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Abstract

In this paper, we consider evolutes of spacelike curves in de Sitter 2-space. Applying the theory of
singularity theory, we find that these evolutes can be seen as one dimensional caustics which are locally
diffeomorphic to lines or ordinary cusps. We establish the relationships between singularities of caustics and
geometric invariants of curves under the action of the Lorentz group. c©2016 All rights reserved.
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1. Introduction

The Lorentzian space form with the positive constant curvature is called de Sitter space. It is an
important subject in the theory of relativity and the astrophysics [5, 7]. De Sitter 4-space is know as a
vacuum solution of the Einstein equation. In this paper, we consider, however, spacelike curves in de Sitter
2-space as the most elementary case for the study of higher codimensional spacelike submanifolds in non-flat
Lorentzian space forms. We consider spacelike curves in de Sitter 2-space and the caustic curves associated
to these curves. Remark, similarly to geometrical optics in Euclidean 3-space, a submanifold of positive
codimension in Euclidean space Rm+1 may be considered as a source of light (or as an initial wave front).
The normal lines to this source submanifold are called normal light rays and its focal set (on which the
light intensity is much more concentrated than in the other points of the space) is called the caustic of that
submanifold. If we consider the caustic from the viewpoint of singularity theory, it is defined to be the set
of critical values of a Lagrangian map [1]. We know that evolute of a regular plane curve in Euclidean space
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can be seen as caustic. As a consequence, it has only Lagrangian singularities. Inspired by these results, we
hope to investigate caustics of spacelike curves in de sitter 2-space.

In this paper, we adopt a special pseudo-orthogonal frame in R3
1 and show the de Sitter Frenet-Serret

formula (cf. Proposition 2.1). We also define de Sitter height functions on these curves which can be seen as
generating families of some Lagrangian maps. With the aid of a bit of singularity theory of de Sitter height
functions, we study singularities of caustics and we establish the relation between these singularities and de
Sitter invariants of the original curve.

The rest of this paper is organized as follows. In Section 2, we investigate the Frenet-Serret-type formula
for spacelike curves in de Sitter 2-space. Then, we introduce two different families of functions on spacelike
curves γ that will be useful to study the singularities of the caustics and investigate the geometric meaning
of the de sitter invariants in Section 3 and Section 4. Afterwards, some general results on the singularity
theory are used for families of function germs and the main results (Theorem 5.3 and Theorem 6.2) are
proved in Section 5 and Section 6.

All maps considered here are of class C∞ unless otherwise stated.

2. The basic concepts

In this section, we use the basic notions and results in Lorentzian geometry. For more detail descriptions,
see [3, 4, 5, 6, 7, 8]. Let R3 be a 3-dimensional vector space, for any two vectors x = (x1, x2, x3) and
y = (y1, y2, y3) in R3, their pseudo scalar product is defined by 〈x,y〉 = −x1y1 + x2y2 + x3y3. The pair
(R3, 〈, 〉) is called Minkowski 3-space. We write R3

1 instead of (R3, 〈, 〉).
For any x = (x1, x2, x3),y = (y1, y2, y3) ∈ R3

1, the pseudo vector product of x and y is defined as follows:

x ∧ y =

∣∣∣∣∣∣∣
−e1 e2 e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣ .
We remark that 〈x ∧ y, z〉 = det(x,y, z). Hence, x ∧ y is pseudo-orthogonal to x,y. A non-zero vector x in
R3
1 is called spacelike, lightlike or timelike if 〈x,x〉 > 0, 〈x,x〉 = 0, 〈x,x〉 < 0, respectively. The norm of the

vector x ∈ R3
1 is defined by ‖ x ‖=

√
| 〈x,x〉 |.

We now define spheres in R3
1 as follows:

H2
+ = {x ∈ R3

1| − x21 + x22 + x23 = −1, x1 ≥ 1},
H2
− = {x ∈ R3

1| − x21 + x22 + x23 = −1, x1 ≤ 1},
S2
1 = {x ∈ R3

1| − x21 + x22 + x23 = 1}.

