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Abstract

In this paper, it is proved that the product system (X ×Y, T ×S) is multi-F -sensitive (resp., (F1,F2)-
sensitive) if and only if (X,T ) or (Y, S) is multi-F -sensitive (resp., (F1,F2)-sensitive) when Furstehberg
families F and F2 have the Ramsey property, improving the main results in [N. Deǧirmenci, Ş. Koçak,
Turk. J. Math., 34 (2010), 593–600] and [R. Li, X. Zhou, Turk. J. Math., 37 (2013), 665–675]. Moreover,
some analogical results for semi-flows are obtained. c©2016 All rights reserved.
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1. Introduction

A dynamical system is a pair (X,T ), where X is a nontrivial compact metric space with a metric d and
T : X −→ X is a continuous map. Let N = {1, 2, 3, . . .}, and Z+ = {0, 1, 2, . . .}.

The complexity of a dynamical system is a central topic of research since the term of chaos was introduced
by Li and Yorke [17] in 1975, known as Li-Yorke chaos today. Another important feature of chaoticity
is that orbits from nearby points start to diverge after finite steps. This notion, the ‘butterfly effect’,
has been widely studied and is termed as sensitive dependence on initial conditions (briefly, sensitivity),
introduced by Auslander and Yorke [4] and popularized by Devaney [6]. More precisely, a dynamical
system (X,T ) is sensitive if there exists ε > 0 such that for any x ∈ X and any δ > 0, there exist
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y ∈ B(x, δ) := {y ∈ X : d(x, y) < δ} and n ∈ Z+ satisfying d(Tn(x), Tn(y)) > ε. When is a dynamical
system sensitive? This question has gained some attention in more recent papers (see [1, 5, 8, 9, 11–
14, 16, 19–24, 28]). We know that there are several ways to extend the notion of sensitivity. Here, we only
list the following three ways:

(1) one may define n-sensitivity as it was done by Xiong in [27], and Ye and Zhang in [28];

(2) one may require that in any open subset U there is a pair (x, y) which is a Li-Yorke pair as Akin and
Kolyada did in [3];

(3) the third way is what we now consider in the present paper, that is, study the ‘size’ of the set of all
times where sensitivity emerges can be regarded as a measure of how sensitive a dynamical system is.

Previously, the third way was considered by several scholars. More recently, Moothathu [19] initiated a
preliminary study of various forms of sensitivity and proposed three stronger forms of sensitivity: syndetic
sensitivity, cofinite sensitivity, and multi-sensitivity. Then, Li [14, 15] introduced the concept of ergodic
sensitivity, which is a stronger form of sensitivity, and presented some sufficient conditions for ergodical
sensitivity. Akin and Kolyada [3] introduced the concept of Li-Yorke sensitivity which links the Li-Yorke
chaos with the notion of sensitivity and proved that any weakly mixing dynamical system is Li-Yorke
sensitive. A dynamical system (X,T ) is Li-Yorke sensitive, if there exists some ε > 0 such that any
neighbourhood of any x ∈ X contains a point y satisfying

lim inf
n→∞

d(Tn(x), Tn(y)) = 0,

and
lim sup
n→∞

d(Tn(x), Tn(y)) > ε.

So far, there have been many results on sensitivity for the product systems. Let (X,T ) and (Y, S) be two
dynamical systems. Deǧirmenci and Koçak [7] proved that the product system (X × Y, T × S) is sensitive
if and only if so is at least one of (X,T ) or (Y, S). Li and Zhou [18] showed that the product system
(X × Y, T × S) (resp., the product semi-flow T × S) on the product space X × Y is ergodically sensitive
if and only if so is at least one of (X,T ) or (Y, S) (resp., at least one of the semi-flow T or the semi-flow
S). Recently, Wu et al. [24] obtained that the product system (X × Y, T × S) is multi-sensitive if and only
if so is at least one of (X,T ) or (Y, S). It is well known that the theory of Furstenberg families is a very
important tool in studying topological dynamical systems. In this paper, by using Furstenberg families we
study the multi-F -sensitivity and the (F1,F2)-sensitivity of the product dynamical systems. In particular,
we proved that a product system (X × Y, T × S) is multi-F -sensitive (resp., (F1,F2)-sensitive) if and only
if (X,T ) or (Y, S) is multi-F -sensitive (resp., (F1,F2)-sensitive) when Furstenberg families F and F2 have
the Ramsey property, improving the main results in [7, 18]. Moreover, some analogical results for semi-flows
are established.

