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Abstract

We study certain covering properties in topological spaces by using semi-open covers. A part of this
article deals with Menger-type covering properties. The notions of s-Menger, almost s-Menger, star s-
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investigated. c©2016 All rights reserved.

Keywords: Semi-open set, (star) semi-compact space, semi-Lindelöf space, s-Menger space, star s-Menger
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1. Introduction

Our main focus in this paper is to study various covering properties, in particular selection principles,
by using semi-open covers. We will deal with variations of the following classical selection principle:

Let A and B be sets whose elements are families of subsets of an infinite set X. Then Sfin(A,B) denotes
the selection hypothesis:

For each sequence (Un : n ∈ N) of elements of A there is a sequence (Vn : n ∈ N) such that for each
n ∈ N, Vn is a finite subset of Un, and

⋃
n∈N Vn is an element of B (see [30]).

If O denotes the family of all open covers of a space X, then the property Sfin(O,O) is called the Menger
(covering) property.

This property was introduced in 1924 by K. Menger under the name Menger basis property [27], and
in 1925, W. Hurewicz [16] proved that a metric space has the Menger basis property, if and only if X has
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the Menger covering property. For more information about selection principles theory and its relations with
other fields of mathematics see [20, 29, 31, 35].

In 1963, N. Levine [23] defined semi-open sets in topological spaces. Since then, many mathematicians
generalized different concepts and explored their properties in new setting. A set A in a topological space
X is semi-open if and only if there exists an open set O ⊂ X such that O ⊂ A ⊂ Cl(O), where Cl(O)
denotes the closure of the set O. Equivalently, A is semi-open if and only if A ⊂ Cl(Int(A)) (Int(A) is the
interior of A). If A is semi-open, then its complement is called semi-closed [7]. Every open set is semi-open,
whereas a semi-open set may not be open. The union of any number of semi-open sets is semi-open, but the
intersection of two semi-open sets may not be semi-open. The intersection of an open set and a semi-open
set is always semi-open. The collection of all semi-open subsets of X is denoted by SO(X). According to
[7], the semi-closure and semi-interior were defined analogously to the closure and interior: the semi-interior
sInt(A) of a set A ⊂ X is the union of all semi-open subsets of A; the semi-closure sCl(A) of A ⊂ X is the
intersection of all semi-closed sets containing A. A set A is semi-open if and only if sInt(A) = A, and A is
semi-closed if and only if sCl(A) = A. Note that for any subset A of X

Int(A) ⊂ sInt(A) ⊂ A ⊂ sCl(A) ⊂ Cl(A).

A subset A of a topological space X is called a semi-regular set if it is semi-open as well as semi-closed
or equivalently, A = sCl(sInt(A)) or A = sInt(sCl(A)). The collection of all semi-regular subsets of X is
denoted by SR(X).

A mapping f : (X, τX)→ (Y, τY ) is called:

1. semi-continuous if the preimage of every open set in Y is semi-open;

2. s-continuous if preimage of every semi-open set in Y is open in X;

3. irresolute [8] if f←(O) is semi-open in X for every O semi-open in Y ;

4. semi-homeomorphism if f is a bijection and images and preimages of semi-open sets are semi-open;

5. a quasi-irresolute if for every semi-regular set A in Y , the set f←(A) is semi-regular in X [10].

For more details on semi-open sets and semi-continuity, we refer to [2, 6–8, 23].

2. Preliminaries

Throughout this paper, a space X is an infinite topological space (X, τ) on which no separation axioms
are assumed, unless otherwise stated. We use the standard topological notation and terminology as in [13]
(see also [4, 5]).

Definition 2.1. A space X is called:

• semi-compact [11] if every cover of X by semi open sets has a finite subcover;

• countably semi-compact (called semi countably compact by Dorsett in [11]) if every countable semi-open
cover of X has a finite subcover;

• semi-Lindelöf [14] if every cover of X by semi-open sets has a countable subcover.

Definition 2.2 ([12]). A space X is semi-regular if for each semi-closed set A and x /∈ A, there exist disjoint
semi-open sets U and V such that x ∈ U and A ⊂ V . (For a different definition see [24]).

Lemma 2.3 ([12]). The following are equivalent in a space X:

(i) X is a semi-regular space;

(ii) For each x ∈ X and U ∈ SO(X) such that x ∈ U , there exists a V ∈ SO(X) such that x ∈ V ⊂
sCl(V ) ⊂ U ;
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(iii) For each x ∈ X and each U ∈ SO(X) with x ∈ U , there is a semi-regular V ⊂ X such that x ∈ V ⊂ U .

Semi-regularity is independent of regularity in topological spaces.
Call a space X almost countably semi-compact if any countable semi-open cover U of X contains a finite

subset V such that X =
⋃
{sCl(V ) : V ∈ V}.

We close this short section by the following result.

