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mean of asymptotically nonexpansive mappings in
CAT(0) spaces

Shih-Sen Changa, Ching-Feng Wenb,∗, Jen-Chih Yaoa,c

aCenter for General Educatin, China Medical University, Taichung, 40402, Taiwan.
bCenter for Fundamental Science, and Research Center for Nonlinear Analysis and Optimization, Kaohsiung Medical University,
Kaohsiung, 807, Taiwan.
cResearch Center for Nonlinear Analysis and Optimization, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.

Communicated by Y. J. Cho

Abstract

In this paper, a new modified proximal point algorithm involving fixed point of Cesàro type mean of
asymptotically nonexpansive mappings in CAT(0) spaces is proposed. We also introduce a new iterative
scheme. Under suitable conditions, the ∆-convergence and the strong convergence to a common element
of the set of minimizers of a convex function and the set of fixed points of the Cesàro type mean of
asymptotically nonexpansive mapping in CAT(0) space are proved. The results presented in the paper are
new. ©2016 All rights reserved.
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1. Introduction

Let (X, d) be a metric space, and C be a nonempty subset of X. In the sequel, we denote by F (T ) the
fixed point set of a mapping T .
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Recall that a mapping T : C → C is said to be nonexpansive, if

d(Tx, Ty) ≤ d(x, y), ∀x, y ∈ C.

T is said to be asymptotically nonexpansive, if there exists a sequence {kn} ⊂ [1,∞) with kn → 1 such that

d(Tnx, Tny) ≤ knd(x, y), ∀x, y ∈ C, n ≥ 1.

Let H be a Hilbert space, C be a nonempty closed and convex subset of H and T : C → C be a
nonexpansive mapping. It is well known that there have been many iterative schemes constructed and
proposed in order to approximate fixed points of T . For example, the Mann iteration process is defined as
follows: {

x1 ∈ C,
xn+1 = (1− αn)xn + αnTxn, ∀n ≥ 1,

(1.1)

where {αn} is a sequence in (0, 1). The Ishikawa iterative process is defined as follows:
x1 ∈ C,
xn+1 = (1− αn)xn + αnTyn, ∀n ≥ 1,

yn = (1− βn)xn + βnTxn.

(1.2)

In 1975, Baillon [5] first proved that the following Cesàro mean iterative sequence weakly converges to
a fixed point of a nonexpansive mapping T in Hilbert spaces:

Tnx =
1

n+ 1

n∑
i=0

T ix. (1.3)

Shimizu and Takahashi [26] proved a strong convergence theorem of the above iteration for an asymptotically
nonexpansive mapping in Hilbert spaces.

Fixed point theory in a CAT(0) space was first studied by Kirk [19]. Since then, fixed point theory for
various types of mappings in CAT(0) spaces has been investigated rapidly. In 2008, Dhompongsa-Panyanak
[12] studied the strong and 4-convergence of the processes (1.1) and (1.2) for nonexpansive mappings in
CAT(0) spaces.

Let H be a real Hilbert space and f : H → (−∞,∞] be a proper convex and lower semi-continuous
function. One of the major problems in optimization in Hilbert space H is to find x ∈ X such that

f(x) = min
y∈X

f(y). (1.4)

We denote by argminy∈Xf(y) the set of minimizers of f .
A successful and powerful tool for solving this problem is the well-known proximal point algorithm

(shortly, the PPA) which was initiated by Martinet [23] in 1970. In 1976, Rockafellar [24] generally studied,
by the PPA, the convergence to a solution of the convex minimization problem in the framework of Hilbert
spaces.

