
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 4371–4380

Research Article

Variations on strong lacunary quasi-Cauchy
sequences

Huseyin Kaplana, Huseyin Cakallib,∗

aNigde University, Department of Mathematics, Faculty of science and letters, Nigde, Turkey.
bMaltepe University, Graduate School of Science and Engineering, Marmara Egitim Koyu, Maltepe, Istanbul-Turkey.

Communicated by E. Savas

Abstract

We introduce a new function space, namely the space of Nα
θ (p)-ward continuous functions, which turns

out to be a closed subspace of the space of continuous functions. A real valued function f defined on a subset
A of R, the set of real numbers, is Nα

θ (p)-ward continuous if it preserves Nα
θ (p)-quasi-Cauchy sequences,

that is, (f(xn)) is an Nα
θ (p)-quasi-Cauchy sequence whenever (xn) is Nα

θ (p)-quasi-Cauchy sequence of points
in A, where a sequence (xk) of points in R is called Nα

θ (p)-quasi-Cauchy if

lim
r→∞

1

hαr

∑
k∈Ir

|∆xk|p = 0,

where ∆xk = xk+1 − xk for each positive integer k, p is a constant positive integer, α is a constant in ]0, 1],
Ir = (kr−1, kr], and θ = (kr) is a lacunary sequence, that is, an increasing sequence of positive integers such
that k0 6= 0, and hr : kr − kr−1 → ∞. Some other function spaces are also investigated. c©2016 All rights
reserved.

Keywords: Summability, strongly lacunary convergence, quasi-Cauchy sequences, boundedness, uniform
continuity.
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1. Introduction and preliminaries

The concept of continuity and any concept involving continuity play a very important role, not only
in pure mathematics, but also in other branches of sciences involving mathematics, especially in computer
sciences, information theory, biological science, economics, and dynamical systems.
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A function f : R −→ R is continuous if and only if it preserves convergent sequences, where R denotes the
set of real numbers. Using the idea of continuity of a real function in this manner, many kinds of continuities
have been introduced and investigated, not all but some of them we recall in the following: slowly oscillating
continuity ([4, 46]), ∆-slowly oscillating continuity ([9, 26]), ward continuity ([1, 6]), δ-ward continuity
([8]), p-ward continuity ([15]), statistical ward continuity, ([10, 11]), λ-statistical ward continuity ([24]),
lacunary statistical ward continuity ([17]), ideal ward continuity ([14, 19]), Nθ-ward continuity ([13, 20]),
and Abel sequential continuity ([16]). A sequence (xk) of points in R is called statistically convergent to
an L ∈ R if limn→∞

1
n |{k ≤ n : |xk − L| ≥ ε}| = 0 for every ε > 0, and this is denoted by st − limxk = L

([21, 27, 28, 32, 34]).
The concept of a Cauchy sequence involves far more than that the distance between successive terms

is tending to zero. Nevertheless, sequences which satisfy this weaker property are interesting in their own
right. These sequences were named as quasi-Cauchy by Burton and Coleman [1, page 328], while they were
called as forward convergent to 0 sequences in [6, page 226], (see also [37]). The notion of Nθ convergence
was introduced and studied by Freedman, Sember, and M. Raphael in [33] in the sense that a sequence
(xk) of points in R is Nθ convergent to an L ∈ R if limr→∞

1
hr

∑
k∈Ir |xk − L| = 0, and which is denoted by

Nθ−limxn = L, where Ir = (kr−1, kr], and k0 6= 0, hr : kr−kr−1 →∞ as r →∞ and θ = (kr) is an increasing
sequence of positive integers. Throughout this paper, it is assumed that lim infr

kr
kr−1

> 1. The sums of the

form
∑kr

kr−1+1 |xk| frequently occur, and will often be written for convenience as
∑

k∈Ir |xk|. A sequence

(xk) is called lacunary statistically convergent ([35]) to an L ∈ R if limr→∞
1
hr
|{k ∈ Ir : |xk − L| ≥ ε}| = 0

for every ε > 0, and this is denoted by Sθ− limxn = L (see also [2, 42], and [43]). A sequence (xn) of points
in R is Nθ-quasi-Cauchy if (∆xn) is an Nθ-null sequence where ∆xk = xk+1 − xk for each k ∈ N, and N
denotes the set of nonnegative integers ([13, 20]).

