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Abstract

A numerical approximation for Phan-Thien-Tanner(P-T-T) viscoelastic flow problems has investigated.
The approximation is proposed by an interior penalty(IP) method and a Streamline Upwind Petrov-
Galerkin(SUPG) method. Meanwhile, the error estimates for the above numerical approximation of the
P-T-T model is derived. The numerical results support the efficiency of the algorithm. c©2016 All rights
reserved.
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1. Introduction and Preliminaries

The investigation of the nonlinear material in the viscoelastic flow problems has practical significance in
both engineering and medical fields, such as polymer processes, artificial organs, etc. Due to the complex
material character of the fluid, numerical simulation of the impact viscoelastic flow problems is a difficult
and expensive task. Some useful progress, such as [4, 11], has been made in the past decades. They
give mathematical and engineering perspectives on the viscoelastic flows. The fluid properties can be
characterized by modern technology, such as constitutive equations. However, the complex theological
responses of fluid and the elastic effect under high Weissenberg number make the numerical simulation of
the viscoelastic flows become a difficult task, see [9, 10, 13].

Many constitutive models have become available in recent years that are able to describe the dominant
convective behavior and the nonlinear coupling increases. In this paper we adopt the Phan-Thien-Tanner
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(P-T-T) equation, which is the differential type constitutive equation, to calculate the viscoelastic flows. To
date, many numerical methods have been developed and adopted for the simulation of the nonlinear material
properties, like the finite difference method (FDM), the finite volume method(FVD) and the finite element
method (FEM). As we know, to improve the stability and efficiency of numerical simulation, many numerical
schemes have been established and adopted. In [5], the discrete elastic viscous split stress algorithm is
proposed for improving the stability of simulation by improving the ellipticity of the momentum equation.
Moreover, the elastic viscous split stress scheme, the adaptive viscoelastic stress split scheme and the discrete
adaptive viscoelastic stress split algorithm also can be used to stabilize the calculation program, see [14]. A
streamline upwind Petrov-Galerkin (SUPG) method was introduced as a discretization method by Baranger
and Sandri [1] for viscoelastic flows. Najib and Sandri [12] studied a numerical method for oldroyd-B fluid.
The main idea of the method is to decouple the oldroyd-B model into two equation systems. Bonite et al.
[2] presented a face interior penalty finite element method for solving stokes equations. Hou [7, 8] considered
some physical applications of P-T-T model.

In this paper, we decouple the P-T-T model into two parts: the stokes-like problem and the constitutive
equation. In details, the stokes-like problem is computed by IP method, and the constitutive equation
is calculated by SUPG method. Moreover, we shall obtain error estimates of an IP/SUPG finite element
method for the P-T-T model.

The paper is organized as follows. In Section 2, we introduce the P-T-T model and the mathematical
notation. Section 3 displays an IP/SUPG method and the discrete approximation. In Section 4, error
estimates of the IP/SUPG method for P-T-T model are presented. Section 5 is the numerical results.

2. P-T-T model and mathematical notation

Let us first introduce some notation. For a bounded domain Ω in R2, with boundary ∂Ω. We consider
viscoelastic flow governed by P-T-T model:

−∇ · (2ηpD(u) + τ ) +∇p = f , in Ω

∇ · u = 0, in Ω(
1 +

ελ

1− ηp
tr(τ )

)
τ + λ((u · ∇)τ − τ∇u−∇uTτ ) = 2(1− ηp)D(u), in Ω

u = 0, on ∂Ω,

(2.1)

where u, p and τ denote the velocity, viscoelastic stress tensor and pressure fields, respectively, ε, λ and ηp
represent dimensionless material constant, Weissenberg number and viscosity constant, respectively. D(u)
denote the rate of deformation tensor and D(u) = 1

2(∇u+∇uT ).
Throughout the paper, We denote by‖ · ‖s and (·, ·)s the norm and inner product on the Sobolev spaces

Hs(Ω), s ≥ 0. In what follows, velocity u, pressure p and viscoelastic stress tensor τ belong to their respective
spaces V , Q and S given by

V = {u ∈ H1(Ω);u = 0, on ∂Ω},

Q = {p ∈ L2(Ω),

∫
Ω
qdx = 0},

S = {T ∈ L2(Ω),T = (Tij), Tij = Tji, i, j = 1, 2}

and let X = V ×Q× S.
Let Γh = {K} denotes a partition of Ω and K can be a triangle or a quadrilateral in two dimensions.