Indeed, let f be a proper, convex, and lower semi-continuous function on a Hilbert space H which attains
its minimum. The PPA is defined by

x1 ∈ H

xn+1 = argminy∈H(f(y) +
1

2λn
||y − xn||2), ∀n ≥ 1,

(1.5)

where λn > 0 for all n ≥ 1. It was proved that the sequence {xn} converges weakly to a minimizer of f
provided Σ∞n=1λn =∞. However, as shown by Güler [14], the PPA does not necessarily converges strongly
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in general. In 2000, Kamimura-Takahashi [17] combined the PPA with Halpern’s algorithm [15] so that the
strong convergence is guaranteed.

Recently, many convergence results by the PPA for solving optimization problems have been extended
from the classical linear spaces such as Euclidean spaces, Hilbert spaces and Banach spaces to the setting of
manifolds. The minimizers of the objective convex functionals in the spaces with nonlinearity play a crucial
role in the branch of analysis and geometry. Numerous applications in computer vision, machine learning,
electronic structure computation, system balancing and robot manipulation can be considered as solving
optimization problems on manifolds (see [3, 4, 6, 14, 15, 17, 22]).

In 2013, Bačák [4] introduced the PPA in a CAT(0) space (X, d) as follows: x1 ∈ X and

xn+1 = argminy∈X(f(y) +
1

2λn
d2(y, xn)), ∀n ≥ 1, (1.6)

where λn > 0, ∀n ≥ 1. It was shown that if the set of minimizers of f is nonempty and Σ∞n=1λn =∞, then
the sequence {xn} ∆−converges to its minimizer (see [3]).

In 2015, Cholamjiak-Abdou-Cho [11] established the ∆-convergence and strong convergence of the se-
quence to a common element of the set of minimizers of a convex function and the set of fixed points of a
nonexpansive mapping in CAT(0) spaces.

Motivated and inspired by the researches going on in this direction, it is naturally to put forward the
following

Open Question. Can we use Cesàro type mean of asymptotically nonexpansive mappings to propose
a modified proximal point algorithm for finding a common element of the set of minimizers of a convex
function and the set of fixed point of asymptotically nonexpansive mappings in CAT(0) spaces?

The purpose of this paper is by using the Cesàro type mean of asymptotically nonexpansive mappings to
propose a modified proximal point algorithm involving fixed points of asymptotically nonexpansive mappings
in CAT(0) spaces and to prove some 4− and strong convergence theorems of the proposed processes under
suitable conditions.

Our results not only give an affirmative answer to the above open question but also generalize the
corresponding results of Dhompongsa et al.[12], Rockafellar [24] and Güler [14], Bačák [3], Ariza-Ruiz et al
[3], Cholamjiak-Abdou-Cho [11], and many others. Related results can be also found in [25].

2. Preliminaries

Recall that a metric space (X, d) is called a CAT(0) space, if it is geodesically connected and if every
geodesic triangle in X is at least as ‘thin’ as its comparison triangle in the Euclidean plane. It is known
that any complete, simply connected Riemannian manifold having non-positive sectional curvature is a
CAT(0) space. Other examples of CAT(0) spaces include pre-Hilbert spaces (see [7]), R-trees (see [20]),
Euclidean buildings (see [8]), the complex Hilbert ball with a hyperbolic metric (see [13]), and many others.
A complete CAT(0) space is often called Hadamard space. A subset K of a CAT(0) space X is convex if,
for any x, y ∈ K, we have [x, y] ⊂ K, where [x, y] is the uniquely geodesic joining x and y.

In this paper, we write (1− t)x⊕ ty for the unique point z in the geodesic segment joining from x to y
such that

d(x, z) = td(x, y), d(y, z) = (1− t)d(x, y). (2.1)

It is well known that a geodesic space (X, d) is a CAT(0) space, if and only if the following inequality

d2((1− t)x⊕ ty, z) ≤ (1− t)d2(x, z) + td2(y, z)− t(1− t)d2(x, y) (2.2)

is satisfied for all x, y, z ∈ X and t ∈ [0, 1]. In particular, if x, y, z are points in a CAT(0) space (X, d) and
t ∈ [0, 1], then

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z). (2.3)
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Let (X, d) be a complete CAT(0) space and C be a nonempty closed and convex subset of X. Then, for
each point x ∈ X, there exists a unique point of C, denoted by PCx, such that

d(x, PCx) = infy∈Cd(x, y). (2.4)

Such a mapping PC is called the metric projection from X onto C.
Let {xn} be a bounded sequence in a closed convex subset C of a CAT(0) space X. For any x ∈ X, we

set
r(x, {xn}) = lim supn→∞d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn} = inf{r(x, {xn} : x ∈ X}

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r({xn}) = r(x, {xn})}.

It is well known that, in CAT(0) spaces, A({xn}) consists of exactly one point.

Definition 2.1. A sequence {xn} in a CAT(0) space X is said to M-converge to a point x ∈ X if x is the
unique asymptotic center of {un} for every subsequence {un} of {xn}.

In this case, we write M −limn→∞xn = x and call x the M-limit of {xn}.

Lemma 2.2 ([21]). Let X be a complete CAT(0) space. Then every bounded sequence in X has a M-
convergent subsequence.

Lemma 2.3 ([19]). If {xn} is a bounded sequence in a complete CAT(0) space with A({xn}) = {x}, {un}
is a subsequence of {xn} with A({un}) = {u} and the sequence {d(xn, u)} converges, then x = u.

Recall that a function f : C → (−∞,∞] defined on a convex subset C of a CAT(0) space is convex if,
for any geodesic [x, y] := {γx,y(λ) : 0 ≤ λ ≤ 1} := {λx⊕ (1− λ)y : 0 ≤ λ ≤ 1} joining x, y ∈ C, the function
f ◦ γ is convex, that is,

f(γx,y(λ)); = f(λx⊕ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (2.5)

Examples of convex functions in CAT(0) space X

(1) The function y 7→ d(x, y) : X → [0,∞) is convex.

(2) The function d2(x, y) : X ×X → [0,∞) is convex.

Let X be a CAT(0) space and f : X → (−∞,∞] be a proper convex and lower semi-continuous function.
For any λ > 0, define the Moreau-Yosida resolvent of f in X by

Jλ(x) = argminy∈X [f(y) +
1

2λ
d2(y, x)], ∀x ∈ X. (2.6)

It was shown in [3] that the set F (Jλ) of fixed points of the resolvent associated of f coincides with the
set argminyXf(y) of minimizers of f .

Lemma 2.4 ([16]). Let (X, d) be a complete CAT(0) space and f : X → (−∞,∞] be proper convex and
lower semi-continuous. For any λ > 0, the resolvent Jλ of f is nonexpansive.
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Lemma 2.5 ([2]). (sub-differential inequality). Let (X, d) be a complete CAT(0) space and f : X →
(−∞,∞] be proper convex and lower semi-continuous. Then, for all x, y ∈ X and λ > 0, the following
inequality holds:

1

2λ
d2(Jλx, y)− 1

2λ
d2(x, y) +

1

2λ
d2(x, Jλx) + f(Jλx) ≤ f(y). (2.7)

Lemma 2.6 ([9]). (Demiclosed principle). If C is a closed convex subset of a complete CAT(0) space X
and T : C → C be an asymptotically nonexpansive mapping. Let {xn} be a bounded sequence in C such that
4− limxn = p and limn→∞ d(xn, Txn) = 0. Then Tp = p.

Lemma 2.7 ([28]). Let {an} be a sequence of non-negative real numbers satisfying the following conditions:

an+1 ≤ (1 + bn)an, ∀n ≥ ∞,

where bn ≥ 0 and
∑∞

n=1 bn <∞, then the limit limn→∞ an exists.