We call H2
± hyperbola and S2

1 de Sitter 2-space.
Let γ : I → S2

1 ⊂ R3
1 be a smooth regular curve in S2

1 (i.e.,γ̇(t) 6= 0 for any t ∈ I), where I is an open
interval. If 〈γ̇(t), γ̇(t)〉 > 0 for any t ∈ I, we call such a curve a spacelike curve. The arc-length of a spacelike
curve γ(t), measured from γ(t0), t0 ∈ I, is s(t) =

∫ t
t0
‖ γ̇(t) ‖ dt. Then the parameter s is determined such

that ‖ γ ′(s) ‖= 1, where γ ′(s) =
dγ
ds . So we say that a spacelike curve γ is parameterized by arc-length if

it satisfies that ‖ γ ′(s) ‖= 1. Throughout the remainder in this paper, we denote the parameter s of γ as
the arc-length parameter. We denote t(s) = γ ′(s) and we call t(s) a unit tangent vector of γ at s. One can
construct a unit vector e(s) = γ(s) ∧ t(s). By definition, we can calculate that 〈e(s), e(s)〉 = −1. Then, we
have a pseudo-orthonormal frame {γ(s), t(s), e(s)} along γ(s). By the standard arguments, we can show
the following de Sitter Frenet-Serret formula of spacelike curves:

Proposition 2.1. Under the above notations, we have the following de Sitter Frenet-Serret formula of
spacelike curves: 

γ ′(s) = t(s),

t′(s) = −γ(s) + kg(s)e(s),

e′(s) = kg(s)t(s),
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where kg(s) is the geodesic curvature of the curve γ in S2
1 , which is given by kg(s) = −〈t(s), e′(s)〉.

Under the assumption that kg(s) 6= 1, we define a curve in R3
1 by

SEγ(s) =
1√

| k2g(s)− 1 |
(−kg(s)γ(s) + e(s)) .

We remark that SEγ(s) is located in S2
1 if and only if | kg(s) |> 1, otherwise it is in H2

±. We call SEγ(s)
the caustic of γ. The geometric meanings of caustic will be discussed in Section 4.

3. Height functions on spacelike curves in de Sitter 2-space

In this section, we introduce two different families of functions on a regular curve γ : I → S2
1 . We now

define a function HS : I × S2
1 −→ R by HS(s,v) = 〈γ(s),v〉. We call HS the de Sitter spacelike height

function on a curve γ. We also define a function HT : I ×H2
+ −→ R by HT (s,v) = 〈γ(s),v〉. We call HT

the de Sitter timelike height function on a curve γ. We denote (hSv )(s) = HS(s,v) and (hTv )(s) = HT (s,v).
We have the following proposition.

Proposition 3.1. Let γ : I → S2
1 be a unit speed space curve.

(A) For any (s,v) ∈ I × S2
1 , we have the following claims.

(1) (hSv )′(s) = 0 if and only if there are real numbers λ and µ such that v = λγ(s)+µe(s) and λ2−µ2 = 1.

(2) (hSv )′(s) = (hSv )′′(s) = 0 if and only if v = ± 1√
k2g(s)−1

(−kg(s)γ(s) + e(s)) and k2g(s) > 1.

(3) (hSv )′(s) = (hSv )′′(s) = (hSv )(3)(s) = 0 if and only if

v = ± 1√
k2g(s)− 1

(−kg(s)γ(s) + e(s)) , k2g(s) > 1 and k′g(s) = 0.

(4) (hSv )′(s) = (hSv )′′(s) = (hSv )(3)(s) = (hSv )(4)(s) = 0 if and only if v = ± 1√
k2g(s)−1

(−kg(s)γ(s) + e(s)) ,

k2g(s) > 1 and k′g(s) = k′′g (s) = 0.

(B) For any (s,v) ∈ I ×H2
+, we have we have the following claims.

(1) (hTv )′(s) = 0 if and only if there are real numbers λ and µ such that v = λγ(s)+µe(s) and λ2−µ2 = −1.

(2) (hTv )′(s) = (hTv )′′(s) = 0 if and only if v = ± 1√
1−k2g(s)

(−kg(s)γ(s) + e(s)) and k2g(s) < 1.

(3) (hTv )′(s) = (hTv )′′(s) = (hTv )(3)(s) = 0 if and only if

v = ± 1√
1− k2g(s)

(−kg(s)γ(s) + e(s)) , k2g(s) < 1 and k′g(s) = 0.

(4) (hTv )′(s) = (hTv )′′(s) = (hTv )(3)(s) = (hTv )(4)(s) = 0 if and only if v = ± 1√
1−k2g(s)

(−kg(s)γ(s) + e(s)) ,

k2g(s) < 1 and k′g(s) = k′′g (s) = 0.