Theorem 2.4. A semi-regular almost countably semi-compact, semi-Lindelöf space X is semi-compact.

Proof. Let U be a semi-open cover of X. Since X is semi-regular, by Lemma 2.3, for each x ∈ X, there
is a U(x) ∈ U containing x and semi-open set V (x) such that x ∈ V (x) ⊂ sCl(V (x)) ⊂ U(x). Setting
V = {V (x) : x ∈ X}, we get a semi-open cover of X. By semi-Lindelöfness of X, we find a countable
subcover W = {V (xn) : n ∈ N} of V. Since X is almost countably semi-compact, there is a finite collection
{V (xn1), . . . , V (xnk

)} ⊂ W such that
⋃k

i=1 sCl(V (xni)) = X. Then, clearly, the set {U(xni) : i = 1, 2, . . . , k}
is a finite subcover of U , witnessing semi-compactness of X.

3. Semi-Menger and related spaces

Let sO denote the collection of all semi-open covers of a space X. Note that the class of semi-open
covers contains the class of open covers of the space X.

Definition 3.1. A space X is said to have the semi-Menger property (or s-Menger property) if it satisfies
Sfin(sO, sO).

Evidently we have the following diagram:

semi−compact⇒ s−Menger⇒ semi−Lindelöf

⇓ ⇓ ⇓

compact ⇒ Menger ⇒ Lindelöf

Example 3.2.

(1) Every semi-compact space (in fact, every σ-semi-compact space = a countable union of semi-compact
spaces) is semi-Menger. The converse is not true. Let the real line R be endowed with the topology
τ = {∅,R, (−∞, x) : x ∈ R}. Then, as it is easy to see, (R, τ) is a T0 semi-Menger space, but it is
not semi-compact. Another example of a (T1) semi-Menger space which is not semi-compact is any
infinite space with the cocountable topology.

(2) Every semi-Menger space is a Menger space, but the converse is not true in general.

Recall that a Hausdorff uncountable space without isolated points is called a Luzin space if each
nowhere dense subset in it is countable [22]. The real line R is a Menger space, but it is not semi-
Menger. The later follows from the following facts:

(i) R is not a Luzin space (because a T3 Luzin space is zero-dimensional [22, Lemma 1.3]), and

(ii) an uncountable Hausdorff space is semi-Lindelöf if and only if it is a Luzin space [15].

(3) The Sorgenfrey line S is a (hereditarily) Lindelöf space, which is not semi-Menger (since it is not a
Menger space, as it is well known). The space of irrationals with the usual metric topology also is not
semi-Menger because it is not Menger.

Call a subset A of a space X semi-Menger relative to X if for any sequence (Un : n ∈ N) of covers of
A by sets semi-open in X, there is a sequence (Vn : n ∈ N) such that each Vn is a finite subset of Un and
A ⊂

⋃
n∈N

⋃
Vn.
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Example 3.3. There is a Menger subspace of R2 which is not semi-Menger relative to R2.
Let A = {(x, y) ∈ R2 : 0 < x ≤ 1, y = 0}. Let A has the subspace topology τ1 on R2. Then A is a

compact space, hence Menger. For each n ∈ N, let Un be the set of all open disks in the upper half-plane of
radius 1/n which touches A in a point a ∈ A. Then Un is a cover of A by sets semi-open in (X, τ1). But if
we take a finite Vn ⊂ Un, n ∈ N, then all these Vn’s can cover only countably many points in A, so that A
is not s-Menger, relative to (R2, τ1).

Proposition 3.4. The following statements are true:

(1) An irresolute image of a semi-Menger space is semi-Menger; in particular, continuous open images of
semi-Menger spaces are semi-Menger (continuous open mappings are irresolute);

(2) an s-continuous image of a Menger space is semi-Menger;

(3) a semi-continuous (in particular, continuous) image of a semi-Menger space is Menger;

(4) a semi-regular subspace of a semi-Menger space is also semi-Menger.

Proof. Since (1)–(3) follow by applying definitions of mappings involved in these items, we prove only (4).
Let A be a semi-regular subspace of X and let (Un : n ∈ N) be a sequence of semi-open covers of A. As
A is a semi-open set and semi-open sets in a semi-open subspace are semi-open in the whole space, each
Un is a collection of semi-open sets in X. On the other hand, since A is also semi-closed, we conclude
that each Un ∪ {X \ A} = Gn is a semi-open cover of X. Semi-Mengerness of X implies the existence of
finite sets Wn ⊂ Gn, n ∈ N, such that

⋃
n∈NWn is a semi-open cover of X. It follows that the finite sets

Vn =Wn \ {X \A} ⊂ Un, n ∈ N, witness for (Un : n ∈ N) that A is semi-Menger.

A property which is preserved by semi-homeomorphisms is called a semi-topological property [7].

Remark 3.5. From the previous proposition we see that the semi-Mengerness is a semi-topological property.
However, it is not the case with the Menger property.

