κ = 1 and p = 2).
The obtained simulations are in concordance with the usual threshold behavior. The results obtained here
are significant for the fight and prevention against Ebola haemorrhagic fever that has so far exterminated
hundreds of families and is still infecting many people in West-Africa. c©2016 All rights reserved.

Keywords: Conventional derivative with a new parameter, Ebola epidemic model, non-linear incidence,
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1. Introduction

Due to the complexity of new outbreaks of diseases happening around the world, the development and
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application of new approaches in mathematical epidemiology has exploded recently. Many authors have
paid special attention to the modeling of real world phenomena in a broader outlook like for instance, the
inclusion of the concept of fractional order derivatives or simply adding new parameters in the process. It
happened that some of such modellings are more reliable and provide better predictions compared to models
with conventional (integer order) derivative [11, 20, 31, 40]. A concrete proof was given in [40] with the fact
that some epidemic models based on variation with conventional derivative were unable to reproduce the
statistical data collected in a real outbreak of some disease with enough degree of accuracy. Other examples
are provided in [36, 37, 39] with the application of half-order derivatives and integrals, which, compared to
classical models, are proved to be more useful and reliable for the formulation of certain electrochemical
problems. For more examples the reader can refer to the works [4, 6, 7, 10, 15, 20, 31, 42] that have
successfully generalized, in various ways, classical derivatives to derivatives of fractional order.

In the domain of mathematical epidemiology, Doungmo Goufo et al. [20] provided several interesting
and useful properties of Kermack-McKendrick epidemic model with non linear incidence and fractional order
derivative. Recall that Kermack-McKendrick epidemic model is considered as the basis from which many
other multi-compartmental models were developed. The results obtained therein sustain the legitimation of
epidemic models with fractional order derivative and may help analyze more complex models in the field.

Accordingly, The outbreak of Ebola haemorrhagic fever is currently occurring in West African countries
and has infected around 28637 people, killed more than 11315 people so far around the world, and these
numbers are still rising. Not only the West African region is affected as clearly shown in Fig. 1, there is no
known and yet confirmed cure for the disease and since the true and real dynamic of the virus is not yet
apprehended totally, it is reasonable to applied recent developed concepts to the disease in order to establish
a broader outlook on the real nature of this killing disease that has become a nightmare for all the nations.
More justifications and motivations are provided in Section 2.2 here below.

Figure 1: Number of Ebola cases and deaths per countrya.
aSource: ”Ebola Situation report on 7 February 2016”. World Health organization. 7 February 2016. Retrieved 8 February 2016.

http://apps.who.int/iris/bitstream/10665/147112/1/roadmapsitrep7Jan2016eng.pdf

2. Some important notes

2.1. Ebola haemorrhagic fever and non-linear transmission

Ebola haemorrhagic fever is caused by Ebolavirus, a virus from the family of filoviridea. The genus
Ebolavirus counts itself among three members of the Filoviridae family (filovirus), together with the genus
Marburgvirus and the genus Cuevavirus. Three distinct species of the Genus Ebolavirus, namely Bundibu-
gyoebolavirus (BDBV), Zaire ebolavirus (EBOV), Sudan ebolavirus (SUDV) are believed to be largely
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responsible for the Ebola outbreaks in Africa in general and the actual 2014 fatal outbreak occurring in
West Africa. Ebola virus is an unusual but fatal virus that, when spreading throughout the body, damages
the immune system and organs. Ultimately, it causes levels of blood-clotting cells to drop [8]. This causes
uncontrollable bleeding inside and outside the body [28] to yield a severe hemorrhagic disease characterized
by initial fever and malaise followed by shock, gastrointestinal bleeding symptoms, to end by multi-organ
system failure.

In Africa, the transmission of ebola virus is believed to be non-linear and happen in various ways. Most
of the infections that occur in living beings are possible by the handling of infected fruit bats, macaques,
baboons, vervets, monkeys, chimpanzees, gorillas, forest antelope and porcupines, sometime found dead
or sick in the scrubland or forest. Ebola virus is then transmitted from one person to another through
human-to-human, human-to-animal or human-to-fruit birelations. The usual infection results from direct
contact (through broken skin or mucous membranes) with the blood, secretions, organs or other bodily fluids
of infected people. Transmission of Ebola disease also occurs due to indirect contact with environments
contaminated with such fluids [22, 23, 32, 44] or during burial ceremonies in which mourners have direct
contact with the body of a deceased person.