A method of sequential convergence is a linear function G defined on a linear subspace of s, denoted by cG,
into R where s denotes the space of all sequences. A function f is called G-continuous if G(f(x)) = f(G(x))
for any G-convergent sequence, that is, x ∈ cG ([5, 39]), where a sequence x = (xn) is said to be G-
convergent to L if x ∈ cG, and G(x) = L ([29]). A method G is called regular if every convergent sequence
x is G-convergent with G(x) = lim x. A method G is called subsequential if whenever x is G-convergent
with G(x) = L, then there is a subsequence (xnk) of x with limk xnk = L. The sequential method, Nθ − lim
defines a method of sequential convergence, that is, G(x) := Nθ − lim xk. This method is regular and
subsequential. The notion of an Nα

θ (p) convergence of a sequence is introduced and investigated in [31] (see
also [44]). A sequence (xk) of points in R is called Nα

θ (p) convergent to an element L of R if

lim
r→∞

1

hαr

∑
k∈Ir

|xk − L|p = 0

and it is denoted by Nα
θ (p)− lim xk = L, where α ∈ ]0, 1] and p ∈ N. This defines a method of sequential

convergence, that is, G(x) := Nα
θ (p) − lim xk. Throughout the paper Nα

θ (p) will denote the set of Nα
θ (p)

convergent sequences of points in R for α ∈ ]0, 1]. The sum of two Nα
θ (p) convergent sequences is Nα

θ (p)
convergent, and the sequence (cxk) is Nα

θ (p) convergent whenever (xk) is an Nα
θ (p) convergent sequence and

c is constant real number. Furthermore the set of Nα
θ (p) convergent sequences is a Banach space ([44]).

The purpose of this paper is to introduce a new function space, the space of Nα
θ (p)-ward continuous

functions, and prove interesting theorems.

2. p-strong lacunary continuity of order α

Now we first modify the definition of G-sequential compactness that was introduced in [5] to the special
case, G = Nα

θ (p).

Definition 2.1. A subset A of R is called Nα
θ (p) sequentially compact if whenever (xn) is a sequence of

points in A there is an Nα
θ (p) convergent subsequence y = (k) = (xnk) of (xn) whose Nα

θ (p) limit is in A.
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Lemma 2.2. The sequential method Nα
θ (p) is subsequential.

Proof. The proof easily follows from a method adopting a similar technique to that of Theorem 6 in [2].

Theorem 2.3. A subset A of R is sequentially compact if and only if it is Nα
θ (p) sequentially compact.

Proof. The proof follows from [5, Corollary 5, page 597], so is omitted.

Theorem 2.4. Let G be a regular subsequential method. Then a subset of R is G-sequentially compact if
and only if it is Nα

θ (p) sequentially compact.

Proof. The proof follows from Lemma 2.2 and [5, Corollary 5], so is omitted.

Theorem 2.5. A subset A of R is closed and statistically ward compact if and only if it is Nα
θ (p) sequentially

compact.

Proof. The proof follows easily from Theorem 2.3, [11, Lemma 2], so is omitted.

In connection with Nα
θ (p) convergent sequences and convergent sequences, the problem arises to inves-

tigate the following types of “continuity” of functions on R:

(Nα
θ (p)) (xn) ∈ Nα

θ (p)⇒ (f(xn)) ∈ Nα
θ (p);

(Nα
θ (p)c) (xn) ∈ Nα

θ (p)⇒ (f(xn)) ∈ c;

(c) (xn) ∈ c⇒ (f(xn)) ∈ c;

(cNα
θ (p)) (xn) ∈ c⇒ (f(xn)) ∈ Nα

θ (p).

We see that (Nα
θ (p)) is Nα

θ (p)-sequential continuity of f , and (c) is the ordinary continuity of f . It
is easy to see that (Nα

θ (p)c) implies (Nα
θ (p)) and (Nα

θ (p)) does not imply (Nα
θ (p)c); and (Nα

θ (p)) implies
(cNα

θ (p)), and (cNα
θ (p)) does not imply (Nα

θ (p)); (Nα
θ (p)c) implies (c), and (c) does not imply (Nα

θ (p)c).
Before giving the implication (Nα

θ (p)) implies (c), that is, any Nα
θ (p) sequentially continuous function is

continuous, we give the following lemmas.

