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Abstract

In this work, we discuss the definition of the Reich contraction single or multivalued mappings defined
in a modular metric space. In our investigation, we prove the existence of fixed point results for these
mappings. c©2016 All rights reserved.
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1. Introduction

The existence and uniqueness of fixed point theorems of singlevalued maps have been a subject of great
interest since Banach [3] proved the well known Banach contraction principle in 1922. This result is very
interesting in its own right due to its applications like in computer science, physics, image processing engi-
neering, economics, and telecommunication. Very early on, many mathematicians tried to find a multivalued
version. Nadler [11] was the one who successfully gave this extension. His result found many applications
to differential inclusions, control theory, convex optimization, and economics. This is the reason why many
authors have studied Nadler’s fixed point result.

Reich’s generalization of Nadler’s fixed point result in [12] states that a mapping T : X → K(X), where
K(X) is the family of all nonempty compact subsets of X, has a fixed point if it satisfies H(Tx, Ty) ≤
k(d(x, y))d(x, y) for all x, y ∈ X with x 6= y, where k : (0,∞) → [0, 1) such that lim supr→t+ k(r) < 1 for
every t ∈ (0,∞). In fact, Reich [13] asked whether this result holds when T takes values in CB(X) instead
of K(X), where CB(X) is the family of all nonempty closed and bounded subsets of X. In 1989, Mizoguchi
and Takahashi [10] gave a partial answer to Reich’s question.

Recently, Chistyakov [4, 5] has introduced the notion of modular metric spaces. This concept is a
generalization of the classical modulars over linear spaces like Orlicz spaces. Moreover, the modular type
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conditions are natural and easily verified then their metric or norm equivalent. In [1, 2], the authors initiated
the fixed point theory in modular metric spaces. This work extends on these results where we discuss the
definition of the Reich contraction singlevalued and multivalued mappings defined in modular metric spaces.
In particular, we investigate the conditions under which such mappings have a fixed point.

For more on modular metric fixed point theory, the reader may consult the books [7, 8].

2. Preliminaries

Modular metric spaces may be seen as the nonlinear version of the modular function spaces. Historically,
these spaces were developed and investigated following the study of the classical function spaces like Lebesgue
type Lp spaces. Recall that the first generalization of these classical function spaces was made by Orlicz
and Birnbaum in 1931 by considering spaces of functions with some growth properties similar to the power
type. Indeed, they considered the function space:

Lφ =

{
f : R→ R; there exists t > 0 such that ρ(tf) =

∫
R
φ
(
t|f(x)|

)
dx <∞

}
,

where φ : [0,∞]→ [0,∞] is a convex function increasing to infinity, that is, to some extent behaves similar
to the power function ϕ(t) = tp. Modular function spaces Lϕ gives a nice example of a modular metric
space.

Let X be an abstract nonempty set. For a function ω : (0,∞)×X×X → (0,∞), we will use the notation

ωα(a, b) = ω(α, a, b)

for all α > 0 and a, b ∈ X.

Definition 2.1 ([4, 5]). A function ω : (0,∞)×X ×X → [0,∞] is said to be a regular modular metric on
X if it satisfies the following axioms:

(i) x = y if and only if ωα(x, y) = 0 for some α > 0;

(ii) ωα(x, y) = ωα(y, x) for all α > 0 and x, y ∈ X;

(iii) ωα+β(a, b) ≤ ωα(a, c) + ωβ(c, b) for any α, β > 0 and a, b, c ∈ X.

We say that ω is convex if for α, β > 0 and a, b, c ∈ X, it satisfies the inequality

ωα+β(a, b) ≤ α

α+ β
ωα(a, c) +

β

α+ β
ωβ(c, b).

In the work of Chistyakov [4, 5], the reader will find many interesting examples of modular metric spaces.

Definition 2.2. Let (X,ω) be a modular metric space. Fix x0 ∈ X. Set

Xω = Xω(x0) = {x ∈ X; ωλ(x, x0)→ 0 as λ→∞}

and
X∗ω = X∗ω(x0) = {x ∈ X; there exists λ > 0 such that ωλ(x, x0) <∞}.

Xω and X∗ω are said to be modular spaces (around x0).