Lemma 2.8 ([10, 27]). Let X be a CAT(0) space, C be a nonempty closed and convex subset of X. Let
{xi}ni=1 be any finite subset of C, and αi ∈ (0, 1), i = 1, 2, · · · , n such that

∑n
n=1 αi = 1. Then the following

inequalities hold:

d(

n⊕
i=1

αixi, z) ≤
n∑
i=1

αid(xi, z), ∀z ∈ C; (2.8)

d(

n⊕
i=1

αixi, z)
2 ≤

n∑
i=1

αid(xi, z)
2 −

n∑
i,j=1,i 6=j

αiαjd(xi, xj)
2, ∀z ∈ C. (2.9)

Lemma 2.9 ([16]). (The resolvent identity). Let (X, d) be a complete CAT(0) space and f : X → (−∞,∞]
be a proper convex and lower semi-continuous function. Then the following identity holds:

Jλx = Jµ(
λ− µ
λ

Jλx⊕
µ

λ
x), ∀x ∈ X and λ > µ > 0. (2.10)

3. ∆-convergence theorem for proximal point and fixed point involving Cesàro type mean of
asymptotically nonexpansive mapping in CAT(0) spaces

We are now in a position to give the following main result.

Theorem 3.1. Let (X, d) be a complete CAT(0) space, C be a nonempty, closed and convex subset of X.
Let f : C → (−∞,∞] be a proper convex and lower semi-continuous function, and T : C → C be an
asymptotically nonexpansive mappings with sequence {kn} ⊂ [1,∞) , kn → 1. Let {αn}, {βn} be sequences
in [0, 1] with 0 < a ≤ αn, βn < b < 1, ∀n ≥ 1. Let {λn} be a sequence such that λn ≥ λ > 0 for all n ≥ 1
and some λ.

For any given x0 ∈ C, let {xn} be the sequence generated in the following manner:

zn = argminyy∈C [f(y) +
1

2λn
d2(y, xn)],

yn = (1− βn)xn ⊕ βn
1

n+ 1

n⊕
n=0

T jzn

xn+1 = (1− αn)xn ⊕ αnTnyn,

∀n ≥ 1. (3.1)

Denote by Ln := 1
n+1

∑n
j=0 kj and σn = max{kn, Ln}. If

∞∑
n=0

(σn − 1) <∞ and Ω := F (T )
⋂
argminy∈Cf(y) 6= ∅, (3.2)

then {xn} 4-converges to a point x∗ ∈ Ω which is a minimizer of f in C as well as it is also a fixed point
of T in C.
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Proof. Put

L̃n :=
1

n+ 1

n∑
j=0

k2j .

Since limn→∞ kn = 1, so is limn→∞ k
2
n = 1. Therefore

Ln :=
1

n+ 1

n∑
j=0

kj → 1, and L̃n =
1

n+ 1

n∑
j=0

k2j → 1 (as n→∞). (3.3)

Let q ∈ Ω. Then q = Tq and f(q) ≤ f(y), ∀y ∈ C. This implies that

f(q) +
1

2λn
d2(q, q) ≤ f(y) +

1

2λn
d2(y, q), ∀y ∈ C,

and hence q = Jλnq, ∀n ≥ 1, where Jλn is the Moreau-Yosida resolvent of f in X defined by (2.6).

(I) First we prove that the limit limn→∞ d(xn, q) exists. Indeed, since zn = Jλnxn, by Lemma 2.4, Jλn is
nonexpansive. Hence we have

d(zn, q) = d(Jλnxn, Jλnq) ≤ d(xn, q). (3.4)

It follows from (3.1), (3.4) and (2.8) that

d(yn, q) = d((1− βn)xn ⊕ βn
1

n+ 1

n⊕
j=0

T jzn, q)

≤ (1− βn)d(xn, q) + βnd(
1

n+ 1

n⊕
j=0

T jzn, q))

≤ (1− βn)d(xn, q) + βn
1

n+ 1

n∑
j=0

d(T jzn, q)

≤ (1− βn)d(xn, q) + βn
1

n+ 1

n∑
j=0

kjd(zn, q)

= (1− βn)d(xn, q) + βnLnd(zn, q)

≤ Lnd(xn, q).

