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Abstract

In this paper, we introduce and study a class of generalized symmetric vector quasi-equilibrium problems
in abstract convex spaces. By virtue of the properties of Γ-convex and KC-map, we give some sufficient
conditions to guarantee the existence of solutions for the generalized symmetric vector quasi-equilibrium
problems in abstract convex spaces. As application, we show an existence theorem of solutions for the
generalized semi-infinite programs with generalized symmetric vector quasi-equilibrium constraints. c©2016
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1. Introduction

Vector equilibrium problems which provide a unified model for vector variational inequalities, vector
complementarity problems, vector optimization problems and vector saddle point problems, have been stud-
ied by many authors. As the generalization of vector equilibrium problems, the symmetric vector quasi-
equilibrium problems (in short, SVQEP), have been studied by many authors in topological vector spaces.
Especially, some authors more concerned on the existence of the solutions for (SVQEP). For example, Fu
[12] established the existence theorems for symmetric vector quasi-equilibrium problems. Chen and Gong [6]
investigated the stability of the set of solutions for symmetric vector quasi-equilibrium problems. Gong [14]
gave an existence theorem for the solutions of symmetric strong vector quasi-equilibrium problems. Anh and
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Khanh [2] studied various kinds of semi-continuity and the solution sets of parametric set-valued symmetric
vector quasi-equilibrium problems. Fakhar and Zafarani [10] studied the existence theorems for vector quasi-
equilibrium problems and general symmetric vector quasi-equilibrium problems using a so-called nonlinear
scalarization function. Long and Huang [22] established some metric characterizations of α-well-posedness
for symmetric quasi-equilibrium problems. Recently, Han and Gong [17] investigated Levitin-Polyak well-
posedness of symmetric vector quasi-equilibrium problems. Li et al. [19] studied the stability of solution
mapping for parametric symmetric vector equilibrium problems.

Abstract convex spaces, introduced by Park [26] in 2006, includes the convex subset of topological
vector spaces, convex spaces, H-spaces, and G-convex spaces as special cases. Latter, Park investigated
the properties of abstract convex spaces and gave some comments on fixed points, maximal elements, and
equilibria of economies in abstract convex spaces, (see, [28, 29]). In view of the importance of abstract
convex spaces, some authors have focused on the field. For instance, Liu et al. [21] studied the fixed point
theorems for better admissible set-valued mapping on abstract convex spaces. Harandi [1] investigated the
best approximation theorem in abstract convex metric spaces. Lu and Hu [23] established a new collectively
fixed point theorem in noncompact abstract convex spaces and obtained existence theorems of equilibria for
generalized abstract economies. Yang and Huang [33] studied the existence results and applications for four
types of the generalized vector equilibrium problems with moving cones in abstract convex spaces. More
results concerned with some nonlinear problems in abstract convex spaces can be found in [8, 32, 34] and
reference therein. At the end of the paper [33], Yang and Huang pointed out that it is an interesting and
important work to study some types of generalized vector quasi-equilibrium problems with moving cones
in abstract convex topological spaces. Recently, Zhang et al. [35] investigated the existence of solutions
for generalized vector quasi-equilibrium problems in abstract convex spaces with applications and solved
the problem which is proposed by Yang and Huang in [33]. To the best of our knowledge, it seems that
there is no work concerned with the study of generalized symmetric vector quasi-equilibrium problems
in abstract convex spaces. Therefore, it is natural and interesting to study generalized symmetric vector
quasi-equilibrium problems in abstract convex spaces under some suitable conditions.

On the other hand, we know that semi-infinite programs are constrained optimization problems in
which the number of decision variables is finite, but the number of constraints is infinite. There are many
problems in numerous applications the constraints of which depend on the time or the space coordinates and
therefore may be formulated as semi-infinite problems. Many researchers have been contributed significantly
to the development of the first applications of semi-infinite programs in economics, game theory, mechanics,
statistical inference, etc. (see, for example, [4, 9, 13, 16, 25]). As the generalization of semi-infinite programs,
the generalized semi-infinite programs have been applied to numerous real-life problems such as Chebyshev
approximation, design centering, robust optimization, optimal layout of an assembly line, time minimal
control, and disjunctive optimization (see [15, 31] and the reference therein). Therefore, it is important and
interesting to study the existence of solutions concerned with some generalized semi-infinite program with
generalized symmetric vector quasi-equilibrium constraints in abstract convex spaces.