The literature concerning Ebola’s cure, vaccine, species variety and dynamics is still limited and far from
being complete. Therefore, it is urgently necessary to conduct various research and explore new methods
and techniques. This will help to better understand the outbreak process and educate people about the
real dynamic of Ebola virus, its transmission’s mode and ways to avoid or reduce its spreading. Fig. 2
graphically shows the various and most common modes of transmission used by ebola virus to infect human
beings and Fig. 3 shows some basic prevention of the spread of Ebola virus.

2.2. Conventional derivative with new parameter: Justification, motivation

Today, it is widely known that the Newtonian concept of derivative can no longer satisfy all the complexity
of the natural occurrences. A couple of complex phenomena and features happening in some areas of sciences
or engineering are still (partially) unexplained by the traditional existing methods and remain open problems.
Usually in mathematical modeling of a natural phenomenon that changes, the evolution is described by a
family of time-parameter operators, that map an initial given state of the system to all subsequent states
that takes the system during the evolution. A widely devotion has been predominantly offered to way
of looking at that evolution in which time’s change is described as transitions from one state to another.
Hence, this is how the theory of semigroups was developed [21, 38], providing the mathematicians with very
interesting tools to investigate and analyze resulting mathematical models. However, most of the phenomena
that scientists try to analyze and describe mathematically are complex and very hard to handle. Some of
them, like depolymerization, rock fractures and fragmentation processes are difficult to analyze [45] and
often involve evolution of two intertwined quantities: the number of particles and the distribution of mass
among the particles in the ensemble. Then, though linear, they display non-linear features such as phase
transition (called “shattering”) causing the appearance of a “dust” of “zero-size” particles with nonzero
mass.

Figure 2: Ebola virus transmission modes

Source : <http://www.abc.net.au/news/2014-07-30/ebola-virus-explainer/5635028> (Retrieved on 20 February 2016).
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Figure 3: Preventing Ebola virus from spreading

Source: <http://www.oaupeeps.com/2014/07/ebola-outbreak-causes-transmission.html> (Retrieved on 20 February 2016.

Another example is the groundwater flowing within a leaky aquifer. Recall that an aquifer is an under-
ground layer of water-bearing permeable rock or unconsolidated materials (gravel, sand, or silt) from which
groundwater can be extracted using a water well. Then, how do we explain accurately the observed move-
ment of water within the leaky aquifer? As an attempt to answer this question, Hantush [24, 25] proposed
an equation with the same name and his model has since been used by many hydro-geologists around the
world. However, it is necessary to note that the model does not take into account all the non-usual details
surrounding the movement of water through a leaky geological formation. Indeed, due to the deformation of
some aquifers, the Hantush equation is not able to account for the effect of the changes in the mathematical
formulation. Hence, all those non-usual features are beyond the usual models’ resolutions and need other
techniques and methods of modeling with more parameters involved.

Furthermore, time’s evolution and changes occurring in some systems do not happen on the same manner
after a fixed or constant interval of time and do not follow the same routine as one would expect. For
instance, a huge variation can occur in a fraction of second causing a major change that may affect the whole
system’s state forever. Indeed, it has turned out recently that many phenomena in different fields, including
sciences, engineering and technology can be described very successfully by the models using fractional order
differential equations [9, 11, 14, 15, 17, 18, 20, 27, 31, 41]. Hence, differential equations with fractional
derivative have become a useful tool for describing nonlinear phenomena that are involved in many branches
of chemistry, engineering, biology, ecology and numerous domains of applied sciences. Many mathematical
models, including those in acoustic dissipation, mathematical epidemiology, continuous time random walk,
biomedical engineering, fractional signal and image processing, control theory, Levy statistics, fractional
phase-locked loops, fractional Brownian, porous media, fractional filters motion and nonlocal phenomena
have proved to provide a better description of the phenomenon under investigation than models with the
conventional integer-order derivative [11, 20, 31, 40].

