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Abstract

In this paper, we introduce two iterative algorithms based on the hybrid steepest descent method for
solving the split feasibility problem. We establish results on the strong convergence of the sequences gener-
ated by the proposed algorithms to a solution of the split feasibility problem, which is a solution of a certain
variational inequality. In particular, the minimum norm solution of the split feasibility problem is obtained.
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1. Introduction

We consider the split feasibility problem (SFP) which is formulated as finding a point x∗ with property

x∗ ∈ C and Ax∗ ∈ Q, (1.1)

where C and Q are two nonempty closed convex subsets of real Hilbert spaces H1 and H2, respectively, and
A : H1 → H2 is a bounded linear operator.

The SFP (1.1) in finite-dimensional Hilbert spaces was first introduced by Censor and Elfving [4] for
modeling inverse problems which arise in phase retrievals and in medical image reconstruction [1]. In [3, 5, 6],
it has been shown that the SPF (1.1) can also be used to model the intensity-modulated radiation therapy.
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The SFP is said to be consistent if (1.1) has a solution. It is easy to see that SFP (1.1) is consistent if
and only if the following fixed point problem has a solution (see Proposition 3.2 in [17]):

find x ∈ C such that PC(I − γA∗(I − PQ)A)x = x, (1.2)

where PC and PQ are the projections onto C and Q, respectively, and A∗ is the adjoint of A. It is well
known that if γ ∈ (0, 2

‖A‖2 ), then T = PC(I − γA∗(I −PQ)A) in the operator equation (1.2) is nonexpansive

([16]).
Various iterative algorithms have been studied to solve the SFP (1.1), see, e.g., [2, 4, 7, 9, 11, 14, 16,

17, 19, 23, 24] and references therein. In particular, in view of the fixed point formulation (1.2) of the SFP
(1.1), Xu [17] applied the following KM CQ algorithm to solve the SFP (1.1):

xn+1 = (1− αn)xn + αnTxn, n ≥ 0, (1.3)

where T is the averaged mapping given by

T = PC(I − γA∗(I − PQ)A)

for γ ∈ (0, 2
‖A‖2 ), and obtained weak convergence of the sequence {xn} generated by (1.3) to a solution of

SFP (1.1).
Recently, some iterative algorithms for solving variational inclusions, mixed equilibrium problems, fixed

point problems and for finding the minimum norm element in common solution set of the problems are
considered by many authors. For instance, see [20–22] and references therein.

On the other hand, Yamada [18] introduced the following hybrid steepest descent method for a nonex-
pansive mapping S for solving the variational inequality:

xn+1 = (I − αnµF )Sxn, n ≥ 0, (1.4)

where F : H → H is a κ-Lipschitzian and η-strongly monotone operator with constants κ > 0 and η > 0;
and 0 < µ < 2η

κ2
. He proved that if {αn} satisfies appropriate conditions, the sequence {xn} generated

by (1.4) converges strongly to the unique solution of the variational inequality related to F , of which the
constraint set is the fixed point set Fix(S) of S.

In this paper, as a continuation of study for solving the SFP (1.1) via fixed point methods, we present
two iterative algorithms based on Yamada’s hybrid steepest descent method [18] for solving the SFP (1.1).
First, we introduce an implicit algorithm. Next, by discretizing the continuous implicit algorithm, we
provide an explicit algorithm. Under some appropriate conditions, we show the strong convergence of
proposed algorithms to some solution of the SFP (1.1) which solves a certain variational inequality. As
special cases, we obtain two algorithms which converges strongly to the minimum norm solution of the SFP
(1.1).

2. Preliminaries and lemmas

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively, and let K be a
nonempty closed convex of H. We recall that:

(1) a mapping f : H → H is k-contractive if ‖fx − fy‖ ≤ k‖x − y‖ for some constant k ∈ [0, 1) and
∀x, y ∈ H;

(2) a mapping V : H → H is l-Lipschitzian if ‖V x − V y‖ ≤ l‖x − y‖ for some constant l ∈ [0,∞) and
∀x, y ∈ H;

(3) a mapping T : H → H is nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ H;
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(4) a mapping T : H → H is averaged if T = (1 − ν)I + νG, where ν ∈ (0, 1) and G : H → H is
nonexpansive. In this case, we also say that T is ν-averaged;

(5) a mapping A : H → H is monotone if 〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ H;

(6) an operator F : H → H is κ-Lipschitzian and η-strongly monotone with constants κ > 0 and η > 0 if
‖Fx− Fy‖ ≤ κ‖x− y‖ and 〈Fx− Fy, x− y〉 ≥ η‖x− y‖2, ∀x, y ∈ H, respectively.