Lemma 2.6 ([3]). A function f is continuous at x0 ∈ R if and only if x0 ∈ A implies that f(x0) ∈ f(A)
for every subset A of R.

Lemma 2.7 ([29]). A regular sequential method G is subsequential if and only if A = A
G

for every subset
A of R.

Lemma 2.8 ([7]). A function f is Nα
θ (p) sequentially continuous on R, if and only if f(A

Nα
θ (p)) ⊂ f(A)

Nα
θ (p)

for any subset A of R.

Theorem 2.9. A function f is Nα
θ (p) sequentially continuous at a point x0 if and only if it is continuous

at x0.

Proof. The proof follows easily from Lemma 2.8, Lemma 2.2, and Lemma 2.6, so is omitted.

We obtain from [5, Theorem 7, page 597] that Nα
θ (p) sequentially continuous image of any Nα

θ (p)
sequentially compact subset of R is Nα

θ (p) sequentially compact. As far as G-sequentially connectedness is
considered, we see that Nα

θ (p) sequentially continuous image of any Nα
θ (p) sequentially connected subset

of R is Nα
θ (p) sequentially connected, so by the preceding theorem, Nα

θ (p) sequentially continuous image
of any interval is an interval (see [12] for the definition of G-sequentially connectedness). Furthermore it
can be easily seen that a subset of R is Nα

θ (p) sequentially connected if and only if it is connected in the
ordinary sense, and so is an interval.
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3. Nα
θ (p) quasi-Cauchy sequences

Now we introduce the notion of an Nα
θ (p) quasi-Cauchy sequence.

Definition 3.1. A sequence (xk) of points in R is called Nα
θ (p) quasi-Cauchy if Nα

θ (p)− lim ∆xk = 0, that
is,

lim
r→∞

1

hαr

∑
k∈Ir

|∆xk|p = 0.

Throughout the paper, ∆Nα
θ (p) will denote the set of Nα

θ (p) quasi-Cauchy sequences of points in R.
The sum of two Nα

θ (p) quasi-Cauchy sequences is Nα
θ (p) quasi-Cauchy, and for any constant c ∈ R, the

sequence (cxk) is Nα
θ (p) quasi-Cauchy whenever (xk) is an Nα

θ (p) quasi-Cauchy sequence. Furthermore the
set of Nα

θ (p) quasi-Cauchy sequences is a normed space with the norm

||(x
k
)|| = |x1|+ supr(

1

hαr

∑
k∈Ir

|∆xk|p)
1
p .

Now we give the definition of Nα
θ (p) ward compactness.

Definition 3.2. A subset A of R is called Nα
θ (p) ward compact if any sequence of points in A has an

Nα
θ (p) quasi-Cauchy subsequence, that is, whenever (xn) is a sequence of points in A there is an Nα

θ (p)
quasi-Cauchy subsequence y = (yk) = (xnk) of (xn).

Theorem 3.3. A subset A of R is bounded if and only if it is Nα
θ (p) ward compact.

Proof. Let A be a bounded subset of R and (xn) a sequence of points in A. (xn) is also a sequence of points
in A where A denotes the closure of A. As A is sequentially compact, then there is a convergent subsequence
(xnk) of (xn). This subsequence is Nα

θ (p) convergent since Nα
θ (p) method is regular. Hence (xnk) is Nα

θ (p)
quasi-Cauchy. To prove the converse, suppose that A is unbounded. If it is unbounded above, then one can

construct a sequence (xn) of numbers in A such that xn+1 > k
α
p
n + xn for each n ∈ N. Then the sequence

(xn) does not have any Nα
θ (p) quasi-Cauchy subsequence, so A is not Nα

θ (p) ward compact. If A is bounded
above and unbounded below, then similarly we obtain that A is not Nα

θ (p) ward compact. This completes
the proof.