One of the attempts to enhance mathematical models was to introduce the concept of derivative with
fractional order. There exists a very large literature on different definitions of fractional derivatives. The
most popular are the Riemann–Liouville and the Caputo derivatives respectively defined as

Dα
x (f(x)) =

1

Γ (n− α)

(
d

dx

)n ∫ x

0
(x− t)n−α−1f (t) dt, (2.1)

n− 1 < α ≤ n and

Dα
x (f(x)) =

1

Γ (n− α)

∫ x

0
(x− t)n−α−1

(
d

dt

)n
f (t) dt, (2.2)

n− 1 < α ≤ n.
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Each of them presents some advantages and disadvantages [17, 39, 42]. Not all of them satisfy the
common properties of the standard concept of derivative, and therefore, there are some limitations that will
not allow them to adequately describe real world problems and phenomena. For instance,

The Riemann–Liouville derivative of a constant is not zero while Caputo’s derivative of a constant is
zero but demands higher conditions of regularity for differentiability.

To compute the fractional derivative of a function in the Caputo sense, we must first calculate its
derivative.

Caputo derivatives are defined only for differentiable functions while functions that have no first order
derivative might have fractional derivatives of all orders less than one in the Riemann–Liouville sense.

Guy Jumarie (2005 and 2006) proposed a simple alternative definition to the Riemann–Liouville deriva-
tive, the modified one showed above.

New fractional derivatives with no singular kernel were recently proposed by many authors including
Caputo et al. in [13], Doungmo Goufo [19], and a version with non-local and non-singular kernel was
introduced by Atangana and Baleanu [5]. However, Caputo fractional derivative [12], for instance, remains
the one mostly used for modelling real world problems in the field [9, 11, 17, 18, 20]. However, this derivative
exhibits some limitations like not obeying the traditional chain rule; which chain rule represents one of the
key elements of the match asymptotic method [4, 6, 29, 43]. Recall that the match asymptotic method has
never been used to solve any kind of fractional differential equations because of the nature and properties of
fractional derivatives. Hence, the conformable derivative was proposed [1, 30]. This derivative is theoretically
very easier to handle and obeys the chain rule. But it also exhibits a huge failure that is expressed by the
fact that the derivative of any differentiable function at the point zero is zero. This does not make any sense
in a physical point of view.

Accordingly, a modified new version, the β–derivative was proposed in order to skirt the noticed weakness.
The main aim of this new derivative was, first of all, to perform a wider analysis on the well-known match
asymptotic method [4, 6, 29, 43] and later extend and describe the boundary layers problems within new
parameters. Note that the β–derivative is not considered here as a fractional derivative in the same sense as
Riemann–Liouville or Caputo fractional derivative. It is the conventional derivative with a new (fractional)
parameter and as such, has been proven to have many applications in applied sciences [4, 6] and mathematical
epidemiology [3]. Our goal is to pursue the investigation in the same momentum. It is defined as:

Definition 2.1. Let g be a function, such that, g : [a, ∞)→ R then, the β− derivative of g is defined as:

A
0 D

β
t g(t) =


lim
ε→0

g

(
t+ε

(
t+ 1

Γ(β)

)1−β
)
−g(t)

ε for all t ≥ 0, 0 < β ≤ 1

g(t) for all t ≥ 0, β = 0,

(2.3)

where Γ is the gamma-function

Γ(ζ) =

∫ ∞
0

tζ−1e−1dt.

If the above limit exists then g is said to be β−differentiable.
Note that for β = 1, we have A

0 D
β
t g(t) = d

dtg(t). Moreover, unlike other derivatives with fractional
parameters, the β–derivative of a function can be locally defined at a certain point, the same way like the
first order derivative. For a general order, let us say mβ, the mβ–derivative of g is defined as

A
0 D

mβ
t g(t) =A

0 Dβ
t

(
A
0 D

(m−1)β
t g(t)

)
for all t ≥ 0, m ∈ N, 0 < β ≤ 1 (2.4)
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Notice that the mβ–derivative of a given function provides information about the previous n−1–derivatives
of the same function. For instance we have

A
0 D

2β
t g(t) =A

0 Dβ
t

(
A
0 D

β
t g(t)

)
=

(
t+

1

Γ (β)

)1−β
[

(1− β)

(
t+

1

Γ (β)

)−β
g′ +

(
t+

1

Γ (β)

)1−β
g′′

]
.

(2.5)

This gives the β–derivative a unique property of memory, that is not provided by any other derivative. It is
also easy to verify that for β = 1, we recover the second derivative of g. For more properties and details on
this new derivative, the readers can consult the reference [4, 6].

