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Abstract

In this paper, we study qualitative properties and periodic nature of the solutions of the difference
equation

xn+1 = axn−4 +
bx2n−4

cxn−4 + dxn−9
, n = 0, 1, ..,

where the initial conditions x−9, x−8, x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0 are arbitrary positive real
numbers and a, b, c, d are constants. Also we obtain the form of solutions of some special cases of this
equation. c©2016 All rights reserved.
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1. Introduction

This paper deals with the solution behaviour of the difference equation

xn+1 = axn−4 +
bx2n−4

cxn−4 + dxn−9
, n = 0, 1, ..., (1.1)
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where the initial conditions x−9, x−8, x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0 are arbitrary positive real
numbers and a, b, c, d are constants. Also we obtain the form of solution of some special cases.

The study and solution of nonlinear rational recursive sequence of high order is quite challenging and
rewarding because some prototypes for the development of the solution and global behavior of nonlinear
difference equation come from the results of non-linear difference equations and there is increasingly a
lot of interest in studying these equations. Furthermore, diverse nonlinear trend occurring in science and
engineering can be modeled by such equations and the solution about such equations offer prototypes towards
the development of the theory, see for example [10–32, 43].

A. El-Moneam and Alamoudy [8] examined the positive solutions of the equation in terms of its period-
icity, boundedness and the global stability. The considered difference equation is given by

xn+1 = axn +
bxn−1 + cxn−2 + fxn−3 + rxn−4
dxn−1 + exn−2 + gxn−3 + sxn−4

.

In [9] Elsayed investigated the solution of the following non-linear difference equation

xn+1 = axn−1 +
bxnxn−1

cxn + dxn−2
.

Keratas et al. [29] gave the solution of the following difference equation

xn+1 =
xn−5

1 + xn−2xn−5
.

Saleh et al. [42] studied the behavior of the solution of the following difference equation

yn+1 = A+
yn
yn−k

.

Yalçınkaya [49] has studied the boundedness, global stability, periodicity character and gave the solution of
some special cases of the difference equation.

xn+1 =
axn−k
b+ cxpn

.

Yalçınkaya [50] has explored the following difference equation

xn+1 = α+
xn−m
xkn

.

See also [1–7]. Other related work on rational difference equations see in Refs. [33–42, 44–54].
Here, we recall some basic definitions and some theorems that we need in the sequel.
Let I be some interval of real numbers and let

f : Ik+1 → I

be a continuously differentiable function. Then for every set of initial conditions x−k, x−k+1, ...,x0 ∈ I, the
difference equation

xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, ... (1.2)

has a unique solution {xn}∞n=−k.

Definition 1.1 (Equilibrium point). A point x ∈ I is called an equilibrium point of Eq. (1.2) if

x = f(x, x, ..., x).

That is, xn = x for n ≥ 0, is a solution of Eq.(1.2), or equivalently, x is a fixed point of f .



A. Khaliq, F. Alzahrani, E. M. Elsayed, J. Nