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Abstract

In this article, we study a nonlinear fourth-order differential equation two-point boundary value problem.
We use monotone iterative technique and lower and upper solutions of completely continuous operators
to get the existence of nontrivial solutions for the problem. The results can guarantee the existence of
nontrivial sign-changing solutions and positive solutions, and we can construct two iterative sequences for
approximating them. Finally, two examples are given to illustrate the main results. ©2016 All rights
reserved.
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1. Introduction

In this paper, we consider the following nonlinear fourth-order differential equation two-point boundary
value problem {

x(4)(t) = f(t, x(t)), 0 < t < 1,

x(0) = x′(0) = x′′(1) = x(3)(1) + g(x(1)) = 0,
(1.1)

where f : [0, 1]×R→ R, g : [0,+∞)→ [0,+∞).
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There are many extensive studies on fourth-order boundary value problems with different boundary
conditions, see for instance [1]–[8],[10]–[26] and the references therein. Among these papers, the existence
and multiplicity of solutions or positive solutions for fourth-order boundary value problems were discussed
widely by using various methods. Some of the main tools are the lower and upper solution method (see
[5, 6, 8, 12]), monotone iterative technique (see [1, 2, 8, 11]), Krasnoselskii fixed point theorem (see [7, 17]),
fixed point index (see [4, 18, 23]), Leray-Schauder degree (see [10, 12]), bifurcation theory (see [14, 19, 21]),
the critical point theory (see [24]), the shooting method (see [3]) and fixed point theorems on cones (see
[13, 16, 15, 22, 26, 25]). In this paper, we use monotone iterative technique and lower and upper solutions to
get the existence of nonzero solutions for the problem (1.1). The main features of this paper are as follows.
First, the nonlinear term f(t, x) may change sign on some sets. Second, we can find two simple functions
as lower and upper solutions, which were not given in advance. Third, we give the existence of nonzero
solutions and positive solutions under only local monotonicity and local continuity of the function f(t, x).
In addition, we can construct two monotone iterative sequences for approximating solutions of (1.1).

2. Preliminaries and previous results

To prove our main results, in the following we list some basic concepts and lemmas.
Let (X, ‖ · ‖) be a real Banach space which is partially ordered by a cone K ⊂ X. That is, x ≤ y if and

only if y − x ∈ K. Let θ denote the zero element of X. A non-empty closed convex set K ⊂ X is a cone if
it satisfies (i) x ∈ K, r ≥ 0 ⇒ rx ∈ K; (ii) x ∈ K,−x ∈ K ⇒ x = θ. K is called normal if there exists a
constant N > 0 such that, for all x, y ∈ X, θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖; in this case, N is called the
normality constant of K.

Lemma 2.1 ([9]). Assume that X is a Banach space and K is a normal cone in X, T : [x0, y0] → X is a
completely continuous increasing operator which satisfies x0 ≤ Tx0, Ty0 ≤ y0. Then T has a minimal fixed
point x∗ and a maximal fixed point x∗ with x0 ≤ x∗ ≤ x∗ ≤ y0. In addition,

x∗ = lim
n→∞

Tnx0, x∗ = lim
n→∞

Tny0,

where {Tnx0}∞n=1 is an increasing sequence, {Tny0}∞n=1 is a decreasing sequence.

Lemma 2.2 ([2]). If f, g are continuous, then (1.1) is equivalent to the integral equation

x(t) =

∫ 1

0
G(t, s)f(s, x(s))ds+ g(x(1))φ(t), t ∈ [0, 1], (2.1)

where

G(t, s) =
1

6

{
s2(3t− s), 0 ≤ s ≤ t ≤ 1,
t2(3s− t), 0 ≤ t ≤ s ≤ 1,

(2.2)

and φ(t) = 1
2 t

2 − 1
6 t

3.

It is easy to see that G(t, s) is continuous on [0, 1]× [0, 1] and G(t, s) ≥ 0. From [16], we give the following
properties of the functions G(t, s) and φ(t).