Theorem 2.2 ([4, 6], Theorem 2.1). Assume that a given function g : [a, ∞) → R is β−differentiable at
a given point t0 ≥ a, β ∈ (0, 1], then, g is also continuous at t0

Theorem 2.3 ([4, 6], Theorem 2.2). Assume that f is β−differentiable on an open interval (a, b) then

1. If A0 D
β
t f(t) < 0 for all t ∈ (a, b) then, f is decreasing on (a, b);

2. If A0 D
β
t f(t) > 0 for all t ∈ (a, b) then, f is increasing on (a, b);

3. If A0 D
β
t f(t) = 0 for all t ∈ (a, b) then, f is constant on (a, b).

Theorem 2.4 ([4, 6], Theorem 2.3). Assume that, g 6= 0 and f are two functions β−differentiable with
β ∈ (0, 1] then, the following relations can be satisfied

1. A
0 D

β
x (af (x) + bg(t)) = aA0 D

β
t (f (t)) + bA0 D

β
t (f (t)) for all a and b real number;

2. A
0 D

β
t (c) = 0 for c any given constant;

3. A
0 D

β
t (f (t) g(t)) = g (t)A0 D

β
t (f (t)) + f (t)A0 D

β
t (g (t)) ;

4. A
0 D

β
t

(
f(t)
g(t)

)
=

g(t)A0 D
β
t (f(t))−f(t)A0 D

β
t (g(t))

g2(t)
.

Theorem 2.5 ([4, 6], Theorem 2.4). Let f : [a, ∞)→ R be a function differentiable and also β−differentiable
and let g be a function defined in the range of f , also differentiable, then we have the following rule

A
0 D

β

t (gof(x)) =

(
t+

1

Γ (β)

)1−β
f ′(t)g′ (f(t)) . (2.6)

3. Model formulation with a new parameter

As mentioned here above, the aim of this article is to propose new approaches, extend classical models
to models with the new derivative and investigate them with various and different techniques in order to
establish broader outlooks on the real phenomena they describe. So let us consider a region with a constant
overall population N(t) at a given time t, with N(0) noted N0. The population N(t) is divided into four
compatements, namely S(t) the number representing individuals susceptible to catch Ebola, I(t) the number
of individuals infected with Ebola, R(t) the number representing people that recover from Ebola and M(t)
the number of individual that are believed to have become immunized after Ebola infection and recovery.
We assume that all recruitment, occurring at a constant rate Λ, is into the class of susceptible to catch
the Ebola fever and that every infected person becomes automatically infectious. Some people of the total
population are considered to die due to a non-disease related death at a rate constant µ, so that thus 1

µ
can be taken as the average lifetime. In addition, Ebola virus kills infectious people at a rate constant
d. We consider the usual non-linear mass balance incidence expressed as κSg(I) to indicate successful
transmission of Ebola virus due to non-linear contacts dynamics in the populations by infectious. Here, the
function g characterizing the nonlinearity is assumed to be at least C3(0, N0] with g(0) = 0 and g(I) > 0 for
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0 < I ≤ N0 and κ is some rate constant. After receiving an effective test treatment or due to personal and
yet unknown biological factors, Ebola infectious individuals can spontaneously recover from the disease with
a rate constant τ , entering the recovered (immunized) class. Since research about the real dynamics and
transmission mode of Ebola virus is still ongoing, we assume that a fraction γR of recovered people γ ≤ 1,
after receiving a treatment reduces their risk to get infected again and are believed to be immunized. Thus,
a fraction (1 − γ)R of recovered people go back to susceptible class with a rate constant δ. The transfer
diagram describing the above dynamics for Ebola fever is given in Fig. 1 and expressed by the system

A
0 D

β
t S(t) = Λ− κS(t)g(I)(t) + (1− γ)δR(t)− µS(t)

A
0 D

β
t I(t) = κS(t)g(I)(t)− (µ+ d+ τ)I(t)

A
0 D

β
t R(t) = τI(t)− (µ+ γ)R(t)− (1− γ)δR(t)

A
0 D

β
tM(t) = γR(t)− µM(t),

(3.1)

with initial conditions

S(0) = S0, I(0) = I0, R(0) = R0, M(0) = M0, (3.2)

where

A
0 D

β
t (f(t)) = lim

ε→0

f

(
t+ ε

(
t+ 1

Γ(β)

)1−β
)
− f(t)

ε

for all t ≥ 0 and 0 < β ≤ 1.