2. Preliminaries

2.1. Furstenberg family

First, recall some basic concepts related to Furstenberg families (see [2] for more details).
Let P be the collection of all subsets of Z+. We say a collection F ⊂ P is a Furstenberg family if it is

hereditary upwards, that is, F1 ⊂ F2 and F1 ∈ F imply F2 ∈ F ; and is proper if it is a proper subset of P,
that is neither empty nor the whole P. In this paper all Furstenberg families considered are proper. It is
not hard to see that a family F is proper if and only if Z+ ∈ F and ∅ /∈ F . Given a Furstenberg family
F , define its dual family as

κF = {F ∈ P : Z+ \ F /∈ F} .
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It is easy to check that κF is a Furstenberg family, and is proper if F is so. Given two Furstenberg families
F1 and F2, define F1 ·F2 = {F1 ∩ F2 : F1 ∈ F1, F2 ∈ F2}. A Furstenberg family F is a filter if it is proper
and satisfies F ·F ⊂ F ; and it has the Ramsey property, if F1 ∪ F2 ∈ F implies F1 ∈ F or F2 ∈ F . It
can be verified that Furstenberg F has the Ramsey property if and only if κF is a filter.

For A ⊂ Z+, define

Dens(A) = lim sup
n→+∞

1

n
|A ∩ [0, n− 1]| and Dens(A) = lim inf

n→+∞

1

n
|A ∩ [0, n− 1]| .

Then, Dens(A) and Dens(A) are the upper density and the lower density of A, respectively.
Let Finf be the collection of all infinite subsets of Z+ and by Fcf the family of cofinite subset, that

is, the collection of subsets of Z+ with finite complements. It is easy to see that Finf is the largest proper
translation invariant family and its dual Fcf = κFinf , clearly as a filter, is the smallest one.

A subset F = {a1 < a2 < . . . } ⊂ Z+ is

(1) syndetic if there exists N ∈ Z+ such that ai+1 − ai ≤ N for all i ∈ N;

(2) thick if it contains arbitrarily large blocks of consecutive numbers;

(3) an IP set if there is a subset {pi : i ∈ N} such that F ⊃ {pi1 + · · ·+ pik : k ∈ N, i1 < · · · < ik}.

Denote the collection of all syndetic (resp., thick, IP, positive upper density) subsets of Z+ by Fs (resp.,
Ft, Fip, Fpud). The Hindman Theorem [10] claims that Fip has the Ramsey property.

In the same way we can define a Furstenberg family consisting of some subsets of the set R+ of all
nonnegative real numbers and the above concepts related to Furstenberg families.

2.2. Topological dynamics

Let (X,T ) be a t.d.s. and U, V ⊂ X. The return time set from U to V is defined as

NT (U, V ) = {n ∈ Z+ : Tn(U) ∩ V 6= ∅} .

In particular, NT (x, V ) = {n ∈ Z+ : Tn(x) ∈ V } for x ∈ X.
A t.d.s. (X,T ) is transitive if for each pair non-empty open subsets U, V ⊂ X, NT (U, V ) 6= ∅ ; and

it is weakly mixing if (X × X,T × T ) is transitive. We say that x ∈ X is a transitive point if its orbit
Orb+(x, T ) := {x, T (x), T 2(x), . . .} is dense in X. The set of all transitive points of T is denoted by TranT .