Let X = {(x, y) ∈ R2 : y ≥ 0} be the upper half-plane. Endow X with the following two topologies: τ1
is the subspace topology of the usual metric topology on R2, and τ2 is the Niemytzki tangent disc topology
(called also the Niemytzki plane) [13]. Then (X, τ1) is a Menger space (being a closed subspace of the Menger
space R2), while (X, τ2) is not (because it is not Lindelöf). On the other hand, SO(X, τ1) = SO(X, τ2) [8].
Therefore, the mapping idX : (X, τ1)→ (X, τ2) is a semi-homeomorphism.

Call a mapping f : X → Y s-perfect if for each semi-closed set A ⊂ X, the set f(A) is semi-closed in Y
and for each y ∈ Y , its preimage f←(y) is semi-compact, relative to X.

Theorem 3.6. If f is an s-perfect mapping from a space X onto a semi-Menger space Y , then X is also
semi-Menger.

Proof. Let (Un : n ∈ N) be a sequence of semi-open covers of X. For each n and each y ∈ Y , there is a
finite subcollection Gyn of Un covering f←(y). Set Gy

n =
⋃
Gyn and W y

n = Y \ f(X \Gy
n). Then y ∈W y

n , and
Wn = {W y

n : y ∈ Y } is a semi-open cover of Y for each n ∈ N. Since Y is semi-Menger for each n, there is
a finite subcollection Hn of Wn such that Y =

⋃
n∈N

⋃
Hn. To each H ∈ Hn, associate finitely many sets

from Gyn which occur in the representation of Gy
n for which H = Y \ f(X \Gy

n). In this way, for each n, we
have chosen a finite subcollection Vn of Un. Evidently, X =

⋃
n∈N

⋃
Vn, so that X is semi-Menger.

Definition 3.7. A semi-open cover U is a semi-ω-cover (or sω-cover) of a space X if X does not belong to
U , and every finite subset of X is contained in a member of U .

The symbol sΩ denotes the family of semi-ω-covers of a space.

Theorem 3.8. For a space X the following are equivalent:

(1) X is s-Menger;
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(2) X satisfies Sfin(sΩ, sO).

Proof. (1)⇒ (2): It follows from the fact that every semi-ω-cover of X is a semi-open cover for X.
(2) ⇒ (1): Let (Un : n ∈ N) be a sequence of semi-open covers of X. Partition N into pairwise disjoint

infinite subsets Ni: N = N1 ∪N2 ∪ . . . ∪Nm ∪ . . .. For each n, let Vn be the set of all elements of the form

Un1 ∪ Un2 ∪ . . . ∪ Unk
, n1 ≤ . . . ≤ nk, ni ∈ Nn, Uni ∈ Un, i ≤ k, k ∈ ,N

which are not equal to X. Then every Vn is a semi-ω-cover of X. Applying (2) to the sequence (Vn : n ∈ N),
we can choose a sequence (Wn : n ∈ N) of finite sets such that for each n, Wn ⊂ Vn and

⋃
n∈N

⋃
W∈Wn

W =

X. Suppose Wn = {W 1
n , . . . ,W

mn
n }. By the construction, each W i

n = U
ni1
n ∪ . . . ∪ Unik

n , so that in this way
we get finite subsets of Up for some p ∈ N which cover X. If there are no elements from some Uq chosen in
this way, then we put Wq = ∅. This gives that X is really semi-Menger.

It is known that Menger’s covering property can be characterized game-theoretically and Ramsey-
theoretically [30]. We do not know if it is the case for the semi-Menger property.

Problem 3.9. Can semi-Mengerness be characterized game-theoretically or Ramsey-theoretically?

3.1. Almost semi-Menger spaces

In [19], the notion of almost Menger spaces was introduced, and in [17] this class of spaces was studied.
We make use of this concept and define analogously spaces by the help of semi-open covers.

Definition 3.10. A space X is almost semi-Menger if for each sequence (Un : n ∈ N) of semi-open covers
of X, there exists a sequence (Vn : n ∈ N) such that for every n ∈ N, Vn is a finite subset of Un and⋃

n∈N
⋃
{sCl(V ) : V ∈ Vn} = X.

Remark 3.11. If in this definition we take Cl(V ) instead of sCl(V ), then we get another (wider) class of
spaces called almost S-Menger, defined similarly to the definition of S-closed spaces [34].

Recall that a space X is said to be s-closed [9] if for every semi-open cover U of X, there is a finite set
V ⊂ U such that X =

⋃
{sCl(V ) : V ∈ V}.

Every s-closed space is s-Menger and every s-Menger space is almost s-Menger.

Example 3.12. The Stone–Čech compactification βN of the natural numbers N is an almost semi-Menger
space. (In [34], it was shown that βN is S-closed. On the other hand, βN is extremally disconnected [13].
In extremally disconnected spaces, the semi-closure and closure of a semi-open set coincide, hence βN is
s-closed and thus almost s-Menger.)