Proof. (A)

(1) Since (hSv )′(s) = 〈t(s),v〉, by the condition that (hSv )′(s) = 0, we have that there are real numbers λ
and µ such that v = λγ(s) + µe(s). By the condition that v ∈ S2

1 , we get λ2 − µ2 = 1. The converse
direction also holds.
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(2) By the Frenet formula, we get

(hSv )′′(s) = 〈−γ(s) + kg(s)e(s),v〉 .

Since (hSv )′(s) = (hSv )′′(s) = 0, we have λ = −µkg(s). It follows from the fact that λ2−µ2 = 1, we have
µ = ± 1√

k2g(s)−1
and k2g(s) > 1. Therefore, we have v = ± 1√

k2g(s)−1
(−kg(s)γ(s) + e(s)) and k2g(s) > 1.

(3) We can get
(hSv )(3)(s) =

〈
(k2g(s)− 1)t(s) + k′g(s)e(s),v

〉
.

Since (hSv )′(s) = (hSv )′′(s) = (hSv )(3)(s) = 0, we have ± 1√
k2g(s)−1

(−k′g(s)) = 0. This is equivalent to the

condition k′g(s) = 0. Therefore, we have v = ± 1√
k2g(s)−1

(−kg(s)γ(s) + e(s)) , k2g(s) > 1 and k′g(s) = 0.

(4) We can get

(hSv )(4)(s) =
〈
3kg(s)k

′
g(s)t(s) + (−k′g(s) + k3g(s) + k′′g (s))e(s) + (1− k2g(s))γ(s),v

〉
.

Since
(hSv )′(s) = (hSv )′′(s) = (hSv )(3)(s) = (hSv )(4)(s) = 0,

we have

± 1√
k2g(s)− 1

(−k′′g (s)) = 0.

This is equivalent to the condition k′′g (s) = 0. Therefore, we have v = ± 1√
k2g(s)−1

(−kg(s)γ(s) + e(s)),

k2g(s) > 1 and k′g(s) = k′′g (s) = 0.

(B)

(1) Since (hTv )′(s) = 〈t(s),v〉, by the condition that (hTv )′(s) = 0, we have that there are real numbers λ
and µ such that v = λγ(s) +µe(s). By the condition that v ∈ H2

+, we get λ2−µ2 = −1. The converse
direction also holds.

(2) By the Frenet formula, we get

(hTv )′′(s) = 〈−γ(s) + kg(s)e(s),v〉 .

Since (hTv )′(s) = (hTv )′′(s) = 0, we have λ = −µkg(s). It follows from the fact that λ2 − µ2 = −1,
we have µ = ± 1√

1−k2g(s)
and k2g(s) < 1. Therefore, we have v = ± 1√

1−k2g(s)
(−kg(s)γ(s) + e(s)) and

k2g(s) < 1.

(3) We can get
(hTv )(3)(s) =

〈
(k2g(s)− 1)t(s) + k′g(s)e(s),v

〉
.

Since (hTv )′(s) = (hTv )′′(s) = (hTv )(3)(s) = 0, we have ± 1√
1−k2g(s)

(−k′g(s)) = 0. This is equivalent to the

condition k′g(s) = 0. Therefore, we have v = ± 1√
1−k2g(s)

(−kg(s)γ(s) + e(s)) , k2g(s) < 1 and k′g(s) = 0.

(4) We can get

(hTv )(4)(s) =
〈
3kg(s)k

′
g(s)t(s) + (−k′g(s) + k3g(s) + k′′g (s))e(s) + (1− k2g(s))γ(s),v

〉
.

Since
(hTv )′(s) = (hTv )′′(s) = (hTv )(3)(s) = (hTv )(4)(s) = 0,
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we have

± 1√
1− k2g(s)

(
−k′′g (s)

)
= 0.

This is equivalent to the condition k′′g (s) = 0. Therefore, we have v = ± 1√
1−k2g(s)

(−kg(s)γ(s) + e(s)),

k2g(s) < 1 and k′g(s) = k′′g (s) = 0.

4. De Sitter invariants of spacelike curves

In this section, we study the geometric properties of the caustics of spacelike curves in S2
1 . For any r ∈ R

and v0 ∈ S2
1 or v0 ∈ H2

+, we denote

PS1(v0, r) =
{
v ∈ S2

1 | 〈v,v0〉 = r
}
.