Lemma 2.3. For any t, s ∈ [0, 1], we have

1

3
s2t2 ≤ G(t, s) ≤ 1

2
st2,

1

3
t2 ≤ φ(t) ≤ 1

2
t2.

Lemma 2.4. The functions G(t, s) and φ(t) satisfy the following inequalities

|G(t2, s)−G(t1, s)| ≤
3

2
(t2 − t1), |φ(t2)− φ(t1)| ≤

3

2
(t2 − t1), for 0 ≤ t1 ≤ t2 ≤ 1.
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Proof. (i) For 0 ≤ t1 ≤ t2 ≤ s ≤ 1, then we have

|G(t1, s)−G(t2, s)| =
∣∣∣∣16 t22(3s− t2)− 1

6
t21(3s− t1)

∣∣∣∣
=

1

6

∣∣3s(t22 − t21)− (t32 − t31)
∣∣ ≤ 1

6

[
|3s(t22 − t21)|+ |t32 − t31|

]
=

1

2
s(t2 + t1)(t2 − t1) +

1

6
(t22 + t1t2 + t21)(t2 − t1)

≤ (t2 − t1) +
1

2
(t2 − t1) =

3

2
(t2 − t1).

(ii) For 0 ≤ t1 ≤ s ≤ t2 ≤ 1, we have

|G(t2, s)−G(t1, s)| =
∣∣∣∣16s2(3t2 − s)− 1

6
t21(3s− t1)

∣∣∣∣
=

1

6

∣∣(3s2t2 − 3st21)− (s3 − t31)
∣∣ ≤ 1

6

[
3s(st2 − t21) + (s3 − t31)

]
≤ 1

2
s(t22 − t21) +

1

6
(s2 + st1 + t21)(s− t1)

≤ (t2 − t1) +
1

2
(s− t1) ≤

3

2
(t2 − t1).

(iii) For 0 ≤ s ≤ t1 ≤ t2 ≤ 1, we have

|G(t2, s)−G(t1, s)| =
∣∣∣∣16s2(3t2 − s)− 1

6
s2(3t1 − s)

∣∣∣∣
=

1

6

∣∣3s2t2 − 3s2t1
∣∣ =

1

2
s2(t2 − t1) ≤

1

2
(t2 − t1).

By (i), (ii) and (iii), we obtain that |G(t2, s)−G(t1, s)| ≤ 3
2(t2 − t1).

Next we show the second inequality also holds. For 0 ≤ t1 ≤ t2 ≤ 1,

|φ(t2)− φ(t1)| =
∣∣∣∣12 t22 − 1

6
t32 −

1

2
t21 +

1

6
t31

∣∣∣∣ ≤ 1

2

∣∣t22 − t21∣∣+
1

6

∣∣t32 − t31∣∣
=

1

2
(t2 + t1)(t2 − t1) +

1

6
(t22 + t2t1 + t21)(t2 − t1)

≤ (t2 − t1) +
1

2
(t2 − t1) =

3

2
(t2 − t1).

This completes the proof.

3. Main results

In our considerations we set X = C[0, 1], the Banach space of all continuous functions on [0, 1] with the
norm ‖u‖ = max{|u(t)| : t ∈ [0, 1]}. We consider the standard cone K = {u ∈ C[0, 1] : u(t) ≥ 0, 0 ≤ t ≤ 1}.
Then the cone K is normal and the normality constant is 1.