Note that if ω is a modular on X, then

dω(a, b) = inf{t > 0 : ωt(a, b) ≤ t}
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for any a, b ∈ Xω, defines a distance on Xω. If ω is convex, then we have X∗ω = Xω [4, 5]. On these sets, we
have a metric d∗ω defined by

d∗ω(a, b) = inf{t > 0 : ωt(a, b) ≤ 1}

for any a, b ∈ Xω. These metrics are called Luxemburg distances. In order to understand these definitions,
note that if we consider the Orlicz space Lφ, a natural modular is given by

ωλ(f, g) = ρ

(
f − g
λ

)
=

∫
R
φ

(
|f(x)− g(x)|

λ

)
dx.

In this example, the distance d∗ω coincides with the Luxembourg distance on Lφ.
In [8, 9], more examples on modular function spaces are given.

Definition 2.3. Let ω be a modular function defined on X.

(1) We say that {xn}n∈N ⊂ Xω is ω-convergent to a ∈ Xω if and only if ω1(xn, a) → 0, as n → ∞. We
will call a ω-limit of {xn}.

(2) We say that {xn}n∈N ⊂ Xω is ω-Cauchy if ω1(xm, xn)→ 0, as m,n→∞.

(3) We say that M ⊂ Xω is ω-closed if the ω-limit of an ω-convergent sequence of M is in M .

(4) We say that M ⊂ Xω is ω-complete if any ω-Cauchy sequence in M is ω-convergent and its ω-limit
belongs to M.

(5) We say that M ⊂ Xω is ω-bounded provided

δω(M) = sup{ω1(a, b); a, b ∈M} <∞.

(6) Fatou property holds if we have

ω1(x, y) ≤ lim inf
n→∞

ω1(xn, y)

for any {xn}n∈N in Xω which is ω-convergent to x, and for any y ∈ Xω.

Note that if limn→∞ ωα(xn, x) = 0, for some α > 0, then limn→∞ ωα(xn, x) = 0 may not happen for
all α > 0. We say that ω satisfies the ∆2-condition if limn→∞ ωα(xn, x) = 0, for some α > 0 implies
limn→∞ ωα(xn, x) = 0 for all α > 0.

In [4, 5], the reader will find a discussion about the comparison of the ω-convergence and the metric
convergence in the sense of the Luxemburg distances. Indeed, we have

lim
n→∞

dω(xn, x) = 0 if and only if lim
n→∞

ωα(xn, x) = 0 for any α > 0

and for any {xn} ∈ Xω and x ∈ Xω. Hence ω-convergence is equivalent to the dω-convergence if the modular
ω satisfies the ∆2-condition. And if ω is convex, then d∗ω-convergence is equivalent to the dω-convergence
which implies

lim
n→∞

d∗ω(xn, x) = 0 if and only if lim
n→∞

ωα(xn, x) = 0 for any α > 0

for {xn} ∈ Xω and x ∈ Xω [4, 5].

Definition 2.4. Let (X,ω) be a modular metric space. We say that ω satisfies ∆2-type condition if for
α > 0, there exists Cα > 0 such that

ωλ/α(a, b) ≤ Cα ωλ(a, b)

for all a, b ∈ Xω, with a 6= b, and any λ > 0.
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Note that the ∆2-type condition implies the ∆2-condition. As the authors did in [6], from the definition
of the ∆2-type condition, we introduce the growth function.

Definition 2.5 ([2]). Let (X,ω) be a modular metric space. The growth function Ω is defined by

Ω(β) = sup

{
ωα/β(a, b)

ωα(a, b)
; α > 0, a, b ∈ Xω, a 6= b

}
for any β > 0.

The main properties satisfied by the growth function were first proved in the linear case in [6] and in
modular metric spaces in [2]. The following lemma is crucial for the proof of the main result of this section.

Lemma 2.6 ([2]). Let (X,ω) be a modular metric space where ω is convex and regular. Assume that ω
satisfies the ∆2-type condition. Let {xn} be in Xω such that

ω1(xn+1, xn) ≤ K αn, n = 1, · · · ,

where K is an arbitrary nonzero constant and α ∈ (0, 1). Then {xn} is Cauchy for both ω and d∗ω.

Note that this lemma is crucial since the main assumption on {xn} will not be enough to imply that
{xn} is ω-Cauchy since ω fails the triangle inequality.