We call PS1(v0, r) a pseudo-circle in S2
1 with the center v0. Then we have the following proposition.

Proposition 4.1. Let γ : I → S2
1 be a unit speed space curve with kg(s) 6= 1. Then k′g(s) ≡ 0 if and

only if v0 = ± 1√
|k2g(s)−1|

(−kg(s)γ(s) + e(s)) are constant vectors. Under this condition, γ is a part of a

pseudo-circle in S2
1 whose center is v0.

Proof. We denote

P±(s) = ±v0 = ± 1√
| k2g(s)− 1 |

(−kg(s)γ(s) + e(s)) .

Then we have

P ′±(s) = ±
kgk
′
g

| k2g(s)− 1 |
3
2

(−kg(s)γ(s) + e(s))± 1

| k2g(s)− 1 |
(
−k′g(s)γ(s)− kg(s)γ ′(s) + e(s)

)
= ±

kgk
′
g

| k2g(s)− 1 |
3
2

(−kg(s)γ(s) + e(s))±
k2g(s)− 1

(k2g(s)− 1)
3
2

(
−k′g(s)γ(s)− kg(s)t(s) + kg(s)t(s)

)
= ±

k′g

| k2g(s)− 1 |
3
2

γ(s)±
kg(s)k

′
g(s)

| k2g(s)− 1 |
3
2

e(s).

Then P ′±(s) ≡ 0 if and only if k′g(s) ≡ 0. Under this condition, we put r = ± kg(s)√
|k2g(s)−1|

and

v0 = ± 1√
| k2g(s)− 1 |

(−kg(s)γ(s) + e(s)) .

Then it is easy to show that γ(s) is a part of the pseudo-circle PS1(v0, r).

Let γ : I → S2
1 be a unit speed space curve with kg(s) 6= 1. Then, for any s0 ∈ I, we consider the pseudo-

circle PS1(v0, r
±
0 ), where v0 = SEγ(s0) and r0 = − kg(s0)√

|k2g(s0)−1|
. Then we have the following proposition.

Proposition 4.2. Under the above notations, γ(s) and PS1(v0, r0) have at least a 3-point contact at γ(s0).

Proof. We assume that PS1(v0, r0) ⊂ S2
1 . In this case, we consider the de Sitter spacelike height function

HS . By definition, we have PS1(v0, r0) = (hSv0
)−1(r0). Proposition 3.1 (A) (2) means that γ and PS1(v0, r0)

have at least a 3-point contact at γ(s0). If PS1(v0, r0) ⊂ H2
+, we adopt the hyperbolic spacelike height

function HT , and the assertion follows from exactly the same arguments as those of the previous case.
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We call PS1(v0, r0) in Proposition 4.2 the osculating pseudo-circle (or the pseudo-circle of geodesic
curvature); its center v0 is called the center of geodesic curvature. So the caustic is the locus of the center
of geodesic curvature. Moreover, we have the following Corollary of Propositions 3.1 and 4.2.

Corollary 4.3. The osculating pseudo-circle and γ have a 4-point contact at γ(s0) if and only if k′g(s0) = 0
and k′′g (s0) 6= 0.

5. Cusps of caustics of spacelike curves in de sitter 2-space

In this section we use some general results on the singularity theory for families of function germs to
classify the singularities of the caustics. Detailed descriptions can be found in the book [2]. Let function
germ F : (R× Rr, (s0,x0)) → R be an r-parameter unfolding of f(s), where f(s) = F (s,x0). We say that
f has Ak-singularity at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k, and f (k+1)(s0) 6= 0. We also say that f(s)
has Ak-singularity at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k. Let F (s,x) be an unfolding of f(s) and f(s)
has Ak-singularity (k ≥ 1) at s0. We denote the (k − 1)-jet of the partial derivative ∂F

∂xi
(s,x) at s0 by

j(k−1)
(
∂F
∂xi

(s0,x)
)

(s0) =
∑k−1

j=1 ajis
j for i = 1, · · · , r. Then F (s,x) is called a (p)-versal unfolding, if the

(k − 1)× r matrix of coefficients (aji) has rank k − 1 (k − 1 ≤ r). The bifurcation set of F is defined by

BF =

{
x ∈ Rr | ∂F

∂s
(s,x) =

∂2F

∂s2
(s,x) = 0

}
.