Theorem 3.1. Suppose that there exist two real numbers b > a ≥ 0 and a nonnegative function l ∈
C(0, 1) ∩ L1[0, 1] such that

(H1) f : (0, 1)× [0, b]→ R is continuous and g : [0, b]→ (0,+∞) is continuous and increasing;

(H2) |f(t, x)| ≤ l(t) for (t, x) ∈ (0, 1)× [0, b] and f(t, x) ≤ f(t, y) for 0 < t < 1, 0 ≤ x ≤ y ≤ b;
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(H3) the following two inequalities hold

2

∫ 1

0
s2 max{f(s, as2), 0}ds+ 3

∫ 1

0
smin{f(s, as2), 0}ds+ 2g(a) ≥ 6a,

3

∫ 1

0
smax{f(s, bs2), 0}ds+ 2

∫ 1

0
s2 min{f(s, bs2), 0}ds+ 3g(b) ≤ 6b.

Then (1.1) has two nontrivial solutions x∗, y∗ ∈ C[0, 1] with at2 ≤ x∗ ≤ y∗ ≤ bt2, 0 ≤ t ≤ 1. Moreover, let
x0(t) = at2, y0(t) = bt2 and we construct two sequences

xn+1 =

∫ 1

0
G(t, s)f(s, xn(s))ds+ g(xn(1))φ(t), yn+1 =

∫ 1

0
G(t, s)f(s, yn(s))ds+ g(yn(1))φ(t),

n = 0, 1, 2, . . . , where G(t, s) is given as in (2.2), we have lim
n→∞

xn = x∗, lim
n→∞

yn = y∗.

Proof. Define an operator T : C[0, 1]→ C[0, 1] by

(Tx)(t) =

∫ 1

0
G(t, s)f(s, x(s))ds+ g(x(1))φ(t), 0 ≤ t ≤ 1.

From Lemma 2.2, we know that x is the solution of (1.1) if and only if x is fixed point of T. In the
following, we will find fixed points of T in the order interval [x0, y0].

Firstly, we show that T : [x0, y0] → C[0, 1] is a completely continuous operator. For x ∈ [x0, y0], we
have 0 ≤ at2 ≤ x ≤ bt2 ≤ b for 0 ≤ t ≤ 1. From (H1) and in view of the continuity of functions G(t, s), the
operator T is continuous. Next we prove T is compact. Let L =

∫ 1
0 l(t)dt, then 0 ≤ L ≤ +∞. From the

assumption (H2) and Lemma 2.3, for x ∈ [x0, y0],

‖Tx‖ = max
0≤t≤1

∣∣∣∣∫ 1

0
G(t, s)f(s, x(s))ds+ g(x(1))φ(t)

∣∣∣∣
≤ max

0≤t≤1

[∫ 1

0
G(t, s)|f(s, x(s))|ds+ |g(x(1))|φ(t)

]
≤ max

0≤t≤1

[∫ 1

0

1

2
t2s|f(s, x(s))|ds+

1

2
t2g(x(1))

]
≤ 1

2

∫ 1

0
l(s)ds+

1

2
g(b) ≤ 1

2
(L+ g(b)),

which implies that the set T ([x0, y0]) is uniform bounded in C[0, 1].
On the other hand, for any x ∈ [x0, y0] and 0 ≤ t1 ≤ t2 ≤ 1, by using Lemma 2.4, we have

|(Tx)(t1)− (Tx)(t2)| ≤
∫ 1

0
|G(t1, s)−G(t2, s)||f(s, x(s))|ds+ |g(x(1))||φ(t1)− φ(t2)|

≤ max
0≤s≤1

|G(t1, s)−G(t2, s)|
∫ 1

0
|f(s, x(s))|ds+ g(b)|φ(t1)− φ(t2)|

≤ 3

2
(t2 − t1)

∫ 1

0
l(s)ds+

3

2
g(b)|t1 − t2| ≤

3

2
(L+ g(b))(t2 − t1).

This implies that the set T ([x0, y0]) is equi-continuous in C[0, 1]. An application of the Arzela-Ascoli
theorem implies that T : [x0, y0]→ C[0, 1] is a completely continuous operator.