Corollary 3.4. A closed subset of R is Nα
θ (p) ward compact if and only if it is Nα

θ (p) sequentially compact.

Corollary 3.5. A subset of R is Nα
θ (p) ward compact if and only if it is statistically ward compact.

Proof. The proof follows from [11, Lemma 2], so is omitted.

We see that for any regular subsequential method G defined on R, if a subset A of R is G-sequentially
compact, then it is Nα

θ (p) ward compact. But the converse is not always true. A sequence α = (xn) is
δ-quasi-Cauchy if limk→∞∆2xn = 0, where ∆2xn = xn+2−2xn+1+xn ([8]). A subset A of R is called δ-ward
compact if whenever x = (xn) is a sequence of points in A, then there is a subsequence z = (zk) = (xnk) of
x with limk→∞∆2zk = 0. It follows from the above theorem that any Nα

θ (p) ward compact subset of R is
δ-ward compact, and that any Nα

θ (p) sequentially compact subset of R is δ-ward compact.
Now we introduce the notion of Nα

θ (p) ward continuity in the following definition.

Definition 3.6. A function defined on a subset A of R is called Nα
θ (p) ward continuous if it preserves

Nα
θ (p) quasi-Cauchy sequences, that is, (f(xk)) is an Nα

θ (p) quasi-Cauchy sequence whenever (xk) is an
Nα
θ (p) quasi-Cauchy sequence of points in A.

The sum of two Nα
θ (p) ward continuous functions is Nα

θ (p) ward continuous, but the product of Nα
θ (p)

ward continuous functions need not be Nα
θ (p) ward continuous, whereas the product of a constant real

number and an Nα
θ (p) ward continuous function is Nα

θ (p) ward continuous.
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In connection with Nα
θ (p) quasi-Cauchy sequences and convergent sequences, the problem arises to

investigate the following types of continuity of functions on R.

(δNα
θ (p)) (xn) ∈ ∆Nα

θ (p)⇒ (f(xn)) ∈ ∆Nα
θ (p);

(δNα
θ (p)c) (xn) ∈ ∆Nα

θ (p)⇒ (f(xn)) ∈ c;

(c) (xn) ∈ c⇒ (f(xn)) ∈ c;

(cδNα
θ (p)) (xn) ∈ c⇒ (f(xn)) ∈ ∆Nα

θ (p);

(Nα
θ (p)) (xn) ∈ Nα

θ (p)⇒ (f(xn)) ∈ Nα
θ (p).

We see that (δNα
θ (p)) is Nα

θ (p) ward continuity of f , (Nα
θ (p)) is Nα

θ (p) sequential continuity of f , and
(c) is the ordinary continuity of f . It is easy to see that (δNα

θ (p)c) implies (δNα
θ (p)), and (δNα

θ (p)) does
not imply (δNα

θ (p)c); and (δNα
θ (p)) implies (cδNα

θ (p)), and (cδNα
θ (p)) does not imply (δNα

θ (p)); (δNα
θ (p)c)

implies (c), and (c) does not imply (δNα
θ (p)c); and (Nα

θ (p)) clearly implies (c).
Now we give the implication (δNα

θ (p)) implies (Nα
θ (p)), that is, any Nα

θ (p) ward continuous function is
Nα
θ (p) sequentially continuous.

Theorem 3.7. If f is Nα
θ (p) ward continuous on a subset A of R, then it is Nα

θ (p) sequentially continuous
on A.

Proof. Assume that f is an Nα
θ (p) ward continuous function on a subset A of R. Let (xn) be any Nα

θ (p)
convergent sequence with Nα

θ (p)− limk→∞ xk = x0. Then the sequence (x1, x0, x2, x0, ..., xn−1, x0, xn, x0, ...)
is also Nα

θ (p) convergent to x0, therefore it is Nα
θ (p) quasi-Cauchy. As f is Nα

θ (p) ward continuous, the
transformed sequence is Nα

θ (p) quasi-Cauchy. It follows that the sequence (f(xn)) is Nα
θ (p) convergent to

f(x0). This completes the proof of the theorem.

The converse is not always true, for the function f(x) = x2 is an example since the sequence (
√
n) is

Nα
θ (p) quasi-Cauchy, while (f(

√
n)) = (n) is not.