The main purpose of this paper is to study a class of generalized symmetric vector quasi-equilibrium
problems in abstract convex spaces. We give some sufficient conditions to guarantee the existence of solutions
for the generalized symmetric vector quasi-equilibrium problem in abstract convex spaces. As application,
we give an existence theorem of solutions for the generalized semi-infinite program with the generalized
symmetric vector quasi-equilibrium constraint. The results presented in this paper generalize and extent
Theorems 3.4 and 4.3 of [35], and Theorem 3.1 of [14].

2. Preliminaries

Let X and Y be two nonempty sets. A set-valued mapping T : X ⇒ Y is a mapping from X into the
power set 2Y . The inverse T−1 of T is the set-valued mapping from Y to X defined by

T−1(y) = {x ∈ X : y ∈ T (x)}.
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Definition 2.1 ([26]). An abstract convex space (X,E,Γ) consists of a nonempty set X, a nonempty set E,
and a set-valued mapping Γ : 〈E〉 ⇒ X with nonempty values, where 〈E〉 denotes the set of all nonempty
finite subset of a set E.

Let ΓA := Γ(A) for A ∈ 〈E〉.
When E ⊂ X, the space is defined by (X ⊃ E; Γ). In such case, a subset M of X is said to be Γ-convex

if, for any A ∈ 〈M ∩ E〉, we have ΓA ⊂M . In the case X = E, let (X,Γ) := (X,X,Γ).
If for each A ∈ 〈E〉 with the cardinality |A| = n+ 1, there exists a continuous function φA : 4n → Γ(A)

such that J ∈ 〈A〉 implies φA(4J) ⊂ Γ(J), where 4n is the standard n-simplex and 4J the face of 4n

corresponding to J ∈ 〈A〉, then the abstract convex space degrades to G-convex space.
It is easy to see that any vector space X is an abstract convex space with Γ:=co, where co denotes the

convex hull in the vector space X.
An abstract convex space with any topology is called an abstract convex topological space.
Next we give an example as follow:

Example 2.2 ([27]). Let C := C[0, 1] be the class of all real continuous functions on [0, 1] and P := P[0, 1]
the subclass of all polynomials p(x) on x ∈ [0, 1] with real coefficients. Let ε > 0. For each f ∈ C, choose a
fixed pf ∈ P which is ε-near to f , that is, maxx∈[0,1] |f(x)− pf (x)| < ε. Let Γ : 〈C〉 → P be defined by, for
each A = {fi}ni=0 ∈ 〈C〉

ΓA := co{pfi}
n
i=0 ∈ P.

Moreover, let φA : ∆n → ΓA be a linear mapping such that ei → pfi . Then

(X,D; Γ) := (P, C; Γ)

is an abstract convex space.

More examples of abstract convex spaces can be found in [26].
Let (X × Y ⊃ E1 × E2,Γ) be an abstract convex space. Assume S : E1 × E2 ⇒ E1, B : E1 × E2 ⇒ E2,

C1 : E1 ⇒ V1 and C2 : E2 ⇒ V2 are four set-valued mappings. intC1(x) and intC2(y) denote the interior
of C1(x) and C2(y), respectively. Let F : E1 ×E2 ×E1 ⇒ V1 and F : E1 ×E2 ×E2 ⇒ V2 be two set-valued
mappings. We consider the following generalized symmetric vector quasi-equilibrium problem (for short,
GSVQEP): Find x̃ ∈ S(x̃, ỹ), ỹ ∈ B(x̃, ỹ) and

F (x̃, ỹ, u)
⋂
−intC1(x̃) = ∅, ∀u ∈ S(x̃, ỹ),

G(x̃, ỹ, v)
⋂
−intC2(ỹ) = ∅, ∀ v ∈ B(x̃, ỹ).