From the assumption (H2), we can see that T : [x0, y0]→ C[0, 1] is an increasing operator.
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Further, for any 0 ≤ t ≤ 1, by using the assumption (H1), (H3) and Lemma 2.3,

(Tx0)(t) =

∫ 1

0
G(t, s)f(s, x0(s))ds+ g(x0(1))φ(t) =

∫ 1

0
G(t, s)f(s, as2)ds+ g(a)φ(t)

=

∫ 1

0
G(t, s) max{f(s, as2), 0}ds+

∫ 1

0
G(t, s) min{f(s, as2), 0}ds+ g(a)φ(t)

≥ t2
∫ 1

0

1

3
s2 max{f(s, as2), 0}ds+ t2

∫ 1

0

1

2
smin{f(s, as2), 0}ds+ g(a)

1

3
t2

= t2
[∫ 1

0

1

3
s2 max{f(s, as2), 0}ds+

∫ 1

0

1

2
smin{f(s, as2), 0}ds+

1

3
g(a)

]
=
t2

6

[
2

∫ 1

0
s2 max{f(s, as2), 0}ds+ 3

∫ 1

0
smin{f(s, as2), 0}ds+ 2g(a)

]
≥ at2 = x0(t),

(Ty0)(t) =

∫ 1

0
G(t, s)f(s, y0(s))ds+ g(y0(1))φ(t) =

∫ 1

0
G(t, s)f(s, bs2)ds+ g(b)φ(t)

=

∫ 1

0
G(t, s) max{f(s, bs2), 0}ds+

∫ 1

0
G(t, s) min{f(s, bs2), 0}ds+ g(b)φ(t)

≤ t2
∫ 1

0

1

2
smax{f(s, bs2), 0}ds+ t2

∫ 1

0

1

3
s2 min{f(s, bs2), 0}ds+ g(b)

1

2
t2

=
t2

6

[
3

∫ 1

0
smax{f(s, bs2), 0}ds+ 2

∫ 1

0
s2 min{f(s, bs2), 0}ds+ 3g(b)

]
≤ bt2 = y0(t).

Thus we have Tx0 ≥ x0, T y0 ≤ y0. Moreover, we construct two sequences

xn+1 =

∫ 1

0
G(t, s)f(s, xn(s))ds+ g(xn(1))φ(t), yn+1 =

∫ 1

0
G(t, s)f(s, yn(s))ds+ g(yn(1))φ(t),

n = 0, 1, 2, . . . . By the monotonicity of T , we get xn+1 ≥ xn, yn+1 ≤ yn, n = 1, 2, · · · .
An application of Lemma 2.1 implies that the operator T has a minimal fixed point x∗ and a maximal

fixed point y∗ in [x0, y0]. Evidently, x0 ≤ x∗ ≤ y∗ ≤ y0, that is, at2 ≤ x∗(t) ≤ y∗(t) ≤ bt2, 0 ≤ t ≤ 1. In
addition, lim

n→∞
xn = x∗, lim

n→∞
yn = y∗.

From (H1), we know that g(0) 6= 0 and thus the zero function is not a fixed point of T . That is, the zero
function is not the solution of (1.1). So x∗(t) and y∗(t) are nontrivial.

Similar to the proof of Theorem 3.1, we can easily get the following conclusions.

Theorem 3.2. Suppose that there exist two real numbers a < b ≤ 0 and a nonnegative function l ∈
C(0, 1) ∩ L1[0, 1] such that

(H4) f : (0, 1)× [a, 0]→ R is continuous and g : [a, 0]→ (0,+∞) is continuous and increasing;

(H5) |f(t, x)| ≤ l(t) for (t, x) ∈ (0, 1)× [a, 0] and f(t, x) ≤ f(t, y) for 0 < t < 1, a ≤ x ≤ y ≤ 0.

In addition, let (H3) be also satisfied. Then the problem (1.1) has two nontrivial solutions x∗, y∗ ∈ C[0, 1]
with at2 ≤ x∗ ≤ y∗ ≤ bt2, 0 ≤ t ≤ 1. Moreover, let x0(t) = at2, y0(t) = bt2 and we construct two sequences

xn+1 =

∫ 1

0
G(t, s)f(s, xn(s))ds+ g(xn(1))φ(t), yn+1 =

∫ 1

0
G(t, s)f(s, yn(s))ds+ g(yn(1))φ(t),

n = 0, 1, 2, . . . , where G(t, s) is given as in (2.2), we have lim
n→∞

xn = x∗, lim
n→∞

yn = y∗.
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Theorem 3.3. Suppose that there exist two real numbers a < 0 < b and a nonnegative function l ∈
C(0, 1) ∩ L1[0, 1] such that

(H6) f : (0, 1)× [a, b]→ R is continuous and g : [a, b]→ (0,+∞) is continuous and increasing;

(H7) |f(t, x)| ≤ l(t) for (t, x) ∈ (0, 1)× [a, b] and f(t, x) ≤ f(t, y) for 0 < t < 1, a ≤ x ≤ y ≤ b.

In addition, let (H3) be also satisfied. Then the problem (1.1) has two nontrivial solutions x∗, y∗ ∈ C[0, 1]
with at2 ≤ x∗ ≤ y∗ ≤ bt2, 0 ≤ t ≤ 1. Moreover, let x0(t) = at2, y0(t) = bt2 and we construct two sequences

xn+1 =

∫ 1

0
G(t, s)f(s, xn(s))ds+ g(xn(1))φ(t), yn+1 =

∫ 1

0
G(t, s)f(s, yn(s))ds+ g(yn(1))φ(t),

n = 0, 1, 2, . . . , where G(t, s) is given as in (2.2), we have lim
n→∞

xn = x∗, lim
n→∞

yn = y∗.

If we assume that f(t, x) ≥ 0 in Theorem 3.1, then (H3) can be written by the following form:
(H3)

′ the following two inequalities hold

2

∫ 1

0
s2f(s, as2)ds+ 3

∫ 1

0
sf(s, as2)ds+ 2g(a) ≥ 6a,

3

∫ 1

0
sf(s, bs2)ds+ 2

∫ 1

0
s2f(s, bs2)ds+ 3g(b) ≤ 6b.

Moreover,
∫ 1
0 G(t, s)f(s, x(s))ds+ g(x(1))φ(t) ≥ g(x(1))φ(t) ≥ g(0)φ(t) > 0, 0 < t < 1. So we can obtain

the following existence results of positive solutions for the problem (1.1).

Corollary 3.4. Assume (H1), (H2), (H3)
′ hold and f(t, x) ≥ 0, (t, x) ∈ (0, 1) × [0, b]. Then the problem

(1.1) has two positive solutions x∗, y∗ ∈ C[0, 1] with at2 ≤ x∗ ≤ y∗ ≤ bt2, 0 ≤ t ≤ 1. Moreover, let
x0(t) = at2, y0(t) = bt2 and we construct two sequences

xn+1 =

∫ 1

0
G(t, s)f(s, xn(s))ds+ g(xn(1))φ(t), yn+1 =

∫ 1

0
G(t, s)f(s, yn(s))ds+ g(yn(1))φ(t),

n = 0, 1, 2, . . . , where G(t, s) is given as in (2.2), we have lim
n→∞

xn = x∗, lim
n→∞

yn = y∗.