The parameter h denotes the mesh size of Γh given by h = max
K∈Γh

hK , where hK is the diameter of K.

We shall use the following finite element space:

Vh = {v ∈ H1(Ω) : v|k ∈ pl(K)2 ∀K ∈ Γh},
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Qh = {q ∈ L2
0(Ω) : q|k ∈ pl(K) ∀K ∈ Γh},

Sh = {σ ∈ H1(Ω) : σ|k ∈ pl(K)4 ∀K ∈ Γh},

here pl(K) denotes the space of polynomials of total degree at most l on K, l ≥ 1. Let Xh = Vh ×Qh × Sh.

3. Formulation of finite element method and error bounds

3.1. IP method and error estimate

We consider the stokes-like problem
−∇ · T +∇p = f , in Ω,

∇ · u = 0, in Ω,

T = 2ηpD(u) + τ , in Ω,

u = 0, on ∂Ω,

(3.1)

where T denotes extra stress tensor.
We define

(u,v) =

∫
Ω

u · vdx,

and

< u,v >Γ=

∫
Γ

u · vds.

As for the stokes-like equation (3.1), we define the bilinear forms by

ah(T h,vh) = (T h,D(vh))− 〈T h · n,vh〉∂Ω , (3.2)

bh(ph,vh) = −(ph,∇ · vh) + 〈ph,vh · n〉∂Ω (3.3)

and the jump operators

j1(uh,vh) = 2ηp
∑
K∈ε0h

h

∫
∂K

[∇uh] · [∇vh]ds+
ηpβ

h

∫
∂Ω
uh · vhds, (3.4)

j2(ph, qh) =
∑
K∈ε0h

γh3

ηp

∫
∂K

[∇ph][∇qh]ds, (3.5)

where α, β, γ are positive constants. [·] is the interior penalty term.
Then, the IP method for solving the stokes-like problem (3.1) is to find (uh, ph,T h) ∈ Xh such that

ah(T h,vh) + bh(ph,vh)− bh(qh,uh)− ah(sh,uh) +

(
1

2ηp
T h, sh

)
+ j1(uh,vh) + j2(ph, qh)

= (f ,vh) + (τ , sh)

(3.6)

for all (vh, qh, sh) ∈ Xh.
Furthermore, we state an approximation property.

Lemma 3.1. Let (u, p,T ) be the exact solution of (3.1), and let (uh, ph,T h) ∈ Xh be the numerical solution
of (3.6). Then

ah(T − T h,vh) + bh(p− ph,vh)− bh(qh,u− uh)− ah(sh,u− uh)

+

(
1

2ηp
(T − T h), sh

)
+ j1(u− uh,vh) + j2(p− ph, qh) = 0 ∀ Nh ∈ Xh.

(3.7)
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Then, we need to define the triple norm

||| u, p,T |||2=
1

2ηp
|| T ||20,Ω +2ηp || D(u) ||20,Ω +

1

2ηp
|| p ||20,Ω (3.8)

and the discrete triple norm

||| uh, ph,T h |||2h=||| u, p,T |||2 +j1(u− uh,vh) + j2(p− ph, qh), (3.9)

where (u, p,T ) ∈ X.
As in [3], we can obtain the optimal convergence rate in the triple norm if the exact solution u, p,T

satisfies the assumptions stated in the following theorem

Theorem 3.2. Suppose that the mesh satisfies the quasiuniformity of the mesh and that u, p,T be the
solution of (3.1), then the solution uh, ph,T h by the interior penalty method satisfies the error estimate

||| (u, p,T )− (uh, ph,T h) |||≤ C || τ − τ h || +o(h), (3.10)

where C is a constant independent of h.