(3.5)

Also, by (3.1) and (3.5), we have

d(xn+1, q) = d((1− αn)xn ⊕ αnTnyn, q)
≤ (1− αn)d(xn, q) + αnd(Tnyn, q)

≤ (1− αn)d(xn, q) + αnknd(yn, q)

≤ (1− αn)d(xn, q) + αnknLnd(xn, q)

≤ knLnd(xn, q) ≤ max{kn, Ln}2d(xn, q)

= σ2nd(xn, q) ≤ (1 + (σn − 1)L)d(xn, q),

(3.6)

where σn = max{kn, Ln} → 1 (as, n → ∞), L = 1 + supn≥1 σn. It follows from condition (3.2), Lemma
2.7 and (3.6) that the limit limn→∞ d(xn, q) exists. Without loss of generality, we can assume that

lim
n→∞

d(xn, q) = c ≥ 0. (3.7)

This implies that the sequence {xn} is bounded, so are {zn}, {yn}, {T jzn}, j = 0, 1, · · · , n and {Tnyn}.
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(II) Now we prove that
lim
n→∞

d(xn, zn) = 0.

Indeed, by the sub-differential inequality (2.7) we have

1

2λn
{d2(zn, q)− d2(xn, q) + d2(xn, zn)} ≤ f(q)− f(zn).

Since f(q) ≤ f(zn), ∀n ≥ 1, it follows that

d2(xn, zn) ≤ d2(xn, q)− d2(zn, q). (3.8)

Therefore in order to prove limn→∞ d(xn, zn) = 0, it suffices to prove d2(zn, q)→ c.
In fact, it follows from (3.6) that

d(xn+1, q) ≤ kn[(1− αn)d(xn, q) + αnd(yn, q)].

Simplifying we have

d(xn, q) ≤
1

αnkn
[knd(xn, q)− d(xn+1, q)] + d(yn, q)

≤ 1

akn
[knd(xn, q)− d(xn+1, q)] + d(yn, q).

This together with (3.7) shows that

c = lim inf
n→∞

d(xn, q) ≤ lim inf
n→∞

d(yn, q). (3.9)

On the other hand, it follows from (3.3) and (3.5) that

lim sup
n→∞

d(yn, q) ≤ lim sup
n→∞

(Lnd(xn, q)) = c.

This together with (3.9) implies that
lim
n→∞

d(yn, q) = c. (3.10)

Also, by (3.5),
d(yn, q) ≤ Ln[(1− βn)d(xn, q) + βnd(zn, q)],

which can be rewritten as

d(xn, q) ≤
1

βnLn
[Lnd(xn, q)− d(yn, q)] + d(zn, q)

≤ 1

aLn
[Lnd(xn, q)− d(yn, q)] + d(zn, q).

This together with (3.10) shows that

c = lim inf
n→∞

d(xn, q) ≤ lim inf
n→∞

d(zn, q). (3.11)

From (3.4), it follows that
lim sup
n→∞

d(zn, q) ≤ lim sup
n→∞

d(xn, q) = c.

This together with (3.11) shows that limn→∞ d(zn, q) = c. Therefore it follows from (3.8) that

lim
n→∞

d(xn, zn) = 0. (3.12)
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(III) Now we prove that
lim
n→∞

d(xn, Txn) = 0, and lim
n→∞

d(yn, zn) = 0. (3.13)

Indeed, it follows from (2.9) that

d2(yn, q) = d2
(

(1− βn)xn ⊕ βn
1

n+ 1

n⊕
j=0

T jzn, q

)

≤ (1− βn)d2(xn, q) + βnd
2

(
1

n+ 1

n⊕
j=0

T jzn, q

)

− β(1− βn)d2
(
xn,

1

n+ 1

n⊕
j=0

T jzn, q

)
.