Corollary 3.8. If f is Nα
θ (p) ward continuous on a subset A of R, then it is continuous on A.

Proof. The proof immediately follows from Theorem 2.9, and Theorem 3.7, so is omitted.

It is well known that any continuous function on a compact subset A of R is uniformly continuous on
A. It is also true for a regular subsequential method G that any Nα

θ (p) ward continuous function on a
G-sequentially compact subset A of R is also uniformly continuous on A.

In the sequel, we will deal with N l
θ(p)-quasi-Cauchy sequences, that is, Nθ(p)-quasi-Cauchy sequences.

For Nθ(p) ward continuous functions defined on an Nθ(p) ward compact subset of R, we have the following
theorem.

Theorem 3.9. Let A be an Nθ(p) ward compact subset A of R and let f : A −→ R be an Nθ(p) ward
continuous function on A. Then f is uniformly continuous on A.

Proof. Suppose that f is not uniformly continuous on A, so that there exists an ε0 > 0 such that for any
δ > 0 x, y ∈ A with |x − y| < δ, but |f(x) − f(y)| ≥ ε0. For each positive integer n, there exist xn and yn
such that |xn − yn| < 1

n , and |f(xn) − f(yn)| ≥ ε0. Since A is Nθ(p) ward compact, there exists an Nθ(p)
quasi-Cauchy subsequence (xnk) of the sequence (xn). It is clear that the corresponding subsequence (ynk)
of the sequence (yn) is also Nθ(p) quasi-Cauchy, since

1

hr
(
∑
k∈Ir

|ynk+1
− ynk |

p)
1
p ≤ 1

hr
(
∑
k∈Ir

|ynk+1
− xnk+1

|p)
1
p +

1

hr
(
∑
k∈Ir

|xnk+1
− xnk |

p)
1
p+

+
1

hr
(
∑
k∈Ir

|xnk − ynk |
p)

1
p .
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On the other hand, it follows from the inequality

1

hr
(
∑
k∈Ir

|xnk+1
− ynk |

p)
1
p ≤ 1

hr
(
∑
k∈Ir

|xnk+1
− xnk |

p)
1
p +

1

hr
(
∑
k∈Ir

|xnk − ynk |
p)

1
p

that the sequence (xnk+1
− ynk) is Nθ(p) convergent to 0. Hence the sequence

(xn1 , yn1 , xn2 , yn2 , xn3 , yn3 , ..., xnk , ynk , ...)

is Nθ(p) quasi-Cauchy. But the sequence

(f(xn1), f(yn1), f(xn2), f(yn2), f(xn3), f(yn3), ..., f(xnk), f(ynk), ...)

is not Nθ(p) quasi-Cauchy. Thus, f does not preserve Nθ(p) quasi-Cauchy sequences. This contradiction
completes the proof of the theorem.

Corollary 3.10. If a function f is Nα
θ (p) ward continuous on a bounded subset A of R, then it is uniformly

continuous on A.

Proof. The proof follows from Theorem 3.9 and Theorem 3.3, so is omitted.

Theorem 3.11. Nα
θ (p) ward continuous image of any Nα

θ (p) ward compact subset of R is Nα
θ (p) ward

compact.

Proof. The proof follows straightforward, so is omitted.

Corollary 3.12. Nα
θ (p) ward continuous image of a G-sequentially compact subset of R is Nα

θ (p) ward
compact for any regular subsequential method G.

As far as the ideal continuity is considered, we note that any Nα
θ (p) ward continuous function is ideal

continuous, furthermore any Nα
θ (p) continuous function is ideal continuous for an admissible ideal.

Theorem 3.13. If a function f is uniformly continuous on a subset A of R, then (f(xk)) is Nθ(p) quasi-
Cauchy whenever (xk) is a quasi-Cauchy sequence of points in A.