3.2. SUPG method and error analysis

we shall present a SUPG algorithm to solve the equation(
1 +

ελ

1− ηp
tr(τ )

)
τ + λ((u · ∇)τ − τ∇u−∇uTτ ) = 2(1− ηp)D(u), in Ω. (3.11)

The SUPG method is given as follows. An operator B is defined by

B(u,v, τ ,ω) = ((u · ∇)τ ,ω + h(v · ∇)ω) +
1

2
((∇ · u)τ ,ω) (3.12)

for all (u,v, τ ,ω) ∈ Vh × Vh × Sh × Sh.
Moreover, setting u = v, τ = ω, we have

B(u, τ , τ ) = h((u · ∇)τ , (u · ∇)τ ) = h || (u · ∇)τ ||2 . (3.13)

For ωu = ω + υhu · ∇ω, we obtain

B(λu, τ ,ω) = ((λu · ∇)τ ,ω + υh(u · ∇)ω) +
1

2
((∇ · λu)τ ,ω). (3.14)

Taking the inner product of (3.11) with a test function ωu, we have((
1 +

ελ

1− ηp
tr(τ )

)
τ ,ωu

)
+B(λu, τ ,ω)− λ((τ∇u+∇uTτ ),ωu)

= 2(1− ηp)(D(u),ωu) ∀ω ∈ S.
(3.15)

Now we define the discrete approximation of (3.15) as, find τ ∈ Sh such that((
1 +

ελ

1− ηp
tr(τ h)

)
τ h,ωuh

)
+B(λuh, τ h,ω)− λ((τ h∇uh +∇uTh τ h),ωuh)

= 2(1− ηp)(D(uh),ωuh) ∀ω ∈ Sh.
(3.16)

In order to consider the error estimate of the finite element solution related to the IP formulation (3.6),
we proved the following result.
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Theorem 3.3. Assume that τ and τ h be the solutions of (3.11) and (3.16), respectively. Then the following
inequality holds

|| τ − τ h ||≤ Ch3/2 + (2(1− ηp) + CλL+ CλMh) || u− uh ||1 /(7/8− 2λM − CρL) (3.17)

for sufficiently small λ > 0 and ρ = ελ
1−ηp . C is a positive constant independent of h,

Proof. Let τ̃ be the L2 projection of τ in Sh. We have

(τ − τ̃ ,ω) = 0 ∀ω ∈ Sh. (3.18)

We apply the error estimate in [12] for τ ∈ H2(Ω)

|| τ − τ̃ || +h || τ − τ̃ ||1≤ Ch2 || τ ||2, (3.19)

|| τ − τ̃ ||0,Γh
≤ Ch3/2 || τ ||2 . (3.20)

The standard weak formulation of the constitutive equation in S is given by((
1 +

ελ

1− ηp
tr(τ )

)
τ ,ωuh

)
+B(λu, λuh, τ h,ω)− λ((τ∇u+∇uTτ ),ωuh)

= 2(1− ηp)(D(u),ωuh) ∀ω ∈ S.
(3.21)

Subtracting (3.21) from (3.16), and inserting the tensor τ̃ and setting ω = σ = τ h − τ̃ , we obtain((
1 +

ελ

1− ηp
tr(τ h)

)
τ h,σuh

)
+
ελ

α
(tr(σ)τ ,σuh) +B(λuh,σ,σ)− λ((σ∇uh +∇uThσ),σuh)

= (τ − τ̃ ,σuh)− ελ

α
(tr(τ h)(τ̃ − τ ),σuh)− ελ

α
(tr(τ̃ − τ )τ ,σuh)

−B(λuh, τ̃ − τ ,σ)−B(λ(uh − u), λuh, τ ,σ) + λ(((τ̃ − τ )∇uh +∇uTh (τ̃ − τ )),σuh)

− λ((τ∇(u− uh) +∇(u− uh)Tτ ),σuh) + 2(1− ηp)(D(uh − u),σuh).

