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Abstract

In this article, we introduce a new concept of general mixed width-integral of convex bodies, and establish
some of its inequalities, such as isoperimetric inequality, Aleksandrov-Fenchel inequality, and cyclic inequal-
ity. We also consider the general width-integral of order i and show its related properties and inequalities.
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1. Introduction and main results

Let Kn denote the set of convex bodies (compact, convex subsets with non-empty interiors) in Euclidean
space Rn. For the set of convex bodies containing the origin in their interiors and the set of convex bodies
whose centroids lie at the origin in Rn, we write Kno and Knc , respectively. Let Sn−1 denote the unit sphere
in Rn, and let V (K) denote the n-dimensional volume of a body K. For the standard unit ball B in Rn, we
use ωn = V (B) to denote its volume.

If K ∈ Kn, then its support function, hK = h(K, ·) : Rn → (−∞,∞), is defined by (see [6, 25])

h(K,x) = max{x · y : y ∈ K}, x ∈ Rn,

where x · y denotes the standard inner product of x and y.
The study of width-integral has a long history. The notion of the classical width-integral was first

considered by Blaschke (see [3]) and was further studied by Hardy, Littlewood and Pólya (see [12]). It was
generalized to the mixed width-integral by Lutwak [19] in 1977. Many important results related to the
mixed width-integral were obtained from these articles (see [13, 17, 18, 21]).
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The mixed width-integral, B(K1, · · · ,Kn), of K1, · · · ,Kn ∈ Kn was defined by (see [19])

B(K1, · · · ,Kn) =
1

n

∫
Sn−1

b(K1, u) · · · b(Kn, u)dS(u), (1.1)

where dS(u) is the (n − 1)-dimensional volume element on Sn−1 and b(K,u) denotes the half width of K
in the direction u, namely, b(K,u) = 1

2h(K,u) + 1
2h(K,−u). If there exists a constant λ > 0 such that

b(K,u) = λb(L, u) for all u ∈ Sn−1, then K and L are said to have similar width.
The main aim of this article is to define a corresponding notion of mixed width-integral, and to extend

Lutwak’s inequalities to the entire family of this new mixed width-integral.
For τ ∈ (−1, 1), the general mixed width-integral, B(τ)(K1, · · · ,Kn), of K1, · · · ,Kn ∈ Kn is defined by

B(τ)(K1, · · · ,Kn) =
1

n

∫
Sn−1

b(τ)(K1, u) · · · b(τ)(Kn, u)dS(u), (1.2)

where b(τ)(K,u) = f1(τ)h(K,u) + f2(τ)h(K,−u) and the functions f1(τ) and f2(τ) are defined as follows

f1(τ) =
(1 + τ)2

2(1 + τ2)
, f2(τ) =

(1− τ)2

2(1 + τ2)
. (1.3)

Clearly,

f1(τ) + f2(τ) = 1, (1.4)

f1(−τ) = f2(τ), f2(−τ) = f1(τ). (1.5)

Together with (1.3), the case τ = 0 in definition (1.2) is just Lutwak’s mixed width-integral
B(K1, · · · ,Kn). Two convex bodies K and L are said to have similar general width if there exists a
constant λ > 0 such that b(τ)(K,u) = λb(τ)(L, u) for all u ∈ Sn−1. If b(τ)(K,u)b(τ)(L, u) is a constant for
all u ∈ Sn−1, then we call K and L with joint constant general width.

The general operator belongs to the asymmetric Brunn-Minkowski theory which has its starting point in
the theory of valuations in connection with isoperimetric and analytic inequalities (see [1, 2, 4, 5, 7–11, 14–
16, 22–24, 26–30]).

The main results are the following: We first establish the isoperimetric and Aleksandrov-Fenchel in-
equalities for the general mixed width-integral.

Theorem 1.1. If τ ∈ (−1, 1) and K1, · · · ,Kn ∈ Knc , then

V (K1) · · ·V (Kn) ≤ B(τ)(K1, · · · ,Kn)n, (1.6)

with equality if and only if K1, · · · ,Kn are n-balls.