Next we consider a special case of the problem (1.1) with g ≡ 0, namely the fourth-order differential
equation two-point boundary value problem{

x(4)(t) = f(t, x(t)), 0 < t < 1,

x(0) = x′(0) = x′′(1) = x(3)(1) = 0.
(3.1)

Theorem 3.5. Suppose that there exist two real numbers b > a ≥ 0 and a nonnegative function l ∈
C(0, 1) ∩ L1[0, 1] such that

(i) f : (0, 1) × [0, b] → R is continuous, |f(t, x)| ≤ l(t) for (t, x) ∈ (0, 1) × [0, b] and f(t, x) ≤ f(t, y) for
0 < t < 1, 0 ≤ x ≤ y ≤ b;

(ii) the following two inequalities hold

2

∫ 1

0
s2 max{f(s, as2), 0}ds+ 3

∫ 1

0
smin{f(s, as2), 0}ds ≥ 6a,

3

∫ 1

0
smax{f(s, bs2), 0}ds+ 2

∫ 1

0
s2 min{f(s, bs2), 0}ds ≤ 6b;
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(iii)
∫ 1
0 G(t, s)f(s, 0)ds 6≡ 0, t ∈ [0, 1].

Then the problem (3.1) has two nontrivial solutions x∗, y∗ ∈ C[0, 1] with at2 ≤ x∗ ≤ y∗ ≤ bt2, 0 ≤ t ≤ 1.
Moreover, let x0(t) = at2, y0(t) = bt2 and we construct two sequences

xn+1 =

∫ 1

0
G(t, s)f(s, xn(s))ds, yn+1 =

∫ 1

0
G(t, s)f(s, yn(s))ds,

n = 0, 1, 2, . . . , where G(t, s) is given as in (2.2), we have lim
n→∞

xn = x∗, lim
n→∞

yn = y∗.

Proof. The proof is similar to Theorem 3.1. We only need to show that x∗, y∗ are nontrivial. From (iii), we
know that the zero function is not the solution of (3.1).

Theorem 3.6. Suppose that there exist two real numbers a < b ≤ 0 and a nonnegative function l ∈
C(0, 1) ∩ L1[0, 1] such that f : (0, 1)× [a, 0]→ R is continuous, |f(t, x)| ≤ l(t) for (t, x) ∈ (0, 1)× [a, 0] and
f(t, x) ≤ f(t, y) for 0 < t < 1, a ≤ x ≤ y ≤ 0. In addition, let (ii),(iii) in Theorem 3.5 be also satisfied.
Then the problem (3.1) has two nontrivial solutions x∗, y∗ ∈ C[0, 1] with at2 ≤ x∗ ≤ y∗ ≤ bt2, 0 ≤ t ≤ 1.
Moreover, let x0(t) = at2, y0(t) = bt2 and we construct two sequences

xn+1 =

∫ 1

0
G(t, s)f(s, xn(s))ds, yn+1 =

∫ 1

0
G(t, s)f(s, yn(s))ds,

n = 0, 1, 2, . . . , where G(t, s) is given as in (2.2), we have lim
n→∞

xn = x∗, lim
n→∞

yn = y∗.

Theorem 3.7. Suppose that there exist two real numbers a < 0 < b and a nonnegative function l ∈
C(0, 1) ∩ L1[0, 1] such that f : (0, 1)× [a, b]→ R is continuous, |f(t, x)| ≤ l(t) for (t, x) ∈ (0, 1)× [a, b] and
f(t, x) ≤ f(t, y) for 0 < t < 1, a ≤ x ≤ y ≤ b. In addition, let (ii),(iii) in Theorem 3.5 be also satisfied.
Then the problem (3.1) has two nontrivial solutions x∗, y∗ ∈ C[0, 1] with at2 ≤ x∗ ≤ y∗ ≤ bt2, 0 ≤ t ≤ 1.
Moreover, let x0(t) = at2, y0(t) = bt2 and we construct two sequences

xn+1 =

∫ 1

0
G(t, s)f(s, xn(s))ds, yn+1 =

∫ 1

0
G(t, s)f(s, yn(s))ds,

n = 0, 1, 2, . . . , where G(t, s) is given as in (2.2), we have lim
n→∞

xn = x∗, lim
n→∞

yn = y∗.

Similar to the discussion of Corollary 3.4, we have the following conclusion.