(3.14)

Since

d2
(

1

n+ 1

n⊕
j=0

T jzn, q

)
≤ { 1

n+ 1

n∑
j=0

kjd(zn, q)}2

= L2
nd

2(zn, q),

(3.15)

substituting (3.15) into (3.14), after simplifying and noting that Ln → 1, d(xn, q) → c, and d(yn, q) → c
(as n→∞), we have

a(1− b)d2
(
xn,

1

n+ 1

n⊕
j=0

T jzn

)
≤ βn(1− βn)d2

(
xn,

1

n+ 1

n⊕
j=0

T jzn

)
≤ (1− βn)d2(xn, q) + βnL

2
nd

2(zn, q)− d2(yn, q)
≤ L2

nd
2(xn, q)− d2(yn, q)→ 0 (as n→∞).

This implies that

d2
(
xn,

1

n+ 1

n⊕
j=0

T jzn

)
→ 0 (as n→∞). (3.16)

Therefore

d(xn, yn) = d

(
xn, (1− βn)xn ⊕ βn

1

n+ 1

n⊕
n=0

T jzn

)

≤ βnd
(
xn,

1

n+ 1

n⊕
n=0

T jzn

)
→ 0 (as n→∞).

Hence
lim
n→∞

d(xn, yn) = 0, and lim
n→∞

d(yn, zn) = 0, by (3.12). (3.17)

On the other hand, it follows from (2.9) that

d2(yn, q) = d2
(

(1− βn)xn ⊕ βn
1

n+ 1

n⊕
j=0

T jzn, q

)

≤ (1− βn)d2(xn, q) + βn
1

n+ 1

n∑
j=0

d2(T jzn, q)

− βn(1− βn)
1

n+ 1

n∑
j=0

d2(xn, T
jzn)
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≤ (1− βn)d2(xn, q) + βn
1

n+ 1

n∑
j=0

k2jd
2(zn, q)

− βn(1− βn)
1

n+ 1

n∑
j=0

d2(xn, T
jzn)

≤ (1− βn)d2(xn, q) + βnL̃nd
2(xn, q) (3.18)

− βn(1− βn)
1

n+ 1

n∑
j=0

d2(xn, T
jzn),

where L̃n = 1
n+1

∑n
j=0 k

2
j → 1, by (3.3). It follows from (3.18) and the assumption of theorem that

a(1− b) 1

n+ 1

n∑
j=0

d2(xn, T
jzn) ≤ βn(1− βn)

1

n+ 1

n∑
j=0

d2(xn, T
jzn)

≤ (1− βn)d2(xn, q) + βnL̃nd
2(xn, q)− d2(yn, q)

≤ L̃nd2(xn, q)− d2(yn, q)→ 0 (as n→∞).

Hence

lim
n→∞

1

n+ 1

n∑
j=0

d2(xn, T
jzn) = 0. (3.19)

This implies that
lim
n→∞

d2(xn, T
jzn) = 0, for each j = 0, 1, 2, · · · , n.

Since d(xn, zn)→ 0, especially, we have

lim
n→∞

d(xn, T zn) = 0, and lim
n→∞

d(xn, Txn) = 0. (3.20)

(IV) Now we prove that
lim
n→∞

d(Jλxn, xn) = 0, where λn ≥ λ > 0. (3.21)

In fact, it follows from (3.12) and Lemma 2.9 that

d(Jλxn, xn) ≤ d(Jλxn, zn) + d(zn, xn) = d(Jλxn, Jλnxn) + d(zn, xn)

= d(Jλxn, Jλ(
λn − λ
λn

Jλnxn ⊕
λ

λn
xn)) + d(zn, xn)

≤ d(xn, (1−
λ

λn
)Jλnxn ⊕

λ

λn
xn) + d(zn, xn)

≤ (1− λ

λn
)d(xn, Jλnxn) + d(zn, xn)

= (1− λ

λn
)d(xn, zn) + d(zn, xn)→ 0.