Theorem 1.2. If τ ∈ (−1, 1), K1, · · · ,Kn ∈ Kn and 1 < m ≤ n, then

B(τ)(K1, · · · ,Kn)m ≤
m∏
i=1

B(τ)(K1, · · · ,Kn−m,Kn−i+1, · · · ,Kn−i+1), (1.7)

with equality if and only if Kn−m+1, · · · ,Kn are all of similar general width.

Moreover, we show a cyclic inequality for the general mixed width-integral.

Theorem 1.3. If τ ∈ (−1, 1) and K,L ∈ Kn, then for i < j < k,

B
(τ)
i (K,L)k−jB

(τ)
k (K,L)j−i ≥ B(τ)

j (K,L)k−i, (1.8)

with equality if and only if K and L have similar general width.

Here B
(τ)
i (K,L) = B

(τ)
i (K,n− i;L, i) in which K appears n− i times and L appears i times.

The proofs of Theorems 1.1–1.3 will be given in the Section 3 of this paper. In Section 4, we consider
the general width-integral of order i and establish its related properties and inequalities.
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2. Preliminaries

The radial function, ρK = ρ(K, ·) : Rn \ {0} → [0,∞), of a compact star-shaped (about the origin) set
K in Rn is defined, for u ∈ Sn−1, by (see [6, 25])

ρ(K,u) = max{λ ≥ 0 : λ · u ∈ K}. (2.1)

The polar body, K∗, of K ∈ Kn is defined by (see [6, 25])

K∗ = {x ∈ Rn : x · y ≤ 1, y ∈ K}. (2.2)

It is easy to check that for K ∈ Kno ,
(K∗)∗ = K,

and

hK∗ =
1

ρK
, ρK∗ =

1

hK
.

An extension of the well-known Blaschke-Santaló inequality is as follows (see [20]):

Theorem 2.1. If K ∈ Knc , then
V (K)V (K∗) ≤ ω2

n, (2.3)

with equality if and only if K is an ellipsoid.

For K ∈ Kn and i = 0, 1, · · · , n− 1, the quermassintegrals, Wi(K), of K is given by (see [6, 25])

Wi(K) =
1

n

∫
Sn−1

h(K,u)dSi(K,u), (2.4)

where Si(K, ·) denotes the mixed surface area measure of K. Besides, we know that

W0(K) =
1

n

∫
Sn−1

h(K,u)dS(K,u) = V (K). (2.5)

The polar coordinate formula for volume of a body K in Rn is

V (K) =
1

n

∫
Sn−1

ρ(K,u)ndS(u). (2.6)

3. Proofs of Theorems 1.1–1.3

Proof of Theorem 1.1. It follows by Jensen’s inequality (see [12]) that

B(τ)(K1, · · · ,Kn) =
1

n

∫
Sn−1

b(τ)(K1, u) · · · b(τ)(Kn, u)dS(u) (3.1)

≥ nω2
n

[∫
Sn−1

b(τ)(K1, u)−1 · · · b(τ)(Kn, u)−1dS(u)

]−1

,

with equality if and only if K1, · · · ,Kn have joint constant general width. Together with Hölder’s inequality
(see [12]), we have[∫

Sn−1

b(τ)(K1, u)−1 · · · b(τ)(Kn, u)−1dS(u)

]−n
≥

n∏
i=1

[∫
Sn−1

b(τ)(Ki, u)−ndS(u)

]−1

, (3.2)
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with equality if and only if K1, · · · ,Kn have similar general width. Using Minkowski’s inequality (see [12]),
we have[

1

n

∫
Sn−1

b(τ)(Ki, u)−ndS(u)

]− 1
n

=

[
1

n

∫
Sn−1

(f1(τ)h(Ki, u) + f2(τ)h(Ki,−u))−n dS(u)