Recall that the (nearest point or metric) projection from H onto K, denoted by PK , is defined in such
a way that, for each x ∈ H, PKx is the unique point in K with the property

‖x− PK(x)‖ = min{‖x− y‖ : y ∈ K}.

It is well known that PK is nonexpansive, and for x ∈ H,

z = PKx⇐⇒ 〈x− z, y − z〉 ≤ 0, ∀y ∈ C. (2.1)

Moreover, PK satisfies

〈x− y, PKx− PKy〉 ≥ ‖PKx− PKy‖2, ∀x, y ∈ H,

and
‖x− y‖2 ≥ ‖x− PKx‖2 + ‖y − PKx‖2, ∀x ∈ H and y ∈ K.

It is also well known that PK is 1
2 -averaged and composite of finite many averaged mappings is averaged.

Throughout this paper, we will use the following notations:

• Fix(T ) stands for the set of fixed points of T ;

• xn ⇀ x stands for the weak convergence of {xn} to x;

• xn → x stands for the strong convergence of {xn} to x.

We also need the following lemmas for the proof of our main results.

Lemma 2.1 ([13]). In a real Hilbert space H, the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H.

Lemma 2.2 ([8]). (Demiclosedness principle). Let C be a nonempty closed convex subset of a real Hilbert
space H, and let S : C → C be a nonexpansive mapping. Then, the mapping I − S is demiclosed. That is,
if {xn} is a sequence in C such that xn ⇀ x∗ and (I − S)xn → y, then (I − S)x = y.

Lemma 2.3 ([10]). Let C be a nonempty closed convex subset of a real Hilbert space H. Assume that the
mapping F : C → H is monotone and weakly continuous along segments (that is, F (x + ty) ⇀ F (x) as
t→ 0). Then the variational inequality

x∗ ∈ C, 〈Fx∗, x− x∗〉 ≥ 0, x ∈ C,

is equivalent to the dual variational inequality

x∗ ∈ C, 〈Fx, x− x∗〉 ≥ 0, x ∈ C.

Lemma 2.4 ([12]). Let {xn} and {zn} be bounded sequences in a Banach space E and {γn} be a sequence
in [0, 1] which satisfies the following condition:

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1.

Suppose that xn+1 = γnxn + (1− γn)zn, n ≥ 0, and

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Then ‖zn − xn‖ = 0.
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Lemma 2.5 ([15]). Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1− λn)sn + λnδn, ∀n ≥ 0,

where {λn} and {δn} satisfy the following conditions:

(i) {λn} ⊂ [0, 1] and
∑∞

n=0 λn =∞,

(ii) lim supn→∞ δn ≤ 0 or
∑∞

n=0 λn|δn| <∞,

Then limn→∞ sn = 0.

The following lemma can be easily proven, and therefore, we omit the proof (see also [18]).

Lemma 2.6. Let H be a real Hilbert space H. Let F : H → H be a κ-Lipschitzian and η-strongly monotone
operator with constants κ > 0 and η > 0. Let 0 < µ < 2η

κ2
and 0 < t < ξ ≤ 1. Then S := ξI − tµF : H → H

is a contractive mapping with constant ξ − tτ , where τ = 1−
√

1− µ(2η − µκ2).

3. Iterative algorithms

Throughout the rest of this paper, we always assume the following:

• H1 and H2 are real Hilbert spaces;

• C and Q are nonempty closed convex subsets of H1 and H2, respectively;

• A : H1 → H2 is a bounded linear operator and A∗ is the adjoint of A;

• V : C → H1 is l-Lipschitzian with constant l ∈ [0,∞);

• F : H1 → H1 is a κ-Lipschitzian and η-strongly monotone operator with constants κ > 0 and η > 0;

• constants µ, σ, l, τ , and γ satisfy 0 < µ < 2η
κ2

, 0 < σl < τ = 1−
√

1− µ(2η − µκ2), and 0 < γ < 2
‖A‖2 .