The previous example is actually a special case of the following.

Proposition 3.13. If a space X contains a dense subset which is semi-Menger in X, then X is almost
semi-Menger.

Proof. Let A be a dense subset of X and let (Un : n ∈ N) be a sequence of semi-open covers of X. Since A is
semi-Menger in X, there are finite sets Vn, n ∈ N such that A ⊂

⋃
n∈N

⋃
{V : V ∈ Vn} ⊂

⋃
n∈N

⋃
{sCl(V ) :

V ∈ Vn}. Since D is dense in X and sCl(D) = Cl(D), we have X =
⋃

n∈N
⋃
{sCl(V ) : V ∈ Vn}.

The following two theorems show when an almost s-Menger space becomes s-Menger.

Theorem 3.14. Let X be a semi-regular space. If X is an almost s-Menger space, then X is an s-Menger
space.

Proof. Let (Un : n ∈ N) be a sequence of semi-open covers of X. Since X is a semi-regular space, by Lemma
2.3, there exists for each n a semi-open cover Vn of X such that V ′n = {sCl(V ) : V ∈ Vn} forms a refinement
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of Un. By assumption, there exists a sequence (Wn : n ∈ N) such that for each n, Wn is a finite subset of Vn
and

⋃
(W ′n : n ∈ N) is a cover of X, where W ′n = {sCl(W ) : W ∈ Wn}. For every n ∈ N and every W ∈ Wn

we can choose UW ∈ Un such that sCl(W ) ⊂ UW . Let U ′n = {UW : W ∈ Wn}. We shall prove that
⋃

n∈N U ′n
is a semi-open cover of X. Let x ∈ X. There exists an n ∈ N and an sCl(W ) ∈ W ′n such that x ∈ sCl(W ).
By construction, there exists a UW ∈ U ′n such that sCl(W ) ⊂ UW . Hence, x ∈ UW .

Theorem 3.15. If X is almost semi-Menger and Int(Cl(A)) is finite for any A ⊂ X, then X is semi-
Menger.

Proof. Let (Un : n ∈ N) be a sequence of semi-open covers of X. Since X is almost semi-Menger, there is a
sequence (Vn : n ∈ N) such that for each n, Vn is a finite subset of Un and

⋃
n∈N

⋃
{sCl(V ) : V ∈ Vn} = X.

Since for any A ⊂ X, sCl(A) = A ∪ int(Cl(A)) [3], by the assumption there are finite sets Fn, n ∈ N, such
that X =

⋃
n∈N

⋃
{V : V ∈ Vn}∪

⋃
n∈N Fn. For each n letWn be a set of finitely many elements of Un which

cover Fn. Then the sequence (Vn ∪Wn : n ∈ N) of finite sets witnesses that X is semi-Menger.

In [3], it was proved that for a semi-open set U , the set sCl(U) is also semi-open (because for any A,
sCl(A) = A ∪ int(Cl(A))).

Theorem 3.16. A space X is almost s-Menger if and only if for each sequence (Un : n ∈ N) of covers of
X by semi-regular sets, there exists a sequence (Vn : n ∈ N) such that for every n ∈ N, Vn is a finite subset
of Un and

⋃
n∈N Vn is a cover of X.

Proof. Let X be an almost s-Menger space. Let (Un : n ∈ N) be a sequence of covers of X by semi-regular
sets. Since every semi-regular set is semi-open (as well as semi-closed), (Un : n ∈ N) is a sequence of semi-
open covers of X. By assumption, there exists a sequence (Vn : n ∈ N) such that for every n ∈ N, Vn is a
finite subset of Un and

⋃
n∈N Vn is a cover of X, where sCl(V ) = V for all V ∈ Vn.

Conversely, let (Un : n ∈ N) be a sequence of semi-open covers of X. Let (U ′n : n ∈ N) be a sequence
defined by U ′n = {sCl(U) : U ∈ Un}. Then each U ′n is a cover of X by semi-regular sets. Thus there exists
a sequence (Vn : n ∈ N) such that for every n ∈ N, Vn is a finite subset of U ′n and

⋃
n∈N Vn is a cover of

X. By construction, for each n ∈ N and V ∈ Vn there exists a UV ∈ Un such that V = sCl(UV ). Hence,⋃
n∈N{sCl(UV ) : V ∈ Vn} = X. So, X is an almost s-Menger space.

Theorem 3.17. Let X be an almost s-Menger space, and Y a topological space. If f : X → Y is a
quasi-irresolute surjection, then Y is an almost s-Menger space.