(I) If F andG are single-valued, then (GSVQEP) reduces to the problem of finding x̃ ∈ S(x̃, ỹ), ỹ ∈ B(x̃, ỹ)
and

F (x̃, ỹ, u) /∈ − intC1(x̃), ∀u ∈ S(x̃, ỹ),

G(x̃, ỹ, v) /∈ − intC2(ỹ), ∀ v ∈ B(x̃, ỹ).

(II) If F (x, y, u) = f(u, y)−f(x, y) andG(x, y, v) = g(x, v)−g(x, y) for all (x, y) ∈ E1×E2, then (GSVQEP)
reduces to the problem of finding x̃ ∈ S(x̃, ỹ), ỹ ∈ B(x̃, ỹ) and

f(x, ỹ)− f(x̃, ỹ) /∈ − intC1(x̃), ∀u ∈ S(x̃, ỹ),

g(x̃, y)− g(x̃, ỹ) /∈ − intC2(ỹ), ∀u ∈ B(x̃, ỹ).

(III) If C1(x) = C2(y) = C for all (x, y) ∈ E1 × E2, F (x, y, u) = f(u, y) − f(x, y) and G(x, y, v) =
g(x, v)−g(x, y) for all (x, y) ∈ E1×E2, then (GSVQEP) reduces to the problem of finding x̃ ∈ S(x̃, ỹ),
ỹ ∈ B(x̃, ỹ) and

f(x, ỹ)− f(x̃, ỹ) /∈ − intC, ∀u ∈ S(x̃, ỹ),

g(x̃, y)− g(x̃, ỹ) /∈ − intC, ∀u ∈ B(x̃, ỹ),

which was studied by Fu [12], Han and Gong [17], Chen and Gong [6].
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(IV) If V1 = V2 = (−∞,+∞) and C1(x) = C2(y) = C = [0,+∞) for all (x, y) ∈ E1 × E2, then (GSVQEP)
reduces to the symmetric quasi-equilibrium problem: find (x̃, ỹ) ∈ E1 × E2 such that x̃ ∈ S(x̃, ỹ),
ỹ ∈ B(x̃, ỹ) and

f(x, ỹ) ≥ f(x̃, ỹ), ∀u ∈ S(x̃, ỹ),

g(x̃, y) ≥ g(x̃, ỹ), ∀u ∈ B(x̃, ỹ),

which was studied by Long and Huang [22].

Furthermore, assume that h : X×Y ⇒ L is a set-valued mapping, where L is a real topological vector space
ordered by a closed convex pointed cone D ⊂ L with intD 6= ∅. It is clear that the existence of solutions
for (GSVQEP) is closed to the existence of solutions in connect with the following generalized semi-infinite
program with generalized symmetric vector quasi-equilibrium constraint (for short, GSVQEP):

wMinDh(K)

where

K =

(x, y) ∈ E1 × E2 :
x ∈ S(x, y) and F (x, y, u)

⋂
−intC1(x) = ∅, ∀u ∈ S(x, y)

y ∈ B(x, y) and G(x, y, v)
⋂
−intC2(y) = ∅, ∀ v ∈ B(x, y)

 .

When F = G and S(x, y) = B(x, y) = E1 = E2 for all (x, y) ∈ E1 × E2, this problem was studied by Yang
and Huang [33] in abstract convex spaces.

In brief, for suitable choice of the spaces L, V1, V2, X, Y,E1, E2 and the mappings S,B, F,G,C1, C2, h, one
can obtain a number of known the generalized semi-infinite program [33], the mathematical program with
equilibrium constraint [25], the generalized semi-infinite program [15], the generalized vector semi-infinite
program [20], and the vector optimization problem [7, 18, 24] as special cases from (GSVQEP).

Now, we recall some useful definitions and lemmas as follows.

Definition 2.3. Let K ⊂ V be a nonempty set and C ⊂ V be the closed convex pointed cone with intC 6= ∅.
The set of all weak minimal points of K with respect to the ordering cone C is defined as

wMinC(K) = {x ∈ K : (x−K)
⋂
intC = ∅}.

Definition 2.4. Let (X,E,Γ) be an abstract convex space and Z be a set. For a set-valued mapping
T : X ⇒ Z with nonempty values, if a set-valued mapping G : E ⇒ Z satisfies

F (ΓN ) ⊂ G(N) :=
⋃
y∈N

G(y) for all N ∈ 〈E〉,

then G is called a KKM mapping with respect to F . A KKM mapping G : E ⇒ X is a KKM mapping with
respect to the identity mapping IE .

A set-valued mapping F : X ⇒ Z is called KC-map if, for any closed valued KKM mapping G : E ⇒ Z
with respect to F , the family {G(y)}y∈E has the finite intersection property. We denote

KC(X,Z) := {F : F is KC−map}.

Definition 2.5 ([3]). Let X and Y be two topological spaces. A set-valued mapping F : X ⇒ Y is said to
be

(i) upper semicontinuous (u.s.c.)at x0 if for any open set V ⊃ F (x0), there is an open neighborhood Ox0
of x0 such that F (x′) ⊂ V for each x′ ∈ Ox0 ;

(ii) lower semicontinuous (l.s.c.)at x0 if for any open set V ∩ F (x0) 6= ∅, there is an open neighborhood
Ox0 of x0 such that F (x′) ∩ V 6= ∅ for each x′ ∈ Ox0 ;
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(iii) continuous at x0 if it is both upper and lower semicontinuous at x0;

(iv) upper semicontinuous (lower semicontinuous or continuous) on X if it is upper semicontinuous (lower
semicontinuous or continuous) at every x ∈ X;

(v) closed if and only if its graph Graph(F ) := {(x, y) ∈ X × Y : y ∈ F (x)} is closed.

Lemma 2.6 ([5]). Let X and Y be two topological spaces and F : X ⇒ Y a set-valued mapping.

(i) If Y is compact, then F is closed if and only if it is upper semicontinuous.

(ii) If X is a compact space and F is a u.s.c. mapping with compact values, then F (X) is a compact subset
of Y .

Lemma 2.7 ([11]). Let X and Y be two topological spaces and F : X ⇒ Y be upper semicontinuous and
F (x) is compact. Then for any net {xn} ⊂ X with xn → x and yn ∈ F (xn), there exists a subnet {ynk

} ⊂ yn
such that ynk

→ y ∈ F (x).

Lemma 2.8 ([30]). Let X and Y be two topological spaces and F : X ⇒ Y be lower semicontinuous at
x ∈ X if and only if for any y ∈ F (x) and any net {xα} with xα → x, there is a net {yα} such that
yα ∈ F (xα) and yα → y.

Lemma 2.9 ([26]). Let (X,E,Γ) be an abstract convex space, Z a set, and T : X ⇒ Z a set-valued mapping.
Then F ∈ KC(X,Z) if and only for any G : E ⇒ Z satisfying

(i) G is closed-valued;

(ii) F (ΓN ) ⊂ G(N) for any N ∈ 〈E〉,

we have
F (X)

⋂
∩{G(y) : y ∈ N} 6= ∅

for each N ∈ 〈E〉.

Lemma 2.10 ([24]). Assume that A is a nonempty compact subset of a real topological vector space Z and
D is a closed convex cone in Z with D 6= Z. Then, one has wMinDA 6= ∅.

In the rest of this paper, let (X×Y ⊃ E1×E2,Γ) be an abstract convex space, where X, Y are Hausdorff
topological space and let E1 and E2 be nonempty compact subsets of X and Y , respectively. Let V1 and
V2 be two topological vector spaces and let C1 : E1 ⇒ V1 and C2 : E2 ⇒ V2 be two set-valued mappings.
Assume that T : X × Y ⇒ X × Y , S : E1 × E2 ⇒ E1, B : E1 × E2 ⇒ E2, F : E1 × E2 × E1 ⇒ V1 and
G : E1 × E2 × E2 ⇒ V2 are five set-valued mappings.