]− 1
n

≥
[

1

n

∫
Sn−1

h(Ki, u)−ndS(u)

]− 1
n

= V (K∗
i )−

1
n ,

(3.3)

with equality if and only if Ki is origin-symmetric. It follows from Theorem 2.1 that for inequality (3.3),[
1

nω2
n

∫
Sn−1

b(τ)(Ki, u)−ndS(u)

]−1

≥ V (Ki), (3.4)

with equality if and only if Ki is an n-dimensional ellipsoid. From inequalities (3.1), (3.2) and (3.4), this
yields

V (K1) · · ·V (Kn) ≤ B(τ)(K1, · · · ,Kn)n.

By the equality conditions of inequalities (3.1), (3.2) and (3.4), equality holds in (1.6) if and only if
K1, · · · ,Kn are n-balls.

Lemma 3.1 ([17]). If f0, f1, · · · , fm are (strictly) positive continuous functions defined on Sn−1 and
λ1, · · · , λm are positive constants the sum of whose reciprocals is unity, then∫

Sn−1

f0(u)f1(u) · · · fm(u)dS(u) ≤
m∏
i=1

[∫
Sn−1

f0(u)fλii (u)dS(u)

] 1
λi

, (3.5)

with equality if and only if there exist positive constants α1, · · · , αm such that α1f
λ1
1 (u) = · · · = αmf

λm
m (u)

for all u ∈ Sn−1.

Proof of Theorem 1.2. Let in Lemma 3.1

λi = m (1 ≤ i ≤ m),

f0 = b(τ)(K1, u) · · · b(τ)(Kn−m, u) (f0 = 1 if m = n),

fi = b(τ)(Kn−i+1, u) (1 ≤ i ≤ m).

Then ∫
Sn−1

b(τ)(K1, u) · · · b(τ)(Kn, u)dS(u)

≤
m∏
i=1

[∫
Sn−1

b(τ)(K1, u) · · · b(τ)(Kn−m, u)b(τ)(Kn−i+1, u)mdS(u)

] 1
m

.

Combining with definition (1.2), we have

B(τ)(K1, · · · ,Kn)m ≤
m∏
i=1

B(τ)(K1, · · · ,Kn−m,Kn−i+1, · · · ,Kn−i+1).

The equality condition of inequality (3.5) implies that equality holds in (1.7) if and only if Kn−m+1, · · · ,Kn

are all of similar general width.
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Proof of Theorem 1.3. It follows from Hölder’s inequality (see [12]) that

B
(τ)
i (K,L)

k−j
k−iB

(τ)
k (K,L)

j−i
k−i =

(
1

n

∫
Sn−1

b(τ)(K,u)n−ib(τ)(L, u)idS(u)

) k−j
k−i

×
(

1

n

∫
Sn−1

b(τ)(K,u)n−kb(τ)(L, u)kdS(u)

) j−i
k−i

≥ 1

n

∫
Sn−1

b(τ)(K,u)n−jb(τ)(L, u)jdS(u) = B
(τ)
j (K,L).

This gives

B
(τ)
i (K,L)k−jB

(τ)
k (K,L)j−i ≥ B(τ)

j (K,L)k−i.

The equality condition of Hölder’s inequality gets that equality holds in (1.8) if and only if K and L
have similar general width.

Taking i = 0, j = i and k = n in inequality (1.8), we have

Corollary 3.2. If τ ∈ (−1, 1) and K,L ∈ Kn, then for 0 ≤ i ≤ n,

B
(τ)
i (K,L)n ≤ B(τ)(K)n−iB(τ)(L)i, (3.6)

for i < 0 or i > n, inequality (3.6) is reversed, with equality in every inequality if and only if i = n or, when
i 6= n, K and L have similar general width.

Let i = 1 and i = −1 in Corollary 3.2, respectively. The dual Minkowski type inequalities for the general
mixed width-integral are as follows:

Corollary 3.3. If τ ∈ (−1, 1) and K,L ∈ Kn, then

B
(τ)
1 (K,L)n ≤ B(τ)(K)n−1B(τ)(L),

with equality if and only if K and L have similar general width.