Proof. Let (Un : n ∈ N) be a sequence of covers of Y by semi-regular sets. Let U ′n = {f←(U) : U ∈ Un}
for each n ∈ N. Then (U ′n : n ∈ N) is a sequence of semi-regular covers of X, since f is a quasi-irresolute
surjection. Since X is an almost s-Menger space, there exists a sequence (Vn : n ∈ N) such that for every
n ∈ N, Vn is a finite subset of U ′n and

⋃
n∈N Vn is a cover of X. For each n ∈ N and V ∈ Vn we can choose

a UV ∈ Un such that V = f←(UV ). Let Wn = {sCl(UV ) = UV : V ∈ Vn}. We will show that
⋃

n∈NWn is a
cover of Y .

If y = f(x) ∈ Y , then there exists an n ∈ N and a V ∈ Vn such that x ∈ V . Since V = f←(UV ), we have
y = f(x) ∈ UV ∈ Wn.

Theorem 3.18. If for each n ∈ N, Xn is an almost s-Menger space for a topological space X, then X
satisfies the following selection hypothesis:

• For each sequence (Un : n ∈ N) of sω-covers of X, there exists a sequence (Vn : n ∈ N) such that for
every n ∈ N, Vn is a finite subset of Un and for every F ⊂ X there exist an n ∈ N and a V ∈ Vn such
that F ⊂ sCl(V ).

Proof. Let (Un : n ∈ N) be a sequence of sω-covers of X. Let N = N1 ∪N2 ∪ . . . ∪Nn ∪ . . . be a partition
of N into countably many pairwise disjoint infinite subsets. For every i ∈ N and every j ∈ Ni, let Vj =
{U i : U ∈ Uj}. The sequence {Vj : j ∈ Ni} is a sequence of semi-open covers of Xi. Since Xi is an
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almost semi-Menger space, for every i ∈ N, we can choose a sequence (Wj : j ∈ Ni) so that for each j,
Wj = {U i

j1
, U i

j2
, . . . , U i

jk(j)
} is a finite subset of Vj and

⋃
j∈Ni
{sCl(W ) : W ∈ Wj} is a cover of Xi. We shall

show that {sCl(Ujp) : 1 ≤ p ≤ k(j), j ∈ N} is an sω-cover of X. Let F = {x1, x2, . . . , xt} be a finite subset
of X. Then (x1, x2, . . . , xt) ∈ Xt, so there is an l ∈ Nt such that (x1, x2, . . . , xt) ∈ Wl. So, we can find
1 ≤ r ≤ k(l) such that (x1, x2, . . . , xt) ∈ sCl(U t

lk(l)
) = (sCl(Ulk(l)))

t. It is clear that F ⊂ sCl(Ulk(l)).

4. Star covering properties

The method of stars is one of classical popular topological methods. It has been used, for example,
to study the problem of metrization of topological spaces, and for definitions and investigations of several
important classical topological notions (see [1, 25, 37]). A number of results in the literature shows that
many topological properties can be defined and studied in terms of star covering properties. In particular,
such a method is also used in investigation of selection principles for topological spaces. This investigation
was initiated by Kočinac in [18] and then studied in many papers [19, 21, 26, 28, 32, 33, 36].

Let A be a subset of X and U a collection of subsets of X. Then

St1(A,U) =
⋃
{U ∈ U : U ∩A 6= ∅},

and inductively, for each n ∈ N

Stn+1(A,U) =
⋃
{U ∈ U : U ∩ Stn(A,U) 6= ∅}.

We usually write St(A,U) instead of St1(A,U) and St(x, U) for St({x},U).

4.1. Star semi-compact and related spaces

Definition 4.1. A space X is called:

1. n-star semi-compact (resp. n-star semi-Lindelöf ) if for every semi-open cover U of X, there is a finite
(resp. countable) subset V of U such that Stn(

⋃
V,U) = X; 1-star semi-compact spaces are called star

semi-compact, and 1-star semi-Lindelöf spaces are called star semi-Lindelöf ;

2. ω-star semi-compact if for every semi-open cover U of X, there is an n ∈ N and a finite subset V of U
such that Stn(

⋃
V,U) = X;

3. strongly n-star semi-compact (resp. strongly n-star semi-Lindelöf ) if for every semi-open cover U of
X, there is a finite (resp. countable) subset A of X such that Stn(A,U) = X; strongly 1-star semi-
compact (resp. strongly 1-star Lindelöf) spaces are called strongly star semi-compact (resp. strongly
star-Lindelöf ).

As usually, we say that A ⊂ X has a property P in the above definition if A, as a subspace of X, has
that property. We say that A has P, relative to X (or A has P in X) if A is covered by sets semi-open in
X.

Clearly, every strongly n-star semi-compact space is n-star semi-compact. It is also easy to see that
every n-star semi-compact space is strongly (n+ 1)-star semi-compact.

Definition 4.2. A space X is semi-DFCC (semi-discrete finite chain condition) provided every semi-discrete
family of nonempty semi-open sets is finite.

A family F of subsets of X is called semi-discrete if each point x ∈ X has a semi-open neighborhood V
which intersects at most one element of F .