We use Γ to denote the solution set of the SFP (1.1), that is,

Γ = {x ∈ C : Ax ∈ Q} = C ∩A−1Q,

and assume the consistency of (1.1) so that Γ is nonempty closed convex.
First, we introduce the following iterative algorithm that generates a net {xt}t∈(0, 1

τ−γl )
in an implicit

way:
xt = PC [I − γA∗(I − PQ)A]PC [tσV xt + (I − tµF )xt]. (3.1)

We prove strong convergence of {xt} as t→ 0 to a x∗ which is a solution of the the following variational
inequality:

x∗ ∈ C ∩A−1Q such that 〈σV x∗ − µFx∗, x̃− x∗〉 ≤ 0, ∀x̃ ∈ C ∩A−1Q. (3.2)

Now, for t ∈ (0, 1
τ−σl ), consider a mapping Wt : C → C defined by

Wtx := PC [I − γA∗(I − PQ)A]PC [tσV x+ (I − tµF )x], x ∈ C.

It is easy to see that Wt is a contractive mapping with constant 1− t(τ −σl). Indeed, note that PC and
I − γA∗(I − PQ)A are nonexpansive. Thus, by Lemma 2.6, we have for x, y ∈ C,

‖Wtx−Wty‖ = ‖PC [I − γA∗(I − PQ)A]PC [tσV x+ (I − tµF )x]

− PC [I − γA∗(I − PQ)A]PC [tσV y + (I − tµF )y]‖
≤ tσ‖V x− V y‖+ ‖(I − µtF )x− (I − µtF )y‖]
≤ tσl‖x− y‖+ (1− tτ)‖x− y‖
= [1− t(τ − σl)]‖x− y‖.
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Therefore Wt is a contractive mapping when t ∈ (0, 1
τ−σl ). By the Banach Contraction Principle, Wt has

a unique fixed point in C, denoted by xt, that is,

xt = PC [I − γA∗(I − PQ)A]PC [tσV xt + (I − tµF )xt],

which is exactly (3.1).
We summarize the basic properties of {xt}.

Proposition 3.1. Assume that the SFP (1.1) is consistent. Let {xt} be defined via (3.1). Then

(i) {xt} is bounded for t ∈ (0, 1
τ−σl );

(ii) limt→0 ‖xt − PC [I − γA∗(I − PQ)A]xt‖ = 0;

(iii) xt defines a continuous path from (0, 1
τ−σl ) into C.

Proof. (i) Let x̃ be any point in C ∩A−1Q. Set

U = I − γA∗(I − PQ)A.

Then, we can rewrite (3.1) as

xt = PC [U ]PC [tσV xt + (I − tµF )xt], t ∈
(

0,
1

τ − σl

)
.

It follows that

‖xt − x̃‖ = ‖PC [U ]PC [tσV xt + (I − tµF )xt]− x̃‖
≤ ‖tσ(V xt − V x̃)‖+ ‖(I − tµF )xt − (I − tµF )x̃‖+ ‖tσV x̃− tµF x̃‖
≤ tσ‖xt − x̃‖+ (1− tτ)‖xt − x̃‖+ t‖σV x̃− µF x̃‖
= [1− (τ − σl)t]‖xt − x̃‖+ t‖σV x̃− µF x̃‖.

Hence,

‖xt − x̃‖ ≤
1

τ − σl
‖σV x̃− µF x̃‖.

Then, {xt} is bounded and so are {V xt}, {Uxt} and {Fxt}.
(ii) From (3.1), we have

‖xt − PC [I − γA∗(I − PQ)A]xt‖ = ‖xt − PC [Uxt]‖
= ‖PC [U ]PC [tσV xt + (I − tµF )xt]− PC [Uxt]‖
≤ t‖σV xt − µFxt‖.

By boundedness of {V xt} and {Fxt}, we obtain

lim
t→0
‖xt − PC [I − γA∗(I − PQ)A]xt‖ = 0.

(iii) Let t, t0 ∈ (0, 1
τ−σl ). We calculate

‖xt − xt0‖ = ‖PC [I − γA∗(I − PQ)A]PC [tσV xt + (I − tµF )xt]

− PC [I − γA∗(I − PQ)A]PC [t0σV xt0 + (I − tµF )xt0 ]‖
≤ ‖tσV xt + (I − tµF )xt − (t0σV xt0 + (I − tµF )xt0)‖
≤ ‖tσV xt − t0σV xt‖+ ‖(I − tµF )xt − (I − tµF )xt0‖

+ ‖t0σV xt − t0σV xt0‖+ ‖(I − tµF )xt0 − (I − t0µF )xt0‖
≤ σ‖V xt‖|t− t0|+ (1− tτ)‖xt − xt0‖+ t0σl‖xt − xt0‖+ µ‖Fxt0‖|t− t0|.
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This implies that

‖xt − xt0‖ ≤
σ‖V xt‖+ µ‖Fxt0‖

tτ − t0σl
|t− t0|.

This completes the proof.

Theorem 3.2. Assume that the SFP (1.1) is consistent. Let the net {xt} be defined via (3.1). Then xt
converges strongly to a point x∗ as t→ 0, which solves the variational inequality (3.2).

Proof. First, we show easily the uniqueness of a solution of the variational inequality (3.2). In fact, noting
that 0 ≤ σl < τ and µη ≥ τ ⇐⇒ κ ≥ η, it follows that

〈(µF − σV )x− (µF − σV )y, x− y〉 ≥ (µη − σl)‖x− y‖2.

That is, µF −σV is strongly monotone for 0 ≤ σl < τ ≤ µη. So the variational inequality (3.2) has only
one solution.

Next, we show that {xt} is relatively norm-compact as t→ 0+. To this end, set U = I − γA∗(I −PQ)A,
and let {tn} ⊂ (0, 1

τ−σl ) be such that tn → 0 as n→∞. Put xn := xtn . From Proposition (ii), we have

lim
n→∞

‖xn − PC [U ]xn‖ = 0. (3.3)

Setting yt = PC [tσV xt + (I − tµF )xt] and zt = tσV xt + (I − tµF )xt. We then have yt = PC [zt], and for
any x̃ ∈ C ∩A−1Q,

yt − x̃ = yt − zt + zt − x̃
= yt − zt + tσ(V xt − V x̃) + (I − tµF )xt − (I − tµF )x̃+ t(σV x̃− µF x̃).

(3.4)

By using the property (2.1) of the metric projection, we have

〈yt − zt, yt − x̃〉 ≤ 0. (3.5)

Combining (3.4) with (3.5) along with Lemma 2.6, we get

‖yt − x̃‖2 = 〈yt − x̃, yt − x̃〉
= 〈yt − zt, yt − x̃〉+ tσ〈V xt − V x̃, yt − x̃〉

+ 〈(I − tµF )xt − (I − tµF )x̃, yt − x̃〉+ t〈σV x̃− µF x̃, yt − x̃〉
≤ tσl‖xt − x̃‖‖yt − x̃‖+ (1− tτ)‖xt − x̃‖‖yt − x̃‖+ t〈σV x̃− µF x̃, yt − x̃〉
= [1− (τ − σl)t]‖xt − x̃‖‖yt − x̃‖+ t〈σV x̃− µF x̃, yt − x̃〉

≤ 1− (τ − σl)t
2

‖xt − x̃‖2 +
1

2
‖yt − x̃‖2 + t〈σV x̃− µF x̃, yt − x̃〉.

It follows that
‖yt − x̃‖2 ≤ [1− (τ − σl)t]‖xt − x̃‖2 + 2t〈σV x̃− µF x̃, yt − x̃〉.

Thus,
‖xt − x̃‖2 = ‖PC [U ]yt − x̃‖2

≤ ‖yt − x̃‖2

≤ [1− (τ − σl)t]‖xt − x̃‖2 + 2t〈σV x̃− µF x̃, yt − x̃〉.

Hence, we obtain

‖xt − x̃‖2 ≤
2

τ − σl
〈σV x̃− µF x̃, yt − x̃〉.
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In particular, we have

‖xn − x̃‖2 ≤
2

τ − σl
〈σV x̃− µF x̃, yn − x̃〉, x̃ ∈ C ∩A−1Q. (3.6)

Note that
‖xt − yt‖ = ‖PC [xt]− PC [tσV xt + (I − tµF )xt]‖

≤ t‖σV xt − µFxt‖ → 0 as t→ 0.

So, ‖xn − yn‖ → 0 as n→∞.
Since {xn} is bounded, there exists a subsequence {xni} of {xn} which converges weakly to a point x∗.

Without loss of generality, we may assume that {xn} converges weakly to x∗ (yn ⇀ x∗). Noticing (3.3), we
can use Lemma 2.2 to get x∗ ∈ C ∩A−1Q. Therefore, we can substitute x∗ for x̃ in (3.6) to obtain

‖xn − x∗‖2 ≤
2

τ − σl
〈σV x∗ − µFx∗, yn − x∗〉.