Figure 4: Transfer diagram for the dynamics of Ebola fever transmission in West-Africa

4. Mathematical analysis

In this section, the model (3.1)-(3.2) is analyzed in order to prove its well posedness, study the conditions
for the existence of disease free and endemic non-trivial equilibria, provide an expression for the basic
reproduction ratio and threshold conditions for asymptotic stability of equilibria.

4.1. Positivity of solutions

Proposition 4.1. There exists a unique solution for the initial value problem given (3.1)-(3.2). Furthermore,
if the initial condition (3.2) is non-negative then the corresponding solution (S(t), I(t), R(t),M(t)) of the
Ebola model (3.1) is non-negative for all t > 0.

Proof. The proof of the first part follows from Remark 3.2 supported by Theorem 3.1 in [33]. For the second
part, we show the positively invariance of the nonegative orthant R4

+ = {(S, I,R,M) ∈ R4 : S ≥ 0, I ≥
0, R ≥ 0, M ≥ 0}. Then, we can investigate the direction of the vector field
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Λ− κS(t)g(I)(t) + (1− γ)δR(t)− µS(t)
κS(t)g(I)(t)− (µ+ d+ τ)I(t)
τI(t)− (µ+ γ)R(t)− (1− γ)δR(t)
γR(t) + µM(t),


T

(4.1)

on each coordinate space and see whether the vector field points to the interior of R4
+ or is tangent to the

coordinate space.

• On the coordinate space IRM , we have S = 0 and

A
0 D

β
t S|S=0

= Λ + (1− γ)δR ≥ 0.

• On the coordinate space SRM , we have I = 0 and

A
0 D

β
t I|I=0

= 0.

• On the coordinate space SIM , we have R = 0 and

A
0 D

β
t R|R=0

= τI ≥ 0.

• On the coordinate space SIR, we have M = 0 and

A
0 D

β
tM|M=0

= γR ≥ 0.

Making use of the same arguments as in [20, Property ii] together with Theorem 2.3, we conclude the proof
by stating that the vector field (4.1) either points to the interior of R4

+ or is tangent to each coordinate
space.

4.2. Boundedness and dissipativity of the trajectories

From the above model (3.1), if we add all the equations, we obtain from N(t) = S(t)+I(t)+R(t)+M(t)
and Theorem 2.4 that

Dβ
t N(t) = Λ− µN(t)− dI(t).

Then, this yields Dβ
t N(t) ≤ Λ− µN(t). Therefore, making use of the previous section, we have proven the

following Proposition.

Proposition 4.2. limt→+∞N(t) ≤ Λ
µ .

Furthermore, we have the following invariance property: If N(0) ≤ Λ
µ , then N(t) ≤ Λ

µ , for all t ≥ 0.

In particular, the region

Ψε =

{
(S; I;R;M) ∈ R4

+, N(t) ≤ Λ

µ
+ ε

}
(4.2)

is a compact forward and positively-invariant set for the system (3.1) with non-negative initial condi-
tions in R4

+ and that is absorbing for ε > 0.

Thus, we will restrict our analysis to this region Ψε for ε > 0.

4.3. Existence and stability analysis of equilibrium points

We can consider the systems
A
0 D

β
t S(t) = Λ− κS(t)g(I)(t) + (1− γ)δR(t)− µS(t)

A
0 D

β
t I(t) = κS(t)g(I)(t)− (µ+ d+ τ)I(t)

A
0 D

β
t R(t) = τI(t)− (µ+ γ)R(t)− (1− γ)δR(t)

(4.3)

and
A
0 D

β
t N(t) = Λ− µN(t)− dI(t). (4.4)

To obtain the equilibrium points of the system (4.3)-(4.4), let us put
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0 = A

0 D
β
t S(t) = Λ− κS(t)g(I)(t) + (1− γ)δR(t)− µS(t)

0 = A
0 D

β
t I(t) = κS(t)g(I)(t)− (µ+ d+ τ)I(t)

0 = A
0 D

β
t R(t) = τI(t)− (µ+ γ)R(t)− (1− γ)δR(t)

0 = A
0 D

β
t N(t) = Λ− µN(t)− dI(t).