We are going now to consider relations between countable semi-compactness and star semi-compactness.
For the beginning, we need the following lemma, the proof is omitted.

Lemma 4.3. Let X be a countably semi-compact space and A a semi-closed subset of X. Then A is
countably semi-compact in X.
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Theorem 4.4. A countably semi-compact space X is strongly star semi-compact.

Proof. Let U be a semi-open cover ofX. Suppose, on the contrary, that for each finite subset A ofX, St(A,U)
is a proper subset of X. By induction construct a countably infinite set C = {x1, x2, . . . , xn, . . .} ⊂ X such
that for each integer n ≥ 1, xn+1 /∈ Vn := St({x1, x2, . . . , xn},U). Let y ∈ sCl(C). There is a (semi-open)
set U ∈ U such that y ∈ U , and thus U ∩ C 6= ∅. Let m be such that xm ∈ U . Then y ∈ Vm. Thus
V = {Vn : n ∈ N} is a countable semi-open cover of sCl(C) by sets semi-open in X. The set sCl(C) is
a semi-closed subset of X, hence, by the previous lemma, it is countably semi-compact in X. But, by
the construction of the set C, V has no finite subcollection which covers C. A contradiction. Hence, the
statement of the theorem is true.

Theorem 4.5. Let X be a star semi-compact space and U a point finite semi-open cover of X. Then U has
a finite subcover.

Proof. Let U be a point finite semi-open covering of X (that is each point of X belongs to at most finitely
many members of U). There exists a finite set F = {x1, x2, . . . , xn} ⊂ X such that X = St(A,U) =
St(x1,U)∪St(x2,U)∪ . . .∪St(xn,U). For each t, 1 ≤ t ≤ n, St(xt,U) is the union of finitely many members
of U , so that U is finite.

Theorem 4.6. If a space X is semi-DFCC, then it is 2-star semi-compact.

Proof. Suppose X is not 2-star semi-compact space and that U is a semi-open cover of X such that for any
finite subset V of U ,

St2
(⋃
V,U

)
6= X. (4.1)

Choose a U0 in U and let V0 = {U0}. Inductively define Vk, a semi-discrete collection of k members of
U such that Vk−1 ⊂ Vk for 1 ≤ k < n. By (4.1), St2(

⋃
Vn−1,U) 6= X. Pick an xn ∈ X \ St2(

⋃
Vn−1,U) and

a Un ∈ U such that xn ∈ Un. Let Vn = Vn−1 ∪ {Un}.
We claim that Vn is semi-discrete. Let y ∈ X and select a V ∈ U such that y ∈ V . Let us assume that

there are distinct sets U , U ′ ∈ Vn such that V ∩ U 6= ∅ and V ∩ U ′ 6= ∅ (say U = Up and U ′ = Uq with
p < q). Then xq ∈ U ′ ⊂ St2(

⋃
Vp,U) ⊂ St2(

⋃
Vq−1,U). But this contradicts the choice of xq. So, for every

y ∈ X, there is a semi-open V containing y which intersects at most one element of Vn. Hence, our claim is
proved.

Let V =
⋃

n∈N Vn; then V is a countably infinite semi-discrete collection of semi-open sets. Therefore X
is not semi-DFCC and the result follows.

Theorem 4.7. Every ω-star semi-compact space X has the property that every semi-continuous real-valued
function on X is bounded.

Proof. Suppose f : X −→ R is a semi-continuous mapping. Define U = {f←(k, k + 2) : k ∈ Z}. By semi-
continuity of f , each f←(k, k + 2) is semi-open in X. Hence, U is a semi-open cover of X. By assumption,
for an n ∈ N and for a finite subset V of U , we have Stn(

⋃
V,U) = X.

Let M = max{k + 2 : f←(k, k + 2) ∈ V} and m = min{k : f←(k, k + 2) ∈ V}.
Let x ∈ X. Then for 1 ≤ t ≤ n, there are f←(kt, kt + 2) ∈ U such that x ∈ f←(kt, kt + 2) with

f←(kt, kt + 2) ∩ f←(kt+1, kt+1 + 2) 6= ∅ and f←(k1, k1 + 2) ∩ ∪V 6= ∅. By construction, f(
⋃
V) ⊂ (m,M).

By induction, we obtain f(x) ∈ (m− 2n,M + 2n). Hence, f(X) ⊂ (m− 2n,M + 2n). This shows that f is
bounded.

4.2. Star semi-Menger spaces

Definition 4.8 ([18]). Sfin
∗(A,B) denotes the selection hypothesis:

For each sequence (Un : n ∈ N) of elements of A, there is a sequence (Vn : n ∈ N) such that for each
n ∈ N, Vn is a finite subset of Un, and

⋃
n∈N{St(V,Un) : V ∈ Vn} is an element of B.
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Definition 4.9 ([18]). SSfin
∗(A,B) denotes the selection hypothesis:

For each sequence (Un : n ∈ N) of elements of A there is a sequence (Fn : n ∈ N) of finite subsets of X
such that {St(Fn,Un) : n ∈ N} is an element of B.