Proof. Let A be a subset of R and let f be a uniformly continuous function on A. Take a quasi-Cauchy
sequence (xk) of points in A and let ε be a positive real number in ]0, 1[. By uniform continuity of f , there
exists a δ > 0 such that |f(x)− f(y)| < ε whenever |x− y| < δ and x, y ∈ A. Since (xk) is a quasi-Cauchy
sequence, there exists a positive integer k0 such that |xk+1 − xk| < δ for k ≥ k0. Hence

1

hr

∑
k∈Ir

|f(xk+1)− f(xk)|p <
1

hr
(kr − kr−1)εp < ε

for r ≥ k0. Thus, (f(xk)) is an Nθ(p) quasi-Cauchy sequence. This completes the proof of the theorem.

We have much more below for a real function f defined on an interval, that f is uniformly continuous if
and only if (f(xk)) is Nθ(p) quasi-Cauchy whenever (xk) is a quasi-Cauchy sequence of points in A. First
we give the following lemma.

Lemma 3.14 ([1]). If (zn, wn) is a sequence of ordered pairs of points in an interval such that limn→∞ |zn−
wn| = 0, then there exists an Nθ(p) quasi-Cauchy sequence (xn) with the property that for any positive
integer i there exists a positive integer j such that (zi, wi) = (xj−1, xj).

Theorem 3.15. If a function f defined on an interval A is Nθ(p) ward continuous, then it is uniformly
continuous.
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Proof. Now suppose that f defined on the interval A is not uniformly continuous on A. Then there is an
ε0 > 0 such that for any δ > 0 there exist x, y ∈ A with |x−y| < δ, but |f(x)−f(y)| ≥ ε0. For every integer
n ≥ 1 fix zn, wn ∈ A with |zn − wn| < 1

n and |f(zn)− f(wn)| ≥ ε0. By Lemma 3.14, there exists an Nθ(p)
quasi-Cauchy sequence (xi) such that for any integer i ≥ 1 there exists a j with zi = xj and wi = xj+1.
This implies that

1

hr

∑
k∈Ir

|f(xk+1)− f(xk)|p ≥
1

hr

∑
k∈Ir

εp0 = εp0 > 0.

Hence (f(xi)) is not Nθ(p) quasi-Cauchy. Thus, f does not preserve Nθ(p) quasi-Cauchy sequences. This
completes the proof of the theorem.

Corollary 3.16. If a function defined on an interval is Nθ(p) ward continuous, then it is ward continuous.

Proof. The proof follows from Theorem 3.15, and [6, Theorem 6], so it is omitted.

Corollary 3.17. If a function defined on an interval is Nθ(p) ward continuous, then it is slowly oscillating
continuous.

Proof. The proof follows from Theorem 3.15, and [6, Theorem 5], so it is omitted.

It is a well known result that uniform limit of a sequence of continuous functions is continuous. This
is also true in case of Nθ(p) ward continuity, that is, uniform limit of a sequence of Nθ(p) ward continuous
functions is Nθ(p) ward continuous.

Theorem 3.18. If (fn) is a sequence of Nθ(p) ward continuous functions on a subset A of R and (fn) is
uniformly convergent to a function f , then f is Nθ(p) ward continuous on A.

Proof. Let (xk) be any Nθ(p) quasi-Cauchy sequence of points in A, and let ε ∈ ]0, 1]. By uniform con-
vergence of (fn), there exists an n1 ∈ N such that |f(x) − fn(x)| < ε

3 for n ≥ n1 and every x ∈ A.
Hence

1

hr

∑
k∈Ir

|f(xk)− fn(xk)|p <
1

hr
(kr − kr−1)

εp

3p
=
εp

3p

for r ≥ n1, and n ≥ n1. As fn1 is Nθ(p) ward continuous on A, there exists an n2 ∈ N, greater than n1,
such that for r ≥ n2

1

hr

∑
k∈Ir

|fn1(xk+1)− fn1(xk)|p <
εp

3p
.

Thus for r ≥ n2 we have

1

hr
(
∑
k∈Ir

|f(xk+1)− f(xk)|p)
1
p ≤ 1

hr
(
∑
k∈Ir

|f(xk+1)− fn1(xk+1)|p)
1
p +

1

hr
(
∑
k∈Ir

|fn1(xk+1)

− fn1(xk)|p)
1
p +

1

hr
(
∑
k∈Ir

|fn1(xk)− f(xk)|p)
1
p

<
ε

3
+
ε

3
+
ε

3
= ε.