Consequently, yn ⇀ x∗ actually implies that xn → x∗. This has proved the relative norm-compactness
of the net {xt} as t→ 0+.

Letting n→∞ in (3.6), we have

‖x∗ − x̃‖2 ≤ 2

τ − σl
〈σV x̃− µF x̃, x∗ − x̃〉, x̃ ∈ C ∩A−1Q.

This implies that x∗ ∈ C ∩A−1Q solves the variational inequality

〈σV x̃− µF x̃, x̃− x∗〉 ≤ 0, x̃ ∈ C ∩A−1Q. (3.7)

By Lemma 2.3, equation (3.7) is equivalent to its dual variational inequality

〈σV x∗ − µFx∗, x̃− x∗〉 ≤ 0, x̃ ∈ C ∩A−1Q.

This is exactly (3.2). By uniqueness of the solution of the variational inequality (3.2), we deduce that
each cluster point of {xt} as t → 0+ equals to x∗. Therefore xt → x∗ as t → 0+. This completes the
proof.

Taking F = I and µ = 1 in Theorem 3.2, we have the following corollary.

Corollary 3.3. Assume that the SFP (1.1) is consistent. Let the net {xt} be defined by

xt = PC [I − γA∗(I − PQ)A]PC [tσV xt + (1− t)xt], t ∈
(

0,
1

1− σl

)
. (3.8)

Then, {xt} converges strongly as t→ 0 to a point x∗ which is the unique solution of variational inequality

x∗ ∈ C ∩A−1Q such that 〈σV x∗ − x∗, x̃− x∗〉 ≤ 0, ∀x̃ ∈ C ∩A−1Q. (3.9)

Taking V = 0 in (3.8), we get the following corollary.

Corollary 3.4 ([23]). Assume that the SFP (1.1) is consistent, and let the net {xt} be defined by

xt = PC [I − γA∗(I − PQ)A]PC [(1− t)xt], t ∈ (0, 1). (3.10)

Then, {xt} converges strongly as t → 0 to a point x∗ which is the minimum norm solution of the split
feasibility problem (1.1).
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Proof. If we take V = 0, then (3.8) reduces to (3.10). Thus, xt → x∗ ∈ C ∩A−1Q which satisfies

〈−x∗, x̃− x∗〉 ≤ 0, ∀x̃ ∈ C ∩A−1Q.

Thus,
‖x∗‖2 ≤ 〈x∗, x̃〉 ≤ ‖x∗‖‖x̃‖, ∀x̃ ∈ C ∩A−1Q,

which implies ‖x∗‖ ≤ ‖x̃‖ for all x̃ ∈ C ∩ A−1Q. That is, x∗ is the minimum norm solution of the split
feasibility problem (1.1). This completes the proof.

Next, we propose the following iterative algorithm which generates a sequence in an explicit way:

xn+1 = PC [I − γA∗(I − PQ)A]PC [αnσV xn + (I − αnµF )xn], n ≥ 0, (3.11)

where {αn} ⊂ [0, 1] and x0 ∈ H1 is an arbitrary initial guess, and establish strong convergence of this
sequence to a point x∗, which is also a solution of the variational inequality (3.2).

Theorem 3.5. Assume that the SFP (1.1) is consistent. Let {xn} be the sequence generated by the explicit
algorithm (3.11), where {αn} satisfies the following conditions:

(C1) {αn} ⊂ [0, 1], limn→∞ αn = 0;

(C2)
∑∞

n=0 αn =∞.

Then, {xn} converges strongly to a point x∗ ∈ C ∩A−1Q as n→∞, which solves the variational inequality
(3.2).

Proof. Let U = I − γA∗(I − PQ)A. It is clear that PC and U are averaged. Since the composite of finitely
many averaged mappings is averaged, PC [U ] is averaged mapping. Hence, there exists a positive constant
λ ∈ (0, 1) such that PC [U ] = (1− λ)I + λG, where G is a nonexpansive mapping. Let x̃ ∈ C ∩A−1Q.

We divide the proof into four steps as follows.