The symbols Sfin
∗(O,O) and SSfin

∗(O,O) denote the star-Menger property and strongly star-Menger
property, respectively.

In a similar way we introduce the following definition.

Definition 4.10.

(1) A space X is said to have the star s-Menger property if it satisfies Sfin
∗(sO, sO).

(2) X is a strongly star s-Menger space if it satisfies SSfin
∗(sO, sO).

It is understood that every star s-Menger space is star semi-Lindelöf, and every strongly star s-Menger
space is strongly star semi-Lindelöf. Every semi-Menger space is strongly star s-Menger.

Example 4.11. There is a strongly star s-Menger space which is not semi-Menger.

Endow the real line R with the topology τ = {R, ∅, {p}}, where p is a point in R. Each subset of R
containing p is semi-open. Let U = {{p, x} : x ∈ R} be a semi-open cover of R. This cover does not contain
a countable subcover, so that this space in not semi-Lindelöf and thus cannot be semi-Menger. On the other
hand, if U is any semi-open cover, then for the finite set F = {p} we have St(F,U) = R, that is, (R, τ) is
strongly star compact, hence strongly star s-Menger.

Theorem 4.12. If each finite power of a space X is star s-Menger, then X satisfies Sfin
∗(sO, sΩ).

Proof. Let (Un : n ∈ N) be a sequence of covers of X by semi-open sets. Let N = N1 ∪ N2 ∪ . . . be a
partition of N into infinitely many infinite pairwise disjoint sets. For every k ∈ N and every t ∈ Nk, let
Wt = {U1 × U2 × . . . × Uk : U1, . . . Uk ∈ Ut} = Uk

t . Then (Wt : t ∈ Nk) is a sequence of semi-open covers
of Xk, and since Xk is a star s-Menger space, we can choose a sequence (Ht : t ∈ Nk) such that for each t,
Ht is a finite subset of Wt and

⋃
t∈Nk
{St(H,Wt) : H ∈ Ht} is a semi-open cover of Xk. For every t ∈ Nk

and every H ∈ Ht we have H = U1(H) × U2(H) × . . . × Uk(H), where Ui(H) ∈ Ut for every i ≤ k. Set
Vt = {Ui(H) : i ≤ k,H ∈ Ht}. Then for each t ∈ Nk, Vt is a finite subset of Ut.

We claim that {St(
⋃
Vn,Un) : n ∈ N} is an sω-cover of X. Let F = {x1, . . . , xp} be a finite subset of

X. Then y = (x1, . . . , xp) ∈ Xp so that there is an n ∈ Np such that y ∈ St(H,Wn) for some H ∈ Hn. But
H = U1(H) × U2(H) × . . . × Up(H), where U1(H), U2(H), . . . , Up(H) ∈ Vn. The point y belongs to some
W ∈ Wn of the form V1 × V2 × . . .× Vp, Vi ∈ Un for each i ≤ p, which meets U1(H)×U2(H)× . . .×Up(H).
This implies that for each i ≤ p, we have xi ∈ St(Ui(H),Un) ⊂ St(

⋃
Vn,Un), that is, F ⊂ St(

⋃
Vn,Un).

Hence, X satisfies Sfin
∗(sO, sΩ).

Definition 4.13. A space X is called meta semi-compact if every semi-open cover U of X has a point-finite
semi-open refinement V (that is, every point of X belongs to at most finitely many members of V).

Theorem 4.14. Every strongly star s-Menger meta semi-compact space is an s-Menger space.

Proof. Let X be a strongly star s-Menger meta semi-compact space. Let (Un : n ∈ N) be a sequence of semi-
open covers of X. For each n ∈ N, let Vn be a point-finite semi-open refinement of Un. Since X is strongly
star s-Menger, there is a sequence (Fn : n ∈ N) of finite subsets of X such that

⋃
n∈N St(Fn,Vn) = X.

As Vn is a point-finite refinement and each Fn is finite, elements of each Fn belongs to finitely many
members of Vn say Vn1 , Vn2 , Vn3 , . . . , Vnk

. Let V ′n = {Vn1 , Vn2 , Vn3 , . . . , Vnk
}. Then St(Fn,Vn) =

⋃
V ′n for

each n ∈ N. We have that
⋃

n∈N(
⋃
V ′n) = X. For every V ∈ V ′n choose UV ∈ Un such that V ⊂ UV . Then,

for every n, Wn := {UV : V ∈ V ′n} is a finite subfamily of Un and
⋃

n∈N
⋃
Wn = X, that is X is an s-Menger

space.
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Definition 4.15. A space X is said to be meta semi-Lindelöf if every semi-open cover U of X has a
point-countable semi-open refinement V.