When TranT = X we say (X,T ) is minimal. A point x ∈ X is called a minimal point if (Orb+(x, T ), T )

is a minimal subsystem of (X,T ); and is called a periodic point if (Orb+(x, T ), T ) is a minimal subsystem
with finite cardinality, that is, there is n ∈ N such that Tn(x) = x. A t.d.s. (X,T ) is called a P-system if it
is transitive and the set of periodic points is dense; and it is an M-system if it is transitive and the set of
minimal points is dense.

Recall that for δ > 0, we denote

NT (U, δ) = {n ∈ N : diam(Tn(U)) > δ}.

for any non-empty open subset U ⊂ X. Let F , F1, F2 be proper Furstenberg families. According to
Moothathu [19], Tan and Zhang [20], a dynamical system (X,T ) is said to be

(1) F -sensitive if there exists ε > 0 –F -sensitive constant–such that for any non-empty open subset U ⊂ X,
NT (U, ε) ∈ F ;

(2) ergodically sensitive if there exists ε > 0 –F -ergodically sensitive constant–such that for any non-empty
open subset U ⊂ X, NT (U, ε) ∈ Fpud;
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(3) multi-sensitive if there is ε > 0 –multi-sensitive constant–such that for any k ∈ N and any non-empty
open subsets U1, . . . , Uk ⊂ X,

⋂k
i=1NT (Ui, ε) 6= ∅;

(4) multi-F -sensitive if there is ε > 0 –multi-F -sensitive constant–such that for any k ∈ N and any non-
empty open subsets U1, . . . , Uk ⊂ X,

⋂k
i=1NT (Ui, ε) ∈ F , that is, {n ∈ Z+ : min1≤i≤k diam(Tn(Ui)) ≥

ε} ∈ F ;

(5) (F1,F2)-sensitive if there is ε > 0 such that for any x ∈ X and any δ > 0, there exists y ∈ B(x, δ) such
that for any λ > 0, {n ∈ Z+ : d(Tn(x), Tn(y)) < λ} ∈ F1 and {n ∈ Z+ : d(Tn(x), Tn(y)) ≥ ε} ∈ F2.

Clearly, every (F1,F2)-sensitive dynamical system is F2-sensitive. Moreover, in [3, Corollary 3.9], [12,
Lemma 2.5] and [26, Theorem 2.1], the following results are obtained:

(1) every nontrivial weakly mixing system is Li-Yorke sensitive;

(2) a dynamical system is sensitive if and only if it is Finf -sensitive;

(3) a dynamical system is Li-Yorke sensitive if and only if it is (Finf ,Finf )-sensitive;

(4) a dynamical system is multi-sensitive if and only if it is multi-Fip-sensitive if and only if it is multi-
Finf -sensitive.

Thus, F -sensitivity, (F1, F2)-sensitivity, and multi-F -sensitivity are natural generalizations of sensitivity,
Li-Yorke sensitivity, and multi-sensitivity, respectively. In [12, Example 4.2], Huang et al. constructed a
sensitive dynamical system which is not multi-sensitive, showing that the multi-sensitivity is strictly stronger
than the sensitivity.

Example 2.1. Let T : [0, 1] −→ [0, 1] be sensitive. Applying [19, Theorem 2] yields that T is Fcf -sensitive,
thus multi-Fcf -sensitive.

Example 2.2. Let β /∈ Q and (X,T ) be given by X = R2/Z2 and T (x, y) = (x+β, x+y) for any (x, y) ∈ X.
It follows from [12, Example 4.7] that (X,T ) is an invertible minimal distal system (and hence containing
no Li-Yorke pairs) and multi-Finf -sensitive. Meanwhile, it follows from [12, Example 5.2] that there exists
a nonminimal E-system 1 such that (1) it contains a fixed point as its unique minimal set, and hence the
system is Li-Yorke sensitive; (2) it is not thickly sensitive, and hence not multi-sensitive by [12, Theorem
4.6]. These mean that the multi-F -sensitivity and the (F1,F2)-sensitivity don’t imply each other.