(3.22)

(V) Next we prove that

wM(xn) :=
⋃

{un}⊂{xn}

{A({un})} ⊂ Ω, (3.23)

where A({un}) is the asymptotic center of {un}.
Let u ∈ wM(xn), then there exists a subsequence {un} of {xn} such that A({un}) = {u}. It follows from

Lemma 2.2 that there exists a subsequence {vn} of {un} such that 4− limn→∞ vn = v for some v ∈ C. In
view of (3.20) and (3.21)

lim
n→∞

d(vn, T vn) = 0, and lim
n→∞

d(Jλvn, vn) = 0,
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and T and Jλ both are demi-closed at 0. By Lemma 2.6, v ∈ Ω. Also, by (3.7), the limit limn→∞ d(xn, v)
exists. Hence by Lemma 2.3, u = v. This shows that wM(xn) ⊂ Ω.

Finally, we show that the sequence {xn} 4-converges to a point in Ω. To this end, it suffices to show
that w4(xn) consists of exactly one point. Let {un} be a subsequence of {xn} with A({un}) = {u} and let
A({xn}) = {x}. Since u ∈ w4(xn) ⊂ Ω and {d(xn, u)} converges, by Lemma 2.3, we have x = u. Hence
w4(xn) = {x}.

This completes the proof of Theorem 3.1.

Remark 3.2.

1. Theorem 3.1 not only gives an affirmative answer to the open question mentioned above, but also
generalizes the main results in Agarwal et al [1], Khan-Abbas [18] from one nonexpansive mapping
to asymptoticaly nonexpansive mappings involving the convex and lower semi-continuous function in
CAT(0) spaces.

2. Theorem 3.1 also extends the the main results in Bačák [4], and the corresponding results in Ariza-Ruiz
et al [3], Cholamjiak et al [11]. In fact, we present a new modified proximal point algorithm for solving
the convex minimization problem as well as the fixed point problem of asymptotically nonexpansive
mappings in CAT(0) spaces.

Since every real Hilbert space H is a complete CAT(0) space, the following result can be obtained from
Theorem 3.1 immediately.

Corollary 3.3. Let H be a real Hilbert space and C be a nonempty closed and convex subset of H. Let f :
C → (−∞,∞] be a proper convex and lower semi-continuous function, and T : C → C be an asymptotically
nonexpansive mappings with sequence {kn} ⊂ [1,∞) , kn → 1. Let {αn}, {βn} be sequences in [0, 1] with
0 < a ≤ αn, βn < b < 1, ∀n ≥ 1. Let {λn} be a sequence such that λn ≥ λ > 0 for all n ≥ 1 and some λ.
For any given x0 ∈ C, let {xn} be the sequence generated by

zn = argminyy∈C [f(y) +
1

2λn
d2(y, xn)],

yn = (1− βn)xn + βn
1

n+ 1

n∑
n=0

T jzn

xn+1 = (1− αn)xn + αnT
nyn,

∀n ≥ 1. (3.24)

Denote by Ln := 1
n+1

∑n
j=0 kj and σn = max{kn, Ln}. If

∞∑
n=0

(σn − 1) <∞ and Ω := F (T )
⋂
argminy∈Cf(y) 6= ∅, (3.25)

then {xn} converges weakly to a point x∗ ∈ Ω which is a minimizer of f in C as well as it is also a fixed
point of T in C.

Remark 3.4. Corollary 3.3 is an improvement and generalization of the main result in Rockafellar[24] and
Güler [14].