Then we have the following well-known result [2].

Theorem 5.1. Let F : (R × Rr, (s0,x0)) −→ R be an r-parameter unfolding of f(s) which has the Ak
singularity at s0. Suppose that F is a (p)-versal unfolding, then we have the following:

(a) If k = 2, then BF is locally diffeomorphic to {0} × Rr−1.

(b) If k = 3, then BF is locally diffeomorphic to C × Rr−2.

Where the ordinary cusp is C =
{

(x1, x2) | x21 = x32
}
.

We consider that HS(s,v) (resp., HT (s,v)) is a unfolding of hSv0(s) (resp., hTv0(s)). Then we have the
following proposition.

Proposition 5.2. Let γ : I → S2
1 be a unit speed space curve with kg(s0) 6= 1.

(1) If hSv0(s) has A3-singularity at s0, then HS is a (p)-versal unfolding of hSv0(s).

(2) If hTv0(s) has A3-singularity at s0, then HT is a (p)-versal unfolding of hTv0(s).

Proof. (1) We denote that

γ(s) = (x1(s), x2(s), x3(s)) and v =

(
v1, v2,±

√
1 + v21 − v22

)
.

Under this notation, we have

HS(s,v) = −x1(s)v1 + x2(s)v2 ± x3(s)
√

1 + v21 − v22.

Thus we have
∂HS

∂v1
= −x1(s)±

v1x3(s)√
1 + v21 − v22

,

∂HS

∂v2
= x2(s)±

v2x3(s)√
1 + v21 − v22

.
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We also have
∂

∂s

∂HS

∂v1
= −x′1(s)±

v1x
′
3(s)√

1 + v21 − v22
,

∂

∂s

∂HS

∂v2
= x′2(s)±

v2x
′
3(s)√

1 + v21 − v22
,

and
∂2

∂s2
∂HS

∂v1
= −x′′1(s)± v1x

′′
3(s)√

1 + v21 − v22
,

∂2

∂s2
∂HS

∂v2
= x′′2(s)± v1x

′′
3(s)√

1 + v21 − v22
.

Therefore the 2-jet of ∂HS

∂vi
(s, v)(i = 1, 2)at s0 is given by

j2
(
∂HS

∂vi
(s,v0)

)
(s0) =

∂

∂s

∂HS

∂vi
(s− s0) +

1

2

∂2

∂s2
∂HS

∂vi
(s− s0)2

= a1i(s− s0) +
1

2
a2i(s− s0)2.

It is enough to show that the rank of the matrix A is 2, where

A =


−x′1(s)±

v1x
′
3(s)√

1 + v21 − v22
x′2(s)±

v2x
′
3(s)√

1 + v21 − v22

−x′′1(s)± v1x
′′
3(s)√

1 + v21 − v22
x′′2(s)± v2x

′′
3(s)√

1 + v21 − v22

 .

We have
detA =± v1

v3
(x′′3x

′
2 − x′3x′′2)± v2

v3
(x′′1x

′
3 − x′1x′′3) + (x′′2x

′
1 − x′2x′′1)

=± 1

v3

〈
v0, t(s) ∧ t′(s)

〉
=± 1

v3

〈
± 1√

k2g(s)− 1
(−kg(s)γ(s) + e(s)), t ∧ (−γ(s) + kg(s)e(s))

〉

=± 1

v3

1√
k2g(s)− 1

〈−kg(s)γ(s) + e(s), kg(s)γ(s)− e(s)〉

=± 1

v3

1√
k2g(s)− 1

(k2g(s)− 1)

=±

√
k2g(s)− 1

v3
6= 0.

(2) For HT , we denote that

γ(s) = (x1(s), x2(s), x3(s)) and v =

(
v1, v2,±

√
−1 + v21 − v22

)
.

Under this notation we have

HT (s,v) = −x1(s)v1 + x2(s)v2 ± x3(s)
√
−1 + v21 − v22.
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By the same computation as above , we have the 2-jet of ∂HT

∂vi
(s, v)(i = 1, 2)at s0 is given by

j2
(
∂HT

∂vi
(s, v0)

)
(s0) =

∂

∂s

∂HT

∂vi
(s− s0) +

1

2

∂2

∂s2
∂HT

∂vi
(s− s0)2

=b1i(s− s0) +
1

2
b2i(s− s0)2.