Denote

LYF1,F2(ε, T ) =

{
(x, y) ∈ X ×X :

{n ∈ Z+ : d(Tn(x), Tn(y)) < λ} ∈ F1 for any
λ > 0 and {n ∈ Z+ : d(Tn(x), Tn(y)) ≥ ε} ∈ F2

}
.

In the same way one can define the above notions and give the above notations for semi-flows, where for
the notion of a semi-flow and the notations related to semi-flows we refer to [18].

2.3. Product dynamical systems

Given two maps T : X −→ X and S : Y −→ Y on compact metric spaces X and Y with metrics d1 and
d2 respectively, their product T × S : X × Y −→ X × Y is defined by T × S(x, y) = (T (x), S(y)) for all
(x, y) ∈ X × Y , the product metric d on X × Y is defined by d((x1, y1), (x2, y2)) =

√
d21(x1, x2) + d22(y1, y2)

for all (x1, y1), (x2, y2) ∈ X × Y . More results on product dynamical systems can be found in [7, 18, 25].

1A dynamical system (X,T ) is an E-system if (X,T ) is a transitive system admitting an invariant probability Borel measure
with full support.
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3. Sensitivity for product systems

In this section we discuss some forms of sensitivity for product systems by using family theory. More pre-
cisely, we study F -sensitivity, multi-F -sensitivity, (F1,F2)-sensitivity and Li-Yorke sensitivity of product
systems. Consequently, our main results extend and improve the existing ones.

Theorem 3.1. Let (X,T ) and (Y, S) be two dynamical systems and F be a Furstenberg family with the
Ramsey property. Then, (X × Y, T × S) is multi-F -sensitive if and only if (X,T ) or (Y, S) is multi-F -
sensitive.

Proof. By the definition of multi-F -sensitivity, it suffices to prove the necessity.
Let ε > 0 be a multi-F -sensitive constant of T × S and assume that both (X,T ) and (Y, S) are not

multi-F -sensitive. Then, there are nonempty open subsets U1, . . . , Uk1 ⊂ X and V1, . . . , Vk2 ⊂ Y such that{
n ∈ Z+ : min

1≤i≤k1
diam(Tn(Ui)) <

ε

2

}
∈ κF ,

and {
n ∈ Z+ : min

1≤i≤k2
diam(Sn(Vi)) <

ε

2

}
∈ κF .

This, together with the Ramsey property of F , implies that F1 := {n ∈ Z+ : min1≤i≤k1 diam(Tn(Ui)) <
ε/2} ∩ {n ∈ Z+ : min1≤i≤k2 diam(Sn(Vi)) < ε/2} ∈ κF . Since each Ui × Vj (1 ≤ i ≤ k1, 1 ≤ j ≤ k2) is a
nonempty open subset of X × Y , then the multi-F -sensitivity of T × S implies that

F2 :=

{
n ∈ Z+ : min

1≤i≤k1,1≤j≤k2
diam((T × S)n(Ui × Vj)) ≥ ε

}
∈ F .

Fix any n ∈ F1 ∩ F2 6= ∅. It can be verified that there are 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2 such that
diam(Tn(Ui)) < ε/2 and diam(Sn(Vj)) < ε/2. Then,

ε ≤ diam(T × S)n(Ui × Vj) = diam(Tn(Ui)× Sn(Vj)) ≤
ε√
2
,

which is a contradiction, since ε > 0.

Lemma 3.2 ([12]). A dynamical system (X,T ) is multi-sensitive if and only if (X,T ) is multi-Finf -
sensitive.

Corollary 3.3. Let (X,T ) and (Y, S) be two dynamical systems and F be a Furstenberg family with the
Ramsey property. Then, (X × Y, T × S) is F -sensitive if and only if (X,T ) or (Y, S) is F -sensitive.

Since both Finf and Fpud have the Ramsey property, using Theorem 3.1 and Lemma 3.2, one immedi-
ately has:

Corollary 3.4 ([24, Theorem 10]). Let (X,T ) and (Y, S) be two dynamical systems. Then, (X × Y, T × S)
is multi-sensitive if and only if (X,T ) or (Y, S) is multi-sensitive.