Corollary 3.4. If τ ∈ (−1, 1) and K,L ∈ Kn, then

B
(τ)
−1 (K,L)n ≥ B(τ)(K)n+1B(τ)(L)−1,

with equality if and only if K and L have similar general width.

4. General width-integral of order i

In this section, we consider the general width-integral of order i and show its related properties and
inequalities.

Taking K1 = · · · = Kn−i = K and Kn−i+1 = · · · = Kn = B in (1.2), the general width-integral of order

i, B
(τ)
i (K), of K ∈ Kn is given by

B
(τ)
i (K) =

1

n

∫
Sn−1

b(τ)(K,u)n−idS(u). (4.1)

Let K1 = · · · = Kn = K in (1.2). We write B(τ)(K) for B(τ)(K, · · · ,K) called the general width-integral
of K ∈ Kn.

If K1, · · · ,Km ∈ Kn and λ1, · · · , λm ∈ R, then the Minkowski linear combination is defined by (see
[6, 25])

λ1K1 + · · ·+ λmKm = {λ1x1 + · · ·+ λmxm : x1 ∈ K1, · · · , xm ∈ Km}.
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It is easy to verify that

h(λ1K1 + · · ·+ λmKm, ·) = λ1h(K1, ·) + · · ·+ λmh(Km, ·).

We now show that the general width-integral of λ1K1 + · · · + λmKm is a homogeneous polynomial of
degree n in λ1, · · · , λm.

Theorem 4.1. Suppose τ ∈ (−1, 1) and K1, · · · ,Km ∈ Kn. If K = λ1K1 + · · ·+ λmKm then

B(τ)(K) =

m∑
j1=1

· · ·
m∑

jn=1

λj1 · · ·λjnB(τ)(Kj1 , · · · ,Kjn). (4.2)

The following is a direct consequence of Theorem 4.1.

Theorem 4.2. Let τ ∈ (−1, 1) and K ∈ Kn. If Kµ = K + µB (µ > 0) then for j = 0, 1, · · · , n,

B
(τ)
j (Kµ) =

n−j∑
i=0

(
n− j
i

)
B

(τ)
j+i(K)µi. (4.3)

Further, we establish several inequalities for the general width-integral of order i.

Lemma 4.3. If τ ∈ (−1, 1) and K ∈ Kn, then

B
(τ)
2n (K) ≤ V (K∗), (4.4)

with equality if and only if K is origin-symmetric.

Proof. Using Minkowski’s inequality (see [12]), we yield

B
(τ)
2n (K)−

1
n =

[
1

n

∫
Sn−1

b(τ)(K,u)−ndS(u)

]− 1
n

=

[
1

n

∫
Sn−1

(f1(τ)h(K,u) + f2(τ)h(K,−u))−n dS(u)

]− 1
n

≥
[

1

n

∫
Sn−1

(f1(τ)h(K,u))−n dS(u)

]− 1
n

+

[
1

n

∫
Sn−1

(f2(τ)h(K,−u))−n dS(u)

]− 1
n

=

[
1

n

∫
Sn−1

h(K,u)−ndS(u)

]− 1
n

.

This implies

B
(τ)
2n (K) ≤ 1

n

∫
Sn−1

h(K,u)−ndS(u) = V (K∗).

The equality condition of Minkowski’s inequality gives that equality holds in (4.4) if and only if K and
−K are dilated of one another, namely, K is origin-symmetric.

Theorem 4.4. If τ ∈ (−1, 1) and K ∈ Knc , then for n < i < 2n,

B
(τ)
i (K)B

(τ)
i (K∗) ≤ ω2

n, (4.5)

For i < n, inequality (4.5) is reversed, with equality in every inequality if and only if K is an ellipsoid
centered at the origin.