Step 1. We show that {xn} is bounded. In fact, from (3.11), we deduce

‖xn+1 − x̃‖ = ‖PC [I − γA∗(I − PQ)A]PC [αnσV xn + (I − αnµF )xn]− x̃‖
≤ ‖αnσV xn + (I − αnµF )xn − x̃‖
≤ αnσ‖V xn − V x̃‖+ ‖(I − αnµF )xn − (I − αnµF )x̃‖+ αn‖σV x̃− µF x̃‖
≤ αnl‖xn − x̃‖+ (1− αnτ)‖xn − x̃‖+ αn‖σV x̃− µF x̃‖

= [1− (τ − σl)αn]‖xn − x̃‖+ (τ − σl)αn
‖σV x̃− µF x̃‖

τ − σl
.

It follows by induction that

‖xn+1 − x̃‖ ≤ max

{
‖xn − x̃‖,

‖σV x̃− µF x̃‖
τ − σl

}
...

...
...

≤ max

{
‖x0 − x̃‖,

‖σV x̃− µF x̃‖
τ − σl

}
.

This means that {xn} is bounded. It is easy to deduce that {V xn}, {Uxn}, and Fxn} are also bounded.

Step 2. We show that limn→∞ ‖PC [U ]xn − xn‖ = 0. To this end, set yn = αnσV xn + (I − αnµF )xn for all
n ≥ 0. Then, we can rewrite (3.11) as

xn+1 = [(1− λ)I + λG][αnσV xn + (I − αnµF )xn]
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= (1− λ)xn + αn(1− λ)(σV xn − µFxn) + λGyn

= (1− λ)xn + λ

[
1− λ
λ

αn(σV xn − µFxn) +Gyn

]
(3.12)

= (1− λ)xn + λzn,

where zn = 1−λ
λ αn(σV xn − µFxn) +Gyn. It follows that

zn+1 − zn =
1− λ
λ

αn+1(σV xn+1 − µFxn+1) +Gyn+1 −
1− λ
λ

αn(σV xn − µFxn)−Gyn.

Thus,

‖zn+1 − zn‖ ≤ ‖Gyn+1 −Gyn‖+
1− λ
λ

[αn+1‖σV xn+1 − µFxn+1‖+ αn‖σV xn − µFxn‖]

≤ ‖yn+1 − yn‖+
1− λ
λ

[αn+1‖σV xn+1 − µFxn+1‖+ αn‖σV xn − µFxn‖]

= ‖αn+1σV xn+1 + (I − αn+1µF )xn+1 − αnσV xn − (I − αnµF )xn‖

+
1− λ
λ

[αn+1‖σV xn+1 − µFxn+1‖+ αn‖σV xn − µFxn‖]

≤ ‖xn+1 − xn‖+ αn+1‖σV xn+1 − µFxn+1‖+ αn‖σV xn − µFxn‖

+
1− λ
λ

[αn+1‖σV xn+1 − µFxn+1‖+ αn‖σV xn − µFxn‖].

It follows that

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤αn+1‖σV xn+1 − µFxn+1‖+ αn‖σV xn − µFxn‖

+
1− λ
λ

[αn+1‖σV xn+1 − µFxn+1‖+ αn‖σV xn − µFxn‖].

Therefore,
lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

By Lemma 2.4, we get
lim
n→∞

‖zn − xn‖ = 0. (3.13)

At the same time, we observe that

lim
n→∞

‖yn − xn‖ = lim
n→∞

αn‖σV xn − µFxn‖ = 0, (3.14)

and

lim
n→∞

‖zn −Gyn‖ = lim
n→∞

1− λ
λ

αn‖σV xn − µFxn‖ = 0. (3.15)

From (3.13)–(3.15), we deduce

lim
n→∞

‖Gxn − xn‖ ≤ lim
n→∞

(‖Gxn −Gyn‖+ ‖Gyn − zn‖+ ‖zn − xn‖)

≤ lim
n→∞

(‖xn − yn‖+ ‖Gyn − zn‖+ ‖zn − xn‖) = 0.

Since PC [U ]xn − xn = λ(Gxn − xn), we obtain

lim
n→∞

‖PC [U ]xn − xn‖ = λ‖Gxn − xn‖ = 0.