(4.5)

The solutions of this system are Xo = (Λ
µ , 0, 0,

Λ
µ ) and Xe = (Se, Ie, Re, N e), where

Se = (µ+d+τ)Ie

κg(Ie)

Re = τIe

µ+γ+(1−γ)δ

N e = Λ−dIe
µ

and Ie satisfying the equation:

g(I)

I

[
1−

(
(µ+ d+ τ)(µ+ γ + (1− γ)δ)− (1− γ)δτ

Λ(µ+ γ + (1− γ)δ)

)
I

]
=
µ(µ+ d+ τ)

Λκ
. (4.6)

4.3.1. Existence and stability of the disease-free equilibrium (DFE)

Xo is the DFE and to analyze its stability for the system (4.3)-(4.4), we study the eigenvalues of the
Jacobian matrix evaluated at that equilibrium point. Thus, evaluated at Xo, the Jacobian obtained from
the linearized system (4.3)-(4.4) is given by:

J(Xo) = Df(Xo) =


−µ −κΛ

µ g
′(0) (1− γ)δ 0

0 κΛ
µ g
′(0)− (µ+ d+ τ) 0 0

0 τ −(µ+ γ)− (1− γ)δ 0
0 −d 0 −µ

 (4.7)

Theorem 4.3. Taking into Consideration the non linear incidence function g. defined above, the disease
free equilibrium of the Ebola disease system (4.3)-(4.4) always exists and is asymptotically stable if

κΛg′(0)

µ(µ+ d+ τ)
< 1.

Proof. The existence of Xo is obvious. Following the same approach as [20, 35] we know that asymptotical
stability the DFE (equilibrium point) Xo for the model (4.3)-(4.4) is guaranteed if and only if all the four
eigenvalues, say λ1,2,3,4 of J(Xo) lie outside the closed angular sector

α
π

2
≥ |argλi|, for i = 1, 2, 3, 4.

Hence, it is enough to show that

α
π

2
< |argλi| (4.8)

for all i = 1, 2, 3, 4. Making use of the characteristic matrix

∆J(λ) =


µ+ λ κΛ

µ g
′(0) −(1− γ)δ 0

0 −κΛ
µ g
′(0) + (µ+ d+ τ) + λ 0 0

0 −τ µ+ γ + (1− γ)δ + λ 0
0 d 0 µ+ λ

 (4.9)

and the characteristic equation (µ+ λ)2(µ+ γ − (1 + γ)δ + λ)(−κΛ
µ g
′(0) + (µ+ d+ τ) + λ) = 0, we obtain

the eigenvalues
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λ1, 2 = −µ

λ3 = −(µ+ γ − (1− γ)δ)

λ4 = κΛ
µ g
′(0)− (µ+ d+ τ).

λ4 satisfies the constraint (4.8) if κΛg′(0)
µ < µ + d + τ and since λ1, 2, 3 obviously satisfy the constraint, the

proof is complete.

For the Ebola model (4.3)-(4.4), we usually refer the quantity

R0 =
κΛg′(0)

µ(µ+ d+ τ)
(4.10)

to as the basic reproduction number and is defined to be the number of secondary Ebola cases that one case
will produce in a completely Ebola disease susceptible population. In the biological points of view, Theorem
4.3 insinuates that Ebola epidemic disease will die out if R0 < 1.

4.3.2. Existence and stability of the endemic equilibrium

As in [4, 6, 34], we can put (4.6) in the form

1

ϑ
=
µ(µ+ d+ τ)

Λκ
=
g(I)

I

(
1− I

Θ

)
≡ h(I), (4.11)

where Θ = Λ(µ+γ+(1−γ)δ)
(µ+d+τ)(µ+γ+(1−γ)δ)−(1−γ)δτ . Then, the number of solutions in terms of I of equation (4.10) is

dependent on the non linear incidence function g(I), especially, limI→0
g(I)
I ≡ h(0) and the sign of h′(I).

Moreover, Θ is the maximum possible value that can take Ie and in the classical mass action incidence,
where g(I) = I, the quantity ϑ = Λκ

µ(µ+d+τ) is viewed as the contact reproduction number. As shown in

[20, 26], if we denote by ϑ∗ the unique value of ϑ verifying (4.11) when I reaches a unique maximum value
Im in (0,Θ), then conditions of existence of the endemic equilibrium Xe are given in the following theorem:

Theorem 4.4. The Ebola model (4.3)-(4.4)

1. has no endemic equilibrium point if h(0) ≤ 1
ϑ and h′(I) < 0 for all I ∈ (0,Θ)

2. has no endemic equilibrium point if h(0) = 0, h”(I) < 0 on (0,Θ] and ϑ < ϑ∗

3. has 1 endemic equilibrium point if h(0) > 1
ϑ and h′(I) < 0 for all I ∈ (0,Θ)

4. has 1 endemic equilibrium point if h(0) = 0, h”(I) < 0 on (0,Θ] and ϑ = ϑ∗

5. has 2 endemic equilibria Ie1 and Ie1 if h(0) = 0, h”(I) < 0 on (0,Θ] and ϑ > ϑ∗,

where Ie1 ∈ (0, Im) and Ie2 ∈ (Im,Θ).