Y. Feng, J. Nonlinear Sci. Appl. 9 (2016), 4226–4234 4232

Proof. Using Lemma 4.3 and Jensen’s inequality (see [12]), we have for i < 2n and i 6= n

ω
i−2n
n(n−i)
n B

(τ)
i (K)

1
n−i ≥ B(τ)

2n (K)−
1
n ≥ V (K∗)−

1
n . (4.6)

Thus it follows from (4.6) that

ω
i−2n
n(n−i)
n B

(τ)
i (K∗)

1
n−i ≥ V (K)−

1
n . (4.7)

Together (4.6), (4.7) with Theorem 2.1, we get[
B

(τ)
i (K)B

(τ)
i (K∗)

] 1
n−i ≥ ω

2
n−i
n . (4.8)

If n < i < 2n in inequality (4.8), then

B
(τ)
i (K)B

(τ)
i (K∗) ≤ ω2

n.

If i < n in inequality (4.8), then

B
(τ)
i (K)B

(τ)
i (K∗) ≥ ω2

n.

By the equality conditions of inequality (4.4), inequality (2.3) and Jensen’s inequality, we know that
equality holds in every inequality if and only if K is an ellipsoid centered at the origin.

Lemma 4.5 ([6]). If K ∈ Kn and 0 ≤ i < j < k ≤ n, then

Wj(K)k−i ≥Wi(K)k−jWk(K)j−i,

with equality if and only if K is an n-ball.

Taking L = B in Theorem 1.3, the following is a direct result.

Lemma 4.6. For K ∈ Kn and τ ∈ (−1, 1), if i < j < k then

B
(τ)
j (K)k−i ≤ B(τ)

i (K)k−jB
(τ)
k (K)j−i,

with equality if and only if K is of similar general width.

Lemma 4.7. If τ ∈ (−1, 1) and K ∈ Kn, then

B
(τ)
n−1(K) = Wn−1(K).

Proof. It follows by definition (4.1) that

B
(τ)
n−1(K) =

1

n

∫
Sn−1

[f1(τ)h(K,u) + f2(τ)h(K,−u)]dS(u)

=
1

n

∫
Sn−1

h(K,u)dS(u) = Wn−1(K).

Theorem 4.8. For τ ∈ (−1, 1) and K ∈ Kn, if i < n− 1 then

Wi(K) ≤ B(τ)
i (K), (4.9)

with equality if and only if K is an n-ball centered at the origin.
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Proof. Using Lemma 4.5, it follows that

Wi(K) ≤ ωi+1−n
n Wn−i

n−1(K), (4.10)

with equality if and only if K is an n-ball. By Lemma 4.6, we have

ωi+1−n
n B

(τ)
n−1(K)n−i ≤ B(τ)

i (K), (4.11)

with equality if and only if K is of similar general width. Together (4.10), (4.11) with Lemma 4.7, this gives

Wi(K) ≤ B(τ)
i (K).

From the equality conditions of inequalities (4.10) and (4.11), we obtain that equality holds in (4.9) if
and only if K is an n-ball centered at the origin.

Theorem 4.9. For τ ∈ (−1, 1) and K ∈ Kn, if 0 < i < n then

B
(τ)
n+i(K) ≤Wn−i(K

∗), (4.12)

with equality if and only if K is an n-ball centered at the origin.

Proof. By Lemma 4.2, we get
ωn−in V i(K∗) ≤Wn

n−i(K
∗), (4.13)

with equality if and only if K∗ is an n-ball. It follows from Lemma 4.6 that

B
(τ)
n+i(K)n ≤ ωn−in B

(τ)
2n (K)i, (4.14)

with equality if and only if K is of similar general width. By (4.13), (4.14) and Lemma 4.3, we have

B
(τ)
n+i(K) ≤Wn−i(K

∗).

The equality conditions of inequalities (4.13), (4.14) and (4.4) imply that equality holds in (4.12) if and
only if K is an n-ball centered at the origin.
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