3. Main results

Theorem 3.1. Suppose that the following conditions are satisfied

(i) T ∈ KC(X × Y,X × Y ).

(ii) For each u ∈ E1 and v ∈ E2, F (·, ·, u) and G(·, ·, v) are l.s..c. on E1 × E2.

(iii) S(x, y) and B(x, y) are nonempty with S−1(u) and B−1(v) be open for all u ∈ E1 and v ∈ E2,
respectively.

(iv) C1(x) and C2(y) have nonempty interior for each x ∈ E1 and y ∈ E2, respectively. The mapping
W1 : E1 ⇒ V1 and W2 : E2 ⇒ V2, defined by W1(x) = V1 \ −intC1(x) and W2(y) = V1 \ −intC2(y),
are closed.

(v) For each (x, y) ∈ E1 × E2, the set S(x, y)×B(x, y) is Γ-convex.

(vi) G1 = {(x, y) ∈ E1 × E2 : x /∈ S(x, y)} and G2 = {(x, y) ∈ E1 × E2 : y /∈ B(x, y)} are open.

(vii) For each (x0, y0, u0, v0) ∈ E1 × E2 × E1 × E2 with (x0, y0) ∈ T (u0, v0) such that u0 /∈ S(x0, y0) and
v0 /∈ B(x0, y0).



W.-B. Zhang, W.-Y. Yan, J. Nonlinear Sci. Appl. 9 (2016), 4399–4408 4404

Then there exist x̃ ∈ S(x̃, ỹ) and ỹ ∈ B(x̃, ỹ) such that

F (x̃, ỹ, u)
⋂
−intC1(x̃) = ∅, ∀u ∈ S(x̃, ỹ),

and
G(x̃, ỹ, v)

⋂
−intC2(ỹ) = ∅, ∀ v ∈ B(x̃, ỹ).

Proof. For any (x, y) ∈ E1 × E2, define A1 : E1 × E2 ⇒ E1 and A2 : E1 × E2 ⇒ E2 by

A1(x, y) = {u ∈ E1 : F (x, y, u)
⋂
−intC1(x) 6= ∅},

and
A2(x, y) = {v ∈ E2 : G(x, y, v)

⋂
−intC2(y) 6= ∅}.

Define P1 : E1 × E2 ⇒ E1 and P2 : E1 × E2 ⇒ E2 by

P1(x, y) =

{
S(x, y) ∩A1(x, y)(x, y) ∈ (E1 × E2) \G1;

S(x, y)(x, y) ∈ G1.
(3.1)

and

P2(x, y) =

{
B(x, y) ∩A2(x, y)(x, y) ∈ (E1 × E2) \G2;

B(x, y)(x, y) ∈ G2.
(3.2)

Let
P (x, y) = {(u, v)|u ∈ P1(x, y) or v ∈ P2(x, y)},

and
M(u, v) = (E1 × E2) \ P−1(u, v).

Now, we show that M(u, v) is closed. From the definition of A1(x, y), we get that

A−11 (u) = {(x, y) ∈ E1 × E2 : F (x, y, u)
⋂
−intC1(x) 6= ∅}.

Let {(xα, yα)} ⊂ (E1 × E2) \A−11 (u) be a net with (xα, yα)→ (x0, y0). Thus, we have

F (xα, yα, u)
⋂
−intC1(xα) = ∅. (3.3)

Equation (3.3) with condition (iv) implies

F (xα, yα, u) ⊂W1(xα).

Since F (·, ·, u) is l.s.c., for any γ ∈ F (x0, y0, u), there exists γα ∈ F (xα, yα, , u) such that γα → γ.
The closedness of W1 with γα ∈W1(xα) shows γ ∈W1(x0).
Thus, we get that

F (x0, y0, u) ⊂W1(x0).