(3.22)

Assuming that the solution (u, p,T , τ ) is smooth enough,

L = max{|| u ||3, || p ||2, || T ||2, || τ ||2},

and
max{|| ∇uh ||0,∞, || τ h ||0,∞} ≤M.

where ∇uh, τ h ∈ L∞(Ω). we estimate the first part on the right-hand side of (3.22) by

(τ − τ̃ ,σuh)− ελ

α
(tr(τ h)(τ̃ − τ ),σuh)− ελ

α
(tr(τ̃ − τ )τ ,σuh)

≤|| τ − τ̃ || || τ̃ ||uh +
2ελ

α
|| τ h ||0,∞ || τ̃ − τ || || σ ||uh + || τ ||0,∞|| tr(τ̃ − τ ) || || σ ||uh

≤ Ch2 || τ ||2 || σ ||uh +CLMh2 || σ ||uh +
√

2C || τ ||2 || τ̃ − τ || || σ ||uh
≤ CLh2(1 +M + L) || σ ||uh .

(3.23)

For the first B term on the right-hand side of (3.22), using (3.14),

B(λuh, τ̃ − τ ,σ)

= −((λuh · ∇)σ, τ̃ − τ )− ((∇ · λuh)(τ̃ − τ ),σ)/2 + ((λuh · ∇)(τ̃ − τ ), (λuh · ∇)τ̃ ).
(3.24)
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Note that ∇ · u = 0 and using lemma from [15], we obtain an estimate for (3.24)

B(λuh, τ̃ − τ ,σ) ≤|| λ(uh · ∇)σ) || || τ̃ − τ || +λ || uh − u ||1 || τ̃ − τ || || σ ||0,∞ /2

+ λh1/2 || uh ||0,∞ || τ̃ − τ ||1 || λh1/2(uh · ∇)σ ||
≤ CLh3/2 || λh1/2(uh · ∇)σ || +λCLh || uh − u ||1 || σ || /2

+ CLMh3/2 || λh1/2(uh · ∇)σ ||
≤ CL((1 + λM)h3/2 + λh || uh − u ||1 /2) || σ ||uh .

(3.25)

In view of expression B in (3.12) and imbedding theorem in [6], we consider the second B term on the
right-hand side of (3.22)

B(λ(uh − u), λuh, τ ,σ) = (λ(uh − u) · ∇τ ,σuh) + λ(∇ · (uh − u)τ ,σ)/2

≤ Cλ(|| uh − u ||1 || τ ||2 || σ ||uh + || uh − u ||1 || τ ||2 || σ ||)
≤ CλL || uh − u ||1 || σ ||uh .

(3.26)

Using (3.19), we easily see that

λ(((τ̃ − τ )∇uh +∇uTh (τ̃ − τ )),σuh)− λ((τ∇(u− uh) +∇(u− uh)Tτ ),σuh)

≤ 2λ || ∇uh ||0,∞|| τ̃ − τ || || σ ||uh +2λ || u− uh ||1 || τ ||0,∞ || σ ||uh
≤ CλL(Mh2+ || u− uh ||1) || σ ||uh .

(3.27)

For the last term on the right-hand side of (3.22), we obtain

2(1− ηp)(D(uh − u),σuh) ≤ 2(1− ηp) || u− uh ||1 || σ ||uh . (3.28)

Hence, combining (3.23) and (3.25)-(3.28), we get upper bound of the right-hand side of (3.22)

RH ≤CL(h2 + ρMh2 + ρLh2 + λMh2 + h3/2 + λMh3/2) || σ ||uh
+ (2(1− ηp) + CλL+ CλMh) || u− uh ||1 || σ ||uh ,

(3.29)

where ρ = ελ/1− ηp.
We will derive a lower bound of the left-hand side of (3.22). By using Young’s inequality and the equality

(3.13), we have((
1 +

ελ

1− ηp
tr(τ h)

)
τ h,σuh

)
+B(λuh,σ,σ)

=

((
1 +

ελ

1− ηp
tr(τ h)

)
τ h,σ

)
+

((
1 +

ελ

1− ηp
tr(τ h)

)
τ h, υh(σuh · ∇)σ

)
+B(λuh,σ,σ)