Corollary 3.8. Suppose that there exist two real numbers b > a ≥ 0 and a nonnegative function l ∈
C(0, 1) ∩ L1[0, 1] such that

(i)′ f : (0, 1)× [0, b] → [0,+∞) is continuous, f(t, x) ≤ l(t) for (t, x) ∈ (0, 1)× [0, b] and f(t, x) ≤ f(t, y)
for 0 < t < 1, 0 ≤ x ≤ y ≤ b;

(ii)′ the following two inequalities hold

2

∫ 1

0
s2f(s, as2)ds+ 3

∫ 1

0
sf(s, as2)ds ≥ 6a, 3

∫ 1

0
sf(s, bs2)ds+ 2

∫ 1

0
s2f(s, bs2)ds ≤ 6b;

(iii)′ f(t0, 0) 6= 0, 0 < t0 < 1.

Then the problem (3.1) has two positive solutions x∗, y∗ ∈ C[0, 1] with at2 ≤ x∗ ≤ y∗ ≤ bt2, 0 ≤ t ≤ 1.
Moreover, let x0(t) = at2, y0(t) = bt2 and we construct two sequences

xn+1 =

∫ 1

0
G(t, s)f(s, xn(s))ds, yn+1 =

∫ 1

0
G(t, s)f(s, yn(s))ds,

n = 0, 1, 2, . . . , where G(t, s) is given as in (2.2), we have lim
n→∞

xn = x∗, lim
n→∞

yn = y∗.
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Proof. We only need to prove that x∗(t) > 0, for 0 < t < 1. In fact, from Lemma 2.3 and (i)′,

x∗(t) =

∫ 1

0
G(t, s)f(s, x∗(s))ds ≥ 1

3
t2
∫ 1

0
s2f(s, x∗(s))ds ≥ 1

3
t2
∫ 1

0
s2f(s, 0)ds.

Next we prove
∫ 1
0 s

2f(s, 0)ds > 0. In fact, in contrary case, 0 =
∫ 1
0 s

2f(s, 0)ds. In view of s2f(s, 0) ≥
0, s ∈ (0, 1), we have s2f(s, 0) = 0 a.e. for s ∈ [0, 1]. Then

f(s, 0) = 0 a.e. s ∈ [0, 1]. (3.2)

Take into account assumption (iii)′, f(t0, 0) 6= 0 with t0 ∈ (0, 1). By the continuity of f we can find a
set A ⊂ (0, 1) with t0 ∈ A and µ(A) > 0, where µ is the Lebesgue measure, such that f(t, 0) 6= 0 for t ∈ A.
This contradicts to (3.2). Hence x∗(t) and y∗(t) are nontrivial.

Remark 3.9. In many papers, the existence or uniqueness of positive solutions for fourth-order boundary
value problems has been obtained under the main conditions: nonlinear term f(t, x) is continuous, monotone
on [0, 1]×[0,+∞). Here we only require the local continuity and local monotonicity of f(t, x) on (0, 1)×[a, b],
that is, f(t, x) may change sign.

4. Examples

In this section, we give two examples to illustrate our main results.

Example 4.1. Consider the following fourth-order boundary value problem:{
x(4)(t) = (

√
x(t)− 1)t2, 0 < t < 1,

x(0) = x′(0) = x′′(1) = x(3)(1) +
√
x(1) + 3 = 0.

(4.1)

In the problem (4.1), let

f(t, x) = (
√
x− 1)t2, g(x) =

√
x+ 3, a = 1, b = 4, l(t) = t2.