Corollary 3.5. Let (X,T ) and (Y, S) be two dynamical systems. Then, (X × Y, T × S) is multi-Fpud-
sensitive if and only if (X,T ) or (Y, S) is multi-Fpud-sensitive.

Corollary 3.6 ([18, Lemma 3.3-4]). Let (X,T ) and (Y, S) be two dynamical systems. Then, (X×Y, T ×S)
is ergodically sensitive if and only if (X,T ) or (Y, S) is ergodically sensitive.

Theorem 3.7. Let (X,T ) and (Y, S) be two dynamical systems and F1 and F2 be Furstenberg families
such that F2 has the Ramsey property. Then, (X × Y, T × S) is (F1,F2)-sensitive if and only if (X,T ) or
(Y, S) is (F1,F2)-sensitive.
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Proof. The sufficiency follows immediately from the definition of (F1,F2)-sensitivity and the hereditary
upwards properties of F1 and F2.

Necessity. Fix a (F1,F2)-sensitive constant ε > 0 of T × S and assume that both (X,T ) and (Y, S)
are not (F1,F2)-sensitive. This implies that there are x1 ∈ X, y1 ∈ Y and δ1 > 0 such that for any
x ∈ B(x1, δ1) and any y ∈ B(y1, δ1), (x1, x) /∈ LYF1,F2(ε/2, T ) and (y1, y) /∈ LYF1,F2(ε/2, S). Take a positive
number δ such that B((x1, y1), δ) ⊂ B(x1, δ1) × B(y1, δ1). To prove that for any (x, y) ∈ B((x1, y1), δ),
((x1, y1), (x, y)) /∈ LYF1,F2(ε, T × S), consider two cases as follows.

Case 1. If there is λ > 0 such that {n ∈ Z+ : d(Tn(x), Tn(x1)) ≥ λ} ∈ κF1 or {n ∈ Z+ :
d(Sn(y), Sn(y1)) ≥ λ} ∈ κF1, then one has {n ∈ Z+ : d((T × S)n(x, y), (T × S)n(x1, y1)) ≥ λ} ∈ κF1,
implying that ((x1, y1), (x, y)) /∈ LYF1,F2(ε, T × S).

Case 2. If for any λ > 0, {n ∈ Z+ : d(Tn(x), Tn(x1)) < λ} ∈ F1 and {n ∈ Z+ : d(Sn(y), Sn(y1)) <
λ} ∈ F1, noting that (x1, x) /∈ LYF1,F2(ε/2, T ) and (y1, y) /∈ LYF1,F2(ε/2, S), it follows that

F1 :=
{
n ∈ Z+ : d(Tn(x), Tn(x1)) <

ε

2

}
∈ κF2,

and
F2 :=

{
n ∈ Z+ : d(Sn(y), Sn(y1)) <

ε

2

}
∈ κF2.

Clearly, for any n ∈ F1∩F2, d((T ×S)n(x1, y1), (T ×S)n(x, y)) ≤ ε/
√

2 < ε. This, together with the Ramsey
property of F2, implies that

{n ∈ Z+ : d((T × S)n(x1, y1), (T × S)n(x, y)) < ε} ∈ κF2,

that is, {n ∈ Z+ : d((T × S)n(x1, y1), (T × S)n(x, y)) ≥ ε} /∈ F2. So, ((x1, y1), (x, y)) /∈ LYF1,F2(ε, T × S).

Summing up Case 1 and Case 2 yields that T × S is not (F1,F2)-sensitive. A contradiction with the
(F1,F2)-sensitivity of T × S, completing the proof of the necessity.

Corollary 3.8. Let (X,T ) and (Y, S) be two dynamical systems. Then, (X×Y, T ×S) is Li-Yorke sensitive
if and only if (X,T ) or (Y, S) is Li-Yorke sensitive.

Remark 3.9. By the definitions, the above results and their proofs, one can easily verify that the above
results hold for continuous semi-flows.
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