≥ (1− 2εh

1− ηp
|| τ h ||0,∞) || σ ||2 −h(1 +

2εh

1− ηp
|| τ h ||0,∞) || σ || || υ(σuh · ∇)σ || +B(λuh,σ,σ)

≥ 15 || σ ||2 /16− h((1 +
2εh

1− ηp
|| τ h ||0,∞)2 || σ ||2 + || υ(σuh · ∇)σ ||2 /4) +B(λuh,σ,σ)

≥ 7 || σ ||2uh /8,

(3.30)

where h ≤ 16/289 and || τ h ||0,∞≤ (1− ηp)/32ελ ≤M . For the rest of term on the left-hand side of (3.22),
we get

ελ

1− ηp
(tr(σ)τ ,σuh)− λ((σ∇uh +∇uThσ),σuh)

≤ ελ

1− ηp
|| tr(σ) || || τ ||0,∞|| σ ||uh +2λ || ∇uh ||0,∞ || σ || || σ ||uh

≤ (CL
ελ

1− ηp
+ 2λM) || σ ||2uh .

(3.31)
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Using the bounds (3.30) and (3.31), we get a lower bound of the left-side of (3.22)

LH ≥ (7/8− 2λM − CρL) || σ ||2uh . (3.32)

Therefore, combining (3.29) and (3.32), we obtain

(7/8− 2λM − CρL) || σ ||uh ≤ CL(h2 + ρMh2 + ρLh2 + λMh2 + h3/2 + λMh3/2) || σ ||uh
+ (2(1− ηp) + CλL+ CλMh) || u− uh ||1 || σ ||uh .

(3.33)

Using the triangle inequality, we proved the error estimate (3.17).

Theorem 3.4. Suppose that the exact solution (u, p,T , τ ) of (2.1 is smooth enough, then the finite element
solution (uh, ph,T h, τ h) by the IP/SUPG method satisfies the following error estimate:

||| (u− uh, p− ph,T − T h, ) ||| + || τ − τ h ||≤ Ch. (3.34)

Proof. Combining Theorem 3.2 with Theorem 3.3, we obtain the bound (3.34), which completes the proof.

4. Numerical experiments

Here, we consider the creeping flow in a planar channel problem with P-T-T model (2.1). We shall solve
the problem using the proposed IP/SUPG method to illustrate the theoretical analysis. Figure 1 shows the
test domain and Dirichlet boundary conditions. uy represents the velocity in y-direction.

Figure 1: The geometry and boundary conditions.

The exact solution (u, p, τ ) is given by

u =

(
1− y4

0

)
,

p = −x2,

τ =

(
32λαy6 −4αy3

−4αy3 0

)
.

(4.1)

Therefore, the right hand side terms of the momentum and constitutive equations modified by substituting
(4.1) into (3.1) and (3.11) are given by

f =

(
12y2 − 2x

0

)
, (4.2)
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f stress =

(
32λy6/9 + 1024ελ3y12/9 128λ2(1− ε)y9/9

128λ2(1− ε)y9/9 −32λy6/9

)
. (4.3)

The error is defined as follows

EL2(u) = (
m∑
j=0

|| u(j)− uexact(j) ||)1/2,

EL2(p) = (

m∑
j=0

|| p(j)− pexact(j) ||)1/2,

EL2(τ ) = (

m∑
j=0

|| τ (j)− τ exact(j) ||)1/2,

EL2(T ) = (
m∑
j=0

|| T (j)− T exact(j) ||)1/2.

(4.4)

The effects of material parameter λ on the error estimates of velocity, pressure and stress are displayed
in Figure 2 and Figure 3.

Figure 2: Error estimates in u, p, τ and T with λ = 0.5 by IP/SUPG algorithm.

Figure 3: Error estimates in u, p, τ and T with λ = 2.5 by IP/SUPG algorithm.

5. Conclusions

In this paper, we construct the IP/SUPG finite element schemes and present the error estimates for the
IP/SUPG algorithm of the P-T-T viscoelastic flow problems. It is proved that the algorithm is stable and
convergent.
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