3. Reich type Mappings in Modular Metric Spaces

Definition 3.1. Let (X,ω) be a modular metric space and M be a nonempty subset of Xω. The map T :
M →M is called a Reich contraction if there exists k : (0,+∞)→ [0, 1) which satisfies lim sups→t+ k(s) < 1
for any t ∈ [0,+∞), such that for any distinct elements a, b ∈M , we have

ω1(T (a), T (b)) ≤ k(ω1(a, b)) ω1(a, b).

A point a is said to be a fixed point of T if T (a) = a.

Theorem 3.2. Let (X,ω) be a modular metric space where ω is a convex regular modular. Assume that ω
satisfies the ∆2-type condition. Let C be an ω-complete nonempty subset of Xω. Let T : C → C be a Reich
contraction mapping. Then, T has a unique fixed point x ∈ C and {Tn(z)} ω-converges to x for any z ∈ C.

Proof. The definition of Reich contraction implies the existence of k : (0,+∞) → [0, 1) which satisfies
lim sups→t+ k(s) < 1 for any t ∈ [0,+∞), such that for any different x, y ∈ C

ω1(T (x), T (y)) ≤ k(ω1(x, y)) ω1(x, y).

It is clear that T has at most one fixed point since ω is regular. Next we investigate the existence of a fixed
point. Fix x0 ∈ X. If Tn(x0) is a fixed point of T for some n ∈ N, then we have nothing to prove. Otherwise
assume that Tn+1(x0) 6= Tn(x0) for any n ∈ N. Since

ω1(T
n+1(x0), T

n(x0)) ≤ k(ω1(T
n(x0), T

n−1(x0))) ω1(T
n(x0), T

n−1(x0)),

we conclude that ω1(T
n+1(x0), T

n(x0)) < ω1(T
n(x0), T

n−1(x0)) for any n ∈ N. Hence the sequence of
positive numbers {ω1(T

n+1(x0), T
n(x0))} is convergent. Set

t0 = lim
n→+∞

ω1(T
n+1(x0), T

n(x0)) = inf
n∈N

ω1(T
n+1(x0), T

n(x0)).
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Since lim sups→t0+ k(s) < 1, there exist α < 1 and n0 ≥ 1 such that

k(ω1(T
n+1(x0), T

n(x0))) ≤ α

for any n ≥ n0. Then, we have

ω1(T
n+1(x0), T

n(x0)) ≤
k=n∏
k=n0

k(ω1(T
k+1(x0), T

k(x0))) ω1(T
n0+1(x0), T

n0(x0))

≤ αn−n0 ω1(T
n0+1(x0), T

n0(x0))

for any n ≥ n0. Lemma 2.6 implies that {Tn(x0)} is ω-Cauchy. Using the ω-completeness of C, we conclude
that {Tn(x0)} ω-converges to some x ∈ C. Next we show that x is a fixed point of T . Note that we have

ω2(x, T (x)) ≤ ω1(x, T
n(x0)) + ω1(T

n(x0), T (x))

≤ ω1(x, T
n(x0)) + k(ω1(T

n−1(x0), x))ω1(T
n−1(x0), x)

≤ ω1(x, T
n(x0)) + ω1(T

n−1(x0), x)

for any n ≥ 1. Since {Tn(x0)} ω-converges to x, we deduce that ω2(x, T (x)) = 0. The regularity of ω
implies that T (x) = x. The uniqueness of the fixed point of T will imply that {Tn(z)} ω-converges to x for
any z ∈ C.

Next, we investigate the multivalued version of Theorem 3.2.

4. Multivalued Reich mappings

The following notations are needed for the remainder of this work. Let M be a nonempty subset of a
modular metric space Xω. Set

(i) C(M) = {A; A is ω-closed nonempty subset of M};

(ii) CB(M) = {A; A is ω-closed nonempty ω-bounded subset of M};

(iii) Define the Hausdorff modular metric on CB(M) by

Hω(C1, C2) = max

{
sup
a∈C1

ω1(a,C2), sup
b∈C2

ω1(b, C1)

}
,

where ω1(a,C) = inf
b∈C

ω1(a, b).

Definition 4.1. Let (X,ω) be a modular metric space and M be a nonempty subset of Xω. A mapping
T : M → CB(M) is called a Reich contraction mapping if there exists k : (0,+∞) → [0, 1) which satisfies
lim sups→t+ k(s) < 1 for any t ∈ [0,+∞), such that for any different a, b ∈M , we have

Hω(T (a), T (b)) ≤ k(ω1(a, b)) ω1(a, b).