Namely,

F (x0, y0, u)
⋂
−intC1(x0) = ∅.

So (x0, y0) ∈ (E1 × E2) \ A−11 (u). Therefore, (E1 × E2) \ A−11 (u) is closed. Since E1 × E2 is closed, we get
that A−11 (u) is open.

By (3.1), we have

P−11 (u) =
{

(x, y) ∈ (E1 × E2) \G1 : u ∈ S(x, y) ∩A1(x, y)}
⋃
{(x, y) ∈ G1 : u ∈ S(x, y)

}
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=
{

(x, y) ∈ (E1 × E2) \G1 : (x, y) ∈ S−1y (u) ∩A−1y (u)}
⋃
{(x, y) ∈ G1 : (x, y) ∈ S−1(u)

}
=
{

(E \G1) ∩ S−1(u) ∩A−11 (u)}
⋃
{G1 ∩ S−1(u)

}
= S−1(u)

⋂(
G1 ∪A−11 (u)

)
.

Since S−1(u), A−11 (u) and G1 are open, we have that P−11 (u) is open.
By the similar proof, we can show that P−12 (v) is also open.
Moreover,

P−1(u, v) = {(x, y)|u ∈ P1(x, y) or v ∈ P2(x, y)}
=
{

(x, y)|(x, y) ∈ P−11 (u) or (x, y) ∈ P−12 (v)
}

= P−11 (u)
⋃
P−12 (v).

So P−1(u, v) is open and so M(u, v) is closed.
Next, we show that M(u, v) is a KKM mapping with respect to T . Suppose that M(u, v) is not a KKM

mappings with respect to T , there exist finite subset N1 ×N2 ⊂ E1 × E2 and (x0, y0) ∈ E1 × E2 such that

(x0, y0) ∈ T (ΓN1×N2) \M(N1 ×N2).

Since (x0, y0) ∈ T (ΓN1×N2), there exists (u0, v0) ∈ ΓN1×N2 such that (x0, y0) ∈ T (u0, v0).
On the other hand, (x0, y0) /∈M(N1 ×N2) implies

(x0, y0) ∈ P−1(u, v) ∀ (u, v) ∈ N1 ×N2.

Thus, we get that
N1 ×N2 ⊂ P (x0, y0) ⊂ S(x0, y0)×B(x0, y0).

Since S(x0, y0)×B(x0, y0) is Γ-convex and

N1 ×N2 ∈ 〈S(x0, y0)×B(x0, y0)〉,

we have
(u0, v0) ∈ ΓN1×N2 ⊂ S(x0, y0)×B(x0, y0),

namely,
u0 ∈ S(x0, y0) and v0 ∈ B((x0, y0),

which is contradiction.
Since M(u, v) is a KKM mapping with respect to T and M(u, v) is closed, by Lemma 2.9, M(u, v)

has finite intersection property. Since M(u, v) ⊂ E1 × E2 is closed and E1 × E2 is compact, we have
M(u, v) is compact. By the property of compact set, we have

⋂
(u,v)∈E1×E2

M(u, v) 6= ∅. Thus there exists
(x̃, ỹ) ∈ E1 × E2 such that

(x̃, ỹ) ∈
⋂

(u,v)∈E1×E2

M(u, v) = (E1 × E2) \
⋃

(u,v)∈E1×E2

P−1(u, v).

Thus (x̃, ỹ) /∈ P−1(u, v) for any (u, v) ∈ E1 × E2. So we have P (x̃, ỹ) = ∅.
If

(x̃, ỹ) ∈ G1 or (x̃, ỹ) ∈ G2,

then
S(x̃, ỹ) = P1(x̃, ỹ) = ∅ or B(x̃, ỹ) = P2(x̃, ỹ) = ∅

which is contradiction.
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It follows that
(x̃, ỹ) ∈ (E1 × E2) \ (G1 ∪G2).