We can see that, f : [0, 1] × [0, 4] → R is continuous and g : [0, 4] → (0,+∞) is continuous, increasing;
|f(t, x)| ≤ l(t) for (t, x) ∈ [0, 1] × [0, 4] and f(t, x) is increasing in x ∈ [0, 4] for fixed t ∈ [0, 1]. Since
f(s, as2) = s3 − s2 ≤ 0, f(s, bs2) = s2(2s− 1), we have

2

∫ 1

0
s2 max{f(s, as2), 0}ds+ 3

∫ 1

0
smin{f(s, as2), 0}ds+ 2g(a)

= 3

∫ 1

0
(s4 − s3)ds+ 8 = 7.85 > 6 = 6a,

3

∫ 1

0
smax{f(s, bs2), 0}ds+ 2

∫ 1

0
s2 min{f(s, bs2), 0}ds+ 3g(b)

= 3

∫ 1

1
2

(2s4 − s3)ds+ 2

∫ 1
2

0
(2s5 − s4)ds+ 15 ≈ 15.46 < 24 = 6b.

So conditions (H1) − (H3) are satisfied. By Theorem 3.1, the problem (4.1) has two positive solutions
x∗, y∗ ∈ C[0, 1] with t2 ≤ x∗ ≤ y∗ ≤ 4t2, 0 ≤ t ≤ 1. Moreover, let x0(t) = t2, y0(t) = 4t2 and we construct
two sequences

xn+1 =

∫ 1

0
G(t, s)s2

(√
xn(s)− 1

)
ds+

(√
xn(1) + 3

)
φ(t),

yn+1 =

∫ 1

0
G(t, s)s2

(√
yn(s)− 1

)
ds+

(√
yn(1) + 3

)
φ(t),

n = 0, 1, 2, . . . , where G(t, s), φ(t) are given as in Lemma 2.2, we have lim
n→∞

xn = x∗, lim
n→∞

yn = y∗.
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Example 4.2. Consider the following fourth-order boundary value problem:{
x(4)(t) = (6x(t)− x2(t)− 4)t2, 0 < t < 1,

x(0) = x′(0) = x′′(1) = x(3)(1) + 1
12x(1) + 1

3 = 0.
(4.2)

In the problem (4.2), let

f(t, x) = (6x− x2 − 4)t2, g(x) =
1

12
x+

1

3
, a = −1, b = 0, l(t) = 11t2.

We can see that, f : [0, 1]× [−1, 0]→ R is continuous and g : [−1, 0]→ (0,+∞) is continuous, increasing;
|f(t, x)| ≤ l(t) for (t, x) ∈ [0, 1] × [−1, 0] and f(t, x) is increasing in x ∈ [−1, 0] for fixed t ∈ [0, 1]. Since
f(s, as2) = (−6s2 − s4 − 4)s2 ≤ 0, f(s, bs2) = −4s2 ≤ 0, we have

2

∫ 1

0
s2 max{f(s, as2), 0}ds+ 3

∫ 1

0
smin{f(s, as2), 0}ds+ 2g(a)

= 3

∫ 1

0
s3(−6s2 − s4 − 4)ds+

1

2
= −5.875 > −6 = 6a,

3

∫ 1

0
smax{f(s, bs2), 0}ds+ 2

∫ 1

0
s2 min{f(s, bs2), 0}ds+ 3g(b)

= 2

∫ 1

0
s2(−4s2)ds+ 1 = −3

5
< 0 = 6b.

So conditions (H3) − (H5) are satisfied. By Theorem 3.2, the problem (4.2) has two negative solutions
x∗, y∗ ∈ C[0, 1] with −t2 ≤ x∗ ≤ y∗ ≤ 0, 0 ≤ t ≤ 1. Moreover, let x0(t) = −t2, y0(t) = 0 and we construct
two sequences

xn+1 =

∫ 1

0
G(t, s)s2

(
6xn(s)− x2n(s)− 4

)
ds+

(
1

12
xn(1) +

1

3

)
φ(t),

yn+1 =

∫ 1

0
G(t, s)s2

(
6yn(s)− y2n(s)− 4

)
ds+

(
1

12
yn(1) +

1

3

)
φ(t),

n = 0, 1, 2, . . . , where G(t, s), φ(t) are given as in Lemma 2.2, we have lim
n→∞

xn = x∗, lim
n→∞

yn = y∗.
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