Theorem 4.16. Every strongly star s-Menger meta semi-Lindelöf space is a semi-Lindelöf space.

Proof. Let X be a strongly star s-Menger meta semi-Lindelöf space. Let U be a semi-open cover of X
and V a point-countable semi-open refinement of U . Since X is strongly star s-Menger, there is a sequence
(Fn : n ∈ N) of finite subsets of X such that

⋃
n∈N St(Fn,Vn) = X.

For every n ∈ N, denote by Wn the collection of all members of V which intersects Fn. Since V is point-
countable and Fn is finite, Wn is countable. So, the collection W =

⋃
n∈NWn is a countable subfamily of V

and is a cover of X. For every W ∈ W, pick a member UW ∈ U such that W ∈ UW . Then {UW : W ∈ W}
is a countable subcover of U . Hence, X is a semi-Lindelöf space.

Definition 4.17. A space X is an almost star s-Menger space if for each sequence (Un : n ∈ N) of semi-open
covers of X there exists a sequence (Vn : n ∈ N) such that for every n ∈ N, Vn is a finite subset of Un and
{sCl(St(

⋃
Vn,Un)) : n ∈ N} is a cover of X.

Theorem 4.18. A space X is an almost star s-Menger space if and only if for each sequence (Un : n ∈ N)
of covers of X by semi-regular sets, there exists a sequence (Vn : n ∈ N) such that for every n ∈ N, Vn is a
finite subset of Un and {sCl(St(

⋃
Vn,Un)) : n ∈ N} is a cover of X.

Proof. Since every semi-regular set is semi-open, necessity follows.
Conversely, let (Un : n ∈ N) be a sequence of semi-open covers of X. Let U ′n = {sCl(U) : U ∈ Un}. Then

U ′n is a cover of X by semi-regular sets. Then by assumption, there exists a sequence (Vn : n ∈ N) such that
for every n ∈ N, Vn is a finite subset of U ′n and {sCl(St(

⋃
Vn,U ′n)) : n ∈ N} is a cover of X.

First we shall prove that St(U,Un) = St(sCl(U),Un) for all U ∈ Un. It is obvious that St(U,Un) ⊂
St(sCl(U),Un) since U ⊂ sCl(U). Let x ∈ St(sCl(U),Un). Then there exists a U ′ ∈ Un such that x ∈ U ′ and
U ′ ∩ sCl(U) 6= ∅. Then U ′ ∩ sCl(U) 6= ∅ implies that x ∈ St(U,Un). Hence, St(sCl(U),Un) ⊂ St(U,Un).

For each V ∈ Vn we can find a UV ∈ Un such that V = sCl(UV ). Let V ′n = {UV : V ∈ Vn} and x ∈ X.
Then there exists an n ∈ N such that x ∈ sCl(St(

⋃
Vn,U ′n)). For each semi-open set V of x, we have

V
⋂

St(
⋃
Vn,U ′n) 6= ∅. Then there exists U ∈ Un such that (V ∩ sCl(U) 6= ∅ and

⋃
Vn ∩ sCl(U) 6= ∅) imply

that (V ∩ U 6= ∅ and
⋃
Vn ∩ sCl(U) 6= ∅). We have that

⋃
V ′n ∩ U 6= ∅, so x ∈ sCl(St(

⋃
V ′n,Un)). Hence,

{sCl(St(
⋃
V ′n,Un)) : n ∈ N} is a cover of X.

Theorem 4.19. Quasi-irresolute surjective image of an almost star s-Menger space is an almost star s-
Menger space.

Proof. Let X be an almost star s-Menger space and Y a topological space. Let f : X → Y be a quasi
irresolute surjection. Take a sequence (Un : n ∈ N) of covers of Y by semi-regular sets. Let U ′n = {f←(U) :
U ∈ Un}; then each U ′n is a cover of X by semi-regular sets since f is quasi-irresolute. Since X is an almost
star s-Menger space, there exists a sequence (V ′n : n ∈ N) such that for every n ∈ N, V ′n is a finite subset of
U ′n and {sCl(St(

⋃
V ′n,U ′n)) : n ∈ N} is a cover of X.

Let Vn = {U ∈ Un : f←(U) ∈ V ′n} and x ∈ X. Then f←(
⋃
Vn) =

⋃
V ′n and there is n ∈ N such that x ∈

sCl(St(f←(
⋃
Vn,U ′n))). For y = f(x) ∈ Y , y ∈ f(sCl(St(f←(

⋃
Vn,U ′n)))) ⊂ sCl(f(St(f←(

⋃
Vn,U ′n)))) =

sCl(St(
⋃
Vn,Un)). Now assume that f←(

⋃
Vn) ∩ f←(U) 6= ∅. Then f(f←(

⋃
Vn)) ∩ f(f←(U)) 6= ∅, hence⋃

Vn ∩ U 6= ∅. So, it is shown that Y is an almost star s-Menger space.
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