Thus, we have
x̃ ∈ S(x̃, ỹ) and S(x̃, ỹ) ∩A1(x̃, ỹ) = P1(x̃, ỹ) = ∅
ỹ ∈ B(x̃, ỹ) and B(x̃, ỹ) ∩A2(x̃, ỹ) = P2(x̃, ỹ) = ∅.

So there exist x̃ ∈ S(x̃, ỹ) and ỹ ∈ B(x̃, ỹ), for all u ∈ S(x̃, ỹ) and v ∈ B(x̃, ỹ). Thus, we have u /∈ A1(x̃, ỹ)
and v /∈ A2(x̃, ỹ), that is, x̃ ∈ S(x̃, ỹ), and ỹ ∈ B(x̃, ỹ) satisfy (GSVQEP). This completes the proof.

Remark 3.2. In [35], the existence of solutions for generalized vector quasi-equilibrium problems in abstract
convex spaces was studied. Theorem 3.1 in this paper can be considered as an extension of Theorem 3.4 in
[35].

Remark 3.3. Theorem 3.1 can be considered as an extension of Theorem 3.1 in [14] from single-valued
mappings to set-valued mappings and from topological vector spaces to abstract convex spaces.

4. An application to the generalized semi-infinite program

In this section, by the result presented in Section 3, we give an existence theorem of solutions to the
generalized semi-infinite program.

Let L be a real topological vector space ordered by a closed convex pointed cone D ⊂ L with intD 6= ∅
and h : X × Y → L be an u.s.c. mapping with compact values.

Theorem 4.1. Assume that F , G, S and B are l.s.c. Moreover, other conditions of Theorem 3.1 are
satisfied. Then, there is a solution to the problem

wMinDh(K),

where

K =

(x, y) :
x ∈ S(x, y) and F (x, y, u)

⋂
−intC1(x) = ∅, ∀u ∈ S(x, y)}

y ∈ B(x, y) and G(x, y, v)
⋂
−intC2(y) = ∅, ∀ v ∈ B(x, y)}

 .

Proof. Theorem 3.1 shows that K 6= ∅. From Lemma 2.10, it is sufficient to show that h(K) is compact.
Since h is u.s.c. and K ⊂ E, by Lemma 2.6, we need to show K is closed. In fact, let {(xα, yα)} ⊂ K be a
net with (xα, yα)→ (x0, y0). Thus, we have

xα ∈ S(xα, yα) and F (xα, yα, u
′)
⋂
−intC1(xα) = ∅, ∀u′ ∈ S(xα, yα),

yα ∈ B(xα, yα) and G(xα, yα, v
′)
⋂
−intC2(yα) = ∅, ∀ v′ ∈ B(xα, yα).

The condition (iii) implies x0 ∈ S(x0, y0) and y0 ∈ B(x0, y0). Moreover, the lower semi-continuity of S and
B together with Lemma 2.8 implies, for any u ∈ S(x0, y0) and v ∈ B(x0, y0), there exist uα ∈ S(xα, yα)
and vα ∈ B(xα, yα) such that uα → u and vα → v, namely (uα, vα) → (u, v). For any γ ∈ F (x0, y0, u) and
η ∈ G(x0, y0, v), the lower semicontinuity of F and G implies that there exist

γα ∈ F (xα, yα, uα) (4.1)

and
ηα ∈ G(xα, yα, vα) (4.2)

such that γα → γ and ηα → η.
By (4.1), (4.2) and the condition (iv), one has

γα ∈W1(xα) and ηα ∈W2(yα).
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Since W1 and W2 are closed, we have

γ ∈W1(x0) and η ∈W2(y0)

and so
F (x0, y0, u)

⋂
−intC1(x0) = ∅, ∀u ∈ S(x0, y0),

with
G(x0, y0, v)

⋂
−intC2(y0) = ∅, ∀ v ∈ B(x0, y0).

This shows that (x0, y0) ∈ K and so K is closed. This completes the proof.

Remark 4.2. Theorem 4.1 can be considered as an extension of Theorem 4.3 in [35] from generalized vector
quasi-equilibrium problems to generalized symmetric vector quasi-equilibrium problems.
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