Considering the expression of R0 given in (4.10), knowing that g′(0) ∼ limI→0
g(I)−g(0)
I−0 ≡ h(0) and that

h(I) is positive for I ∈ (0,Θ), with h(Θ) = 0, then, item 3 of Theorem 4.4 together with (4.11) yield the
following lemma.

Corollary 4.5. The Ebola model (4.3)-(4.4) has a unique endemic equilibrium if R0 > 1 and h′(I) < 0 for
I ∈ (0,Θ).

Next, conditions for the stability of Xe is studied from the linearized system of (4.3)-(4.4) around the
endemic equilibrium Xe = (Se, Ie, Re, N e). The following Jacobian matrix is obtained:

J(Xe) =


−κg(Ie)− µ −κSeg′(Ie) (1− γ)δ 0
κg(Ie) κSeg′(Ie)− (µ+ d+ τ) 0 0

0 τ −(µ+ γ)− (1− γ)δ 0
0 −d 0 −µ

 . (4.12)
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To analyse the eigenvalues λi, i = 1, 2, 3, 4, we develop the characteristic equation∣∣∣∣∣∣∣∣
κg(Ie) + µ+ λ κSeg′(Ie) −(1− γ)δ 0
−κg(Ie) −κSeg′(Ie) + (µ+ d+ τ) + λ 0 0

0 −τ (µ+ γ) + (1− γ)δ + λ 0
0 d 0 µ+ λ

∣∣∣∣∣∣∣∣ = 0, (4.13)

which yields
(µ+ λ)(λ3 +K1λ

2 +K2λ+K3) = 0, (4.14)

where

K1 =κg(Ie) + 2µ+ (1− γ)δ + (µ+ d+ τ)

(
1− Ie g

′(Ie)

g(Ie)

)

K2 =κ(µ+ d+ τ)g′(Ie)Ie + (µ+ γ + (1− γ)δ)(κg(Ie) + 2µ)

+ (κg(Ie) + 2µ+ γ + (1− γ)δ) (µ+ d+ τ)

(
1− Ie g

′(Ie)

g(Ie)

)

K3 =κ(µ+ d+ τ)(µ+ γ + (1− γ)δ)g′(Ie)Ie − κg(Ie)τ(1− γ)δ

+ (κg(Ie) + µ)(µ+ γ + (1− γ)δ) (µ+ d+ τ)

(
1− Ie g

′(Ie)

g(Ie)

)
.

(4.15)

We see that the coefficients K1, K2, and K3 are dependent on the nonlinear incidence g(I), hence, since
λ = −µ is already an eigenvalue which is non-positive, the stability of the endemic equilibrium Xe is fully
determined by analyzing the roots of

P (λ) = λ3 +K1λ
2 +K2λ+K3 = 0

given in (4.14). Let us denote by ∆P the discriminant of the polynomial P (λ) then, making use of the
Routh-Hurwitz Criteria generalized in [2], we state the following Corollary:

Corollary 4.6. The positive endemic equilibrium Xe of the Ebola model (4.3)-(4.4) is asymptotically stable
if one of the following conditions is satisfied:

1. K1 ≥ 0, K2 ≥ 0, K3 > 0, ∆P < 0, and 0 < β ≤ 2
3 .

2. K1 < 0, K2 < 0, ∆P < 0, and 2
3 < β ≤ 1.

3. K1 > 0, K3 > 0, K1K2 > K3, and ∆P > 0.

5. Numerical simulations

Let us consider the nonlinear incidence function g(I) = Ip

1+rIq , p, q > 0, r ≥ 0. We restrict ourselves
to the case r = 0, to have g(I) = Ip. We use the implementation code of the predictor-corrector PECE
method of Adams-Bashforth-Moulton type described in [16] to perform numerical simulations for the Ebola
model (4.3)-(4.4). We will consider different values for β in order to appreciate the accuracy of the method
employed in this article. The table below presents the description and estimated values of the evolved
parameters.