4. Strong convergence theorem for proximal point and fixed point involving Cesàro type mean
of asymptotically nonexpansive mapping in CAT(0) spaces

Let (X, d) be a CAT(0) space, and C be a nonempty closed and convex subset of X. Recall that
a mapping T : C → C is said to be demi-compact, if for any bounded sequence {xn} in C such that
d(xn, Txn) → 0 (as n → ∞), then there exists a subsequence {xni} ⊂ {xn} such that {xni} converges
strongly (that is, in metric topology) to some point p ∈ C.
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Theorem 4.1. Under the assumptions of Theorem 3.1, if, in addition, T or Jλ is demi-compact, then the
sequence {xn} defined by (3.1) converges strongly (that is, in metric topology) to a point x∗ ∈ Ω.

Proof. In fact, it follows from (3.21) and (3.22) that

lim
n→∞

d(xn, Txn) = 0, (4.1)

and
lim
n→∞

d(xn, Jλ(xn)) = 0, (4.2)

Again by the assumption that one of T or Jλ is demi-compact, without loss of generality, we can assume
T is demi-compact, it follows from (4.1) that there exists a subsequence {xni} ⊂ {xn} such that {xnj}
converges strongly to some point p ∈ C. Since Jλ is nonexpansive, it is demi-closed at 0. Again since T
is asymptotically nonexpansive, by Lemma 2.6, it is also demi-closed at 0. Hence p ∈ Ω. Again by (3.7)
the limit limn→∞d(xn, p) exists. Hence we have limn→∞d(xn, p) = 0. This completes the proof of Theorem
4.1.

Theorem 4.2. Under the assumptions of Theorem 3.1, if, in addition, there exists a nondecreasing function
g : [0,∞)→ [0,∞) with g(0) = 0, g(r) > 0, ∀r > 0, such that

g(d(x,Ω)) ≤ d(x, Jλx) + d(x, Tx), ∀x ∈ C. (4.3)

Then the sequence {xn} defined by (3.1) converges strongly (that is, in metric topology) to a point p∗ ∈ Ω.

Proof. It follows from (3.20) and (3.21) that for each λ, 0 < λ ≤ λn we have

lim
n→∞

d(xn, Txn) = 0 and lim
n→∞

d(xn, Jλ(xn)) = 0. (4.4)

Therefore we have limn→∞ g(d(xn,Ω)) = 0. Since g is nondecreasing with g(0) = 0 and g(r) > 0, r > 0,
we have

lim
n→∞

d(xn,Ω) = 0. (4.5)

Next we prove that {xn} is a Cauchy sequence in C. In fact, it follows from (3.6) that for any q ∈ Ω

d(xn+1, q) ≤ (1 + ξn)d(xn, q), ∀n ≥ 1,

where ξn = (σn − 1)L, σn = max{kn, Ln} → 1 (as n→∞), L = 1 + supn≥1 σn.
∑∞

n=1 ξn <∞. Hence for
any positive integers n,m we have

d(xn+m, xn) ≤ d(xn+m, q) + d(xn, q)

≤ (1 + ξn+m−1)d(xn+m−1, q) + d(xn, q).

Since for each t ≥ 0, 1 + t ≤ et, we have

d(xn+m, xn) ≤ eξn+m−1d(xn+m−1, q) + d(xn, q)

≤ eξn+m−1+ξn+m−2d(xn+m−2, q) + d(xn, q)

≤ · · ·

≤ e
∑n+m−1

i=n ξid(xn, q) + d(xn, q)

≤ (1 +M)d(xn, q), for each q ∈ Ω.

where M = e
∑∞

i=1ξi <∞. Hence we have

d(xn+m, xn) ≤ (1 +M)d(xn,Ω).

This together with (4.5) shows that {xn} is a Cauchy sequence in C. Since C is a closed subset in a complete
CAT(0) space X, it is complete. Without loss of generality, we can assume that {xn} converges strongly to
some point p∗. It is easy to see that F (Jλ), F (Ti) and F (Si), i = 1, 2 all are closed subsets in C, so is Ω.
Since limn→∞ d(xn,Ω) = 0, p∗ ∈ Ω. This completes the proof of Theorem 4.2.
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