It is enough to show that the rank of the matrix B is 2, where

B =


−x′1(s)±

v1x
′
3(s)√

−1 + v21 − v22
x′2(s)±

v2x
′
3(s)√

−1 + v21 − v22

−x′′1(s)± v1x
′′
3(s)√

−1 + v21 − v22
x′′2(s)± v2x

′′
3(s)√

−1 + v21 − v22

 .

We have
detB =± v1

v3
(x′′3x

′
2 − x′3x′′2)± v2

v3
(x′′1x

′
3 − x′1x′′3) + (x′′2x

′
1 − x′2x′′1)

=± 1

v3

〈
v0, t(s) ∧ t′(s)

〉
=± 1

v3

〈
± 1√

1− k2g(s)
(−kg(s)γ(s) + e(s)), t(s) ∧ (−γ(s) + kg(s)e(s))

〉

=± 1

v3

1√
1− k2g(s)

〈−kg(s)γ(s) + e(s), kg(s)γ(s)− e(s)〉

=± 1

v3

1√
1− k2g(s)

(k2g(s)− 1)

=±

√
1− k2g(s)

v3
6= 0.

This completes the proof.

Theorem 5.3. Let γ : I → S2
1 be a unit speed space curve with kg(s0) 6= 1, then we have the following

claims.

(1) The caustic at SEγ(s0) is regular if k′g(s0) 6= 0.

(2) The caustic at SEγ(s0) is locally diffeomorphic to the ordinary cusp if k′g(s0) = 0 and k′′g (s0) 6= 0.

Proof. For the proof of assertion (1), we can calculate the derivative of the caustics as follow:

SE′γ(s) = ±
k′g(s)

(k2g(s)− 1)
3
2

(γ(s)− kg(s)e(s)) .

Therefore assertion (1) follows.
For the proof of assertions (2), we consider the de Sitter spacelike height functions HS on the curves.

By Proposition 3.1, the bifurcation set of HS is

BS
H =

v = ± 1√
k2g(s)− 1

(−kg(s)γ(s) + e(s)) | s ∈ I


and k2g(s) > 1.
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The caustic of γ in S2
1 is a part of this set. By Theorem 5.1 and Proposition 5.2, the bifurcation set

BS
H at v0 = 1√

k2g(s)−1
(−kg(s)γ(s) + e(s)) is locally diffeomorphic to the ordinary cusp if k′g(s0) = 0 and

k′′g (s0) 6= 0. If we consider the hyperbolic timelike height function HT , we can prove the remaining assertions
of the theorem.

Corollary 4.3 and Theorem 5.3 assert that the cusp point of the caustic corresponds to the point γ(s0)
where the osculating pseudo-circle and γ have a 4-point contact. Such a point is called the ordinary vertex
of the curve γ. We also call the point γ(s0) with k′g(s0) = k′′g (s0) = 0 the heigher vertex of the curve γ.

6. Generic properties of spacelike curves

In this section we consider generic properties of spacelike curves in S2
1 . Let Embsp(I, S

2
1) be the space of

spacelike embeddings γ : I → S2
1 with 〈t′, t′〉 6= 1 equipped with Whitney C∞-topology. We also consider

the function H : S2
1 × S2

1 → R defined by H(u,v) = 〈u,v〉. We claim that Hv is a submersion for any
v ∈ S2

1 , where Hv(u) = H(u,v). For any γ ∈ Embsp(I, S2
1), we have H = H ◦ (γ × idS2

1
). We also have

the `-jet extension j`1H : I × S2
1 → J `(I,R) defined by j`1H(s,v) = j`hv(s). We consider the trivialization

J `(I,R) ≡ I × R× J `(1, 1). For any submanifold Q ⊂ J `(1, 1), we denote that Q̃ = I × {0} ×Q. Then we
have the following proposition as a corollary of Lemma 6 in Wassermann [9].

Proposition 6.1. Let Q be a submanifold of J `(1, 1). Then the set

TQ = {γ ∈ Embsp(I, S2
1) | j`His transversal to Q}

is a residual subset of Embsp(I, S
2
1). If Q is a closed subset, then TQ is open.

We can prove the following generic classification theorem.

Theorem 6.2. There exists an open and dense subset O ⊂ Embsp(I, S
2
1) such that for any γ ∈ O, the

caustics SEγ(s) of γ(s) is locally diffeomorphic to the ordinariy cusp at any singular point.
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