The approximation for solutions S(t), I(t), R(t) and N(t) are presented in Figs. 5–6 respectively. In each
case two different values of β, namely β = 0.93 and 1 are considered. It appears that numerical results show
that the Ebola model (4.3)-(4.4), using the new β-derivative, exhibits the traditional threshold behaviour.

In Fig. 5, we have considered for the non-linear incidence, the transmission coefficient κ = 0.01 and
p = 2. Then trajectory of the Ebola model (4.3)-(4.4) converges to the disease-free equilibrium, which is
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Parameters’ Description Estimation

symbols and rangeb

Λ Recruitment rate by succeptible people in the region 55 (day)−1

κ Transmission coefficient Not constant

γ Proportion of recovered individuals that become imunized 0,04

δ rate at which recovered people go back to susceptible class 0,06

µ Non-Ebola-disease related death rate 0,01

d Ebola related death rate 0,7

τ Recovery rate from Ebola 0,1

p Symbolizing the non-linear incidence 2

bSources: ”Liberia Ebola SitRep no. 236”. 8 February 2016. Retrieved 9 February 2016

http://www.mohsw.gov.lr/documents/Sitrep-20236-20Jan-206th-202014.pdf

”Ebola Situation report on 7 February 2016”. World Health organization. 7 February 2016. Retrieved 8 February 2016.

http://apps.who.int/iris/bitstream/10665/147112/1/roadmapsitrep7Jan2016eng.pdf

approximatively at (5500, 0, 0, 5500) with the above given parameters. We also note that the behavior of
the system remains similar for close values of the derivative parameter β.

In Fig. 6, we have taken the transmission coefficient κ = 0.01 and p = 2. Making use of the involved
parameter in the table above, the dynamics shows that there exists one positive endemic equilibrium point,
approximately at (11.11, 7.29, 6.78, 4989.70) satisfying the condition 3 of Theorem 4.4. Again a similar
behavior of the model appears for close values of β.

Figure 5: The dynamics of Ebola model (4.3)-(4.4) for β = 1 and 0.93, when R0 ≤ 1
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Figure 6: The dynamics of Ebola model (4.3)-(4.4) for β = 1 and 0.93, when R0 > 1

6. Conclusion

We have intensively analyzed an Ebola epidemic model with non-linear transmission and have shown
that this model, which is itself relatively new in the literature, is well-defined, well-posed. In addition
to provide conditions for boundedness and dissipativity of the trajectories for the Ebola model, we also
studied existence and stability of equilibrium points to show that they are dependent on the non-linear
incidence included in the established expression of the basic reproduction R0. One of the main results here
is reflected by conditions for existence and stability of a unique endemic equilibrium point for the Ebola
model. Numerical simulations performed for some particular expressions of the non-linear transmission,
with coefficients κ = 0.01, κ = 1 and power p = 2, agree with the obtained results and satisfy the traditional
threshold behavior. The work performed in this paper is pertinent since it generalized the preceding ones
with the inclusion of a general expression of the incidence together with a new derivative that extends the
conventional one. This is useful and might happen to be capital in the ongoing fight and future prevention
again the Ebola virus that has recently shaken the whole world and killed dozens of people in West-Africa.
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[42] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Taylor & Francis, (1993).1, 2.2
[43] H. Schlichting, Boundary-Layer Theory (7 ed.), New York (USA), McGraw-Hill, (1979).2.2
[44] WHO Media Centre 2014, Ebola virus disease, Fact sheet N103 From¡ http://www.who.int/mediacentre/ 1fact-

sheets/fs103/en/ (Retrieved on 20 August 2014).2.1
[45] R. M. Ziff, E. D. McGrady, Shattering transition in fragmentation, Phys. Rev. Lett., 58 (1987), 892–895.2.2


	1 Introduction
	2 Some important notes
	2.1 Ebola haemorrhagic fever and non-linear transmission
	2.2 Conventional derivative with new parameter: Justification, motivation

	3 Model formulation with a new parameter
	4 Mathematical analysis
	4.1 Positivity of solutions
	4.2 Boundedness and dissipativity of the trajectories
	4.3 Existence and stability analysis of equilibrium points
	4.3.1 Existence and stability of the disease-free equilibrium (DFE)
	4.3.2 Existence and stability of the endemic equilibrium


	5 Numerical simulations
	6 Conclusion