Hence

lim
r→∞

1

hr

∑
k∈Ir

|f(xk+1)− f(xk)|p = 0.

Thus f preserves Nθ(p) quasi-Cauchy sequences. This completes the proof of the theorem.
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Theorem 3.19. The set of all Nθ(p) ward continuous functions on a subset A of R is a closed subset of
the set of all continuous functions on A, that is, ∆Nθ(p)WC(E) = ∆Nθ(p)WC(E), where ∆Nθ(p)WC(E)
is the set of all Nθ(p) ward continuous functions on A, ∆Nθ(p)WC(E) denotes the set of all cluster points
of ∆Nθ(p)WC(E).

Proof. Let f be any element in the closure of ∆Nθ(p)WC(E). Then there exists a sequence (fn) of points
in ∆Nθ(p)WC(E) such that limk→∞ fk = f . To show that f is Nθ(p) ward continuous, take any Nθ(p)
quasi-Cauchy sequence (xk) of points in A. Let ε > 0. Since (fn) converges to f , there exists an n1 ∈ N
such that |f(x)− fn(x)| < ε

3 for every x ∈ A and for all ∈ N. Hence

1

hr

∑
k∈Ir

|f(x)− fk(x)|p < 1

hr
(kr − kr−1)

ε

3
=
εp

3p
<
ε

3

for every x ∈ A and for every r ≥ n1. As fn1 is Nθ(p) ward continuous on A, there exists a positive integer
n2 ∈ N, greater than n1, such that r ≥ n2 implies that

1

hr

∑
k∈Ir

|fn1(xk+1)− fn1(xk)|p <
ε

3
.

Thus, for r ≥ n2 we have

(
1

hr

∑
k∈Ir

|f(xk+1)− f(xk)|p)
1
p ≤ (

1

hr

∑
k∈Ir

|f(xk+1)− fn1(xk+1)|p)
1
p + (

1

hr

∑
k∈Ir

|fn1(xk+1)

− fn1(xk)|p)
1
p + (

1

hr

∑
k∈Ir

|fn1(xk)− f(xk)|p)
1
p

<
ε

3
+
ε

3
+
ε

3
= ε.

Hence

lim
r→∞

1

hr

∑
k∈Ir

|f(xk+1)− f(xk)|p = 0.

Thus, f preserves Nθ(p) quasi-Cauchy sequences. This completes the proof of the theorem.

Corollary 3.20. The set of all Nθ(p) ward continuous functions on a subset A of R is a complete subspace
of the space of all continuous functions on A.

Proof. The proof follows from the preceding theorem.

4. Conclusion

In this paper, we introduce and investigate Nα
θ (p)-ward continuity, and some other kinds of continuities

defined via a lacunary sequence, and we prove interesting theorems related to these kinds of continuities
in which the results in [13] and [20] are obtained as special cases of α, and p, when α = 1, and p = 1.
It turns out that the boundedness of a subset A of R coincides with Nα

θ (p)-ward compactness of A, and
the set of Nθ(p)-ward continuous functions on a bounded subset of R is contained in the set of uniformly
continuous functions. For a further study, we suggest to investigate the present work for the fuzzy case.
However, due to the change in settings, the definitions and methods of proofs will not always be analogous
to those of the present work (see [18], and [38] for the definitions and related concepts in the fuzzy setting).
For another further study, we suggest to investigate Nα

θ (p) quasi-Cauchy double sequence (see [22, 30], and
[41] for the definitions and related concepts in double case). One can introduce and give an investigation of
Nα
θ (p) -quasi-Cauchy sequences in cone normed spaces as a further study (see [23, 25, 40], and [45] for basic

concepts in cone setting).
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Announcement

We announce that the statements of some results in this paper are to be presented at the Third Interna-
tional Conference on Analysis and Applied Mathematics, ICAAM 2016, Almaty, Kazakhstan, and to appear
in an extended abstract in Proceedings of the conference ([36]). ex 60%.
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[42] E. Savaş, A study on absolute summability factors for a triangular matrix, Math. Inequal. Appl., 12 (2009),

141–146. 1
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