Step 3. We show that lim supn→∞〈σV x∗ − µFx∗, PC [yn]− x∗〉 ≤ 0, where x∗ is the unique solution of the
variational inequality (3.2). Indeed, we can choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈σV x∗ − µFx∗, xn − x∗〉 = lim
i→∞
〈σV x∗ − µFx∗, xni − x∗〉.
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Since {xni} is bounded, there exists a subsequence of {xni} which converges weakly to a point x̃. Without
loss of generality, we may assume that {xni} converges weakly to x̃. Therefore, from Step 2 and Lemma 2.2,
we have xni → x̃ ∈ Fix(PC [U ]). Therefore

lim sup
n→∞

〈σV x∗ − µFx∗, xn − x∗〉 = lim
i→∞
〈σV x∗ − µFx∗, xni − x∗〉

= 〈σV x∗ − µFx∗, x̃− x∗〉 ≤ 0.

This together with (3.14) implies that

lim sup
n→∞

〈σV x∗ − µFx∗, PC [yn]− x∗〉 ≤ 0.

Step 4. We show that limn→∞ xn = x∗. We observe that

‖PC [yn]− x∗‖2 = 〈PC [yn]− yn, PC [yn]− x∗〉+ 〈yn − x∗, PC [yn]− x∗〉.

Since 〈PC [yn]− yn, PC [yn]− x∗〉 ≤ 0 by (2.1), we get

‖PC [yn]− x∗‖2 ≤ 〈yn − x∗, PC [yn]− x∗〉
= 〈αnσ(V xn − V x∗) + (I − αnµF )xn − (I − αnµF )x∗, PC [yn]− x∗〉

+ αn〈σV x∗ − µFx∗, PC [yn]− x∗〉
≤ (αnσl‖xn − x∗‖+ (1− αnτ)‖xn − x∗‖)‖PC [yn]− x∗‖

+ αn〈σV x∗ − µFx∗, PC [yn]− x∗〉
= (1− αn(τ − σl))‖xn − x∗‖‖PC [yn]− x∗‖+ αn〈σV x∗ − µFx∗, PC [yn]− x∗〉

≤ 1− αn(τ − σl)
2

‖xn − x∗‖2 +
1

2
‖PC [yn]− x∗‖2 + αn〈σV x∗ − µFx∗, PC [yn]− x∗〉.

It follows that

‖PC [yn]− x∗‖2 ≤ [1− αn(τ − σl)]‖xn − x∗‖2 + 2αn〈σV x∗ − µFx∗, PC [yn]− x∗〉. (3.16)

From (3.3) and (3.16), we have

‖xn+1 − x∗‖2 = ‖PC [U ]PC [yn]− x∗‖2

≤ ‖PC [yn]− x∗‖2

≤ [1− αn(τ − σl)]‖xn − x∗‖2 + αn(τ − σl) 2

τ − σl
〈σV x∗ − µFx∗, PC [yn]− x∗〉.

(3.17)

Put λn = αn(τ − σl) and

δn =
2

τ − σl
〈σV x∗ − µFx∗, PC [yn]− x∗〉.

It can be easily seen from Step 3 and conditions (C1) and (C2) that λn → 0,
∑∞

n=0 λn = ∞ and
lim supn→∞ δn ≤ 0. Since (3.17) reduces to

‖xn+1 − x∗‖2 ≤ (1− λn)‖xn − x∗‖2 + λnδn,

by Lemma 2.5, we conclude that limn→∞ ‖xn − x∗‖ = 0. This completes the proof.

Putting µ = 1 and F = I in Theorem 3.5, we obtain the following corollary.
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Corollary 3.6. Assume that the SFP (1.1) is consistent. Let {xn} be generated by the following algorithm:

xn+1 = PC [I − γA∗(I − PQ)A]PC [αnσV xn + (1− αn)xn], n ≥ 0. (3.18)

Assume that the sequence {αn} ∈ [0, 1] satisfies the conditions (C1) and (C2) in Theorem 3.5 Then {xn}
converges strongly to a point x∗ ∈ C ∩A−1Q which is the unique solution of the variational inequality (3.9).

Putting V = 0 in (3.18), we get the following corollary.

Corollary 3.7 ([23]). Assume that the SFP (1.1) is consistent. Let {xn} be generated by the following
algorithm:

xn+1 = PC [I − γA∗(I − PQ)A]PC [(1− αn)xn], n ≥ 0.

Assume that the sequence {αn} satisfies the conditions (C1) and (C2) in Theorem 3.5. Then, {xn} converges
strongly to a point x∗ which is the minimum norm solution of the split feasibility problem (1.1).
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