A point a is said to be a fixed point of T if a ∈ T (a).

The following technical lemma [11] set in modular metric spaces will be crucial to our results. Its proof
may be found in [2].
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Lemma 4.2 ([2]). Let M be a nonempty subset of a modular metric space (X,ω). Let C1, C2 ∈ CB(M).
Then, for each ε > 0 and c1 ∈ C1, there exists c2 ∈ C2 such that

ω1(c1, c2) ≤ Hω(C1, C2) + ε.

Lemma 4.2 allows for an equivalent definition to the Reich multivalued mappings. Indeed, let M be a
nonempty subset of a modular metric space Xω. Let T : M → CB(M). Assume there exists α : (0,+∞)→
[0, 1) with lim sups→t+ α(s) < 1 for any t ∈ [0,+∞), such that

Hω(T (a), T (b)) ≤ α(ω1(a, b)) ω1(a, b)

for any different a, b ∈ M . Using Lemma 4.2, we can easily prove that for any different x, y ∈ M and
a ∈ T (x), there exists b ∈ T (y) such that

d(a, b) ≤ β(d(x, y)) d(x, y),

where β = 1
2(1 + α) which satisfies lim sups→t+ β(s) < 1 for any t ∈ [0,+∞). This equivalent form allows

us to prove a multivalued version of Theorem 3.2 without assuming that the multivalued mapping takes
bounded values.

Theorem 4.3. Let (X,ω) be a modular metric space where ω is a convex regular modular. Assume that
ω satisfies the ∆2-type condition. Let M be a nonempty ω-complete subset of Xω. Then any mapping
T : M → C(M) for which there exists k : (0,+∞) → [0, 1) with lim sups→t+ k(s) < 1, for any t ∈ [0,+∞),
such that for any different u, v ∈M and a ∈ T (u), there exists b ∈ T (v) such that

ω1(a, b) ≤ k(ω1(u, v)) ω1(u, v),

has a fixed point x ∈M , that is, x ∈ T (x).

Proof. Fix x0 ∈M. If x0 is a fixed point of T , then we have nothing to prove. Otherwise, choose x1 ∈ T (x0)
different from x0. Using the contractive assumption of T , there exists x2 ∈ T (x1) such that

ω1(x1, x2) ≤ k(ω1(x0, x1)) ω1(x0, x1).

The ∆2-type condition implies that ω1(x0, x1) <∞. By induction, we construct a sequence {xn} in M such
that xn+1 ∈ T (xn) and xn 6= xn+1 with

ω1(xn, xn+1) ≤ k(ω1(xn−1, xn)) ω1(xn−1, xn)

for any n ≥ 1. Since k(t) < 1, for any t ∈ [0,+∞), we conclude that {ω1(xn, xn+1)} is a decreasing sequence
of positive numbers. Let

t0 = lim
n→+∞

ω1(xn, xn+1) = inf
n∈N

ω1(xn, xn+1).

Since lim sups→t0+ k(s) < 1, there exist α < 1 and n0 ≥ 1 such that

k(ω1(xn, xn+1)) ≤ α

for any n ≥ n0. Then, we have

ω1(xn, xn+1) ≤
k=n∏
k=n0

k(ω1(xk, xk+1)) ω1(xn0 , xn0+1) ≤ αn−n0 ω1(xn0 , xn0+1)

for any n ≥ n0. Using Lemma 2.6, we conclude that {xn} is ω-Cauchy. Since M is ω-complete, then {xn}
converges to some point x ∈M . Let us prove that x is a fixed point of T . Using the contractive assumption
of T , there exists yn ∈ T (x) such that

ω1(xn+1, yn) ≤ k(ω1(xn, x)) ω1(xn, x) < ω1(xn, x)

for any n ∈ N. Using the properties of ω, we deduce

ω2(yn, x) ≤ ω1(xn+1, x) + ω1(xn+1, yn) < ω1(xn+1, x) + ω1(xn, x)

for any n ≥ 0. This will imply limn→+∞ ω1(yn, x) = 0, that is, {yn} ω-converges to x. Because T (x) is
ω-closed, we conclude that x ∈ T (x), that is, x is a fixed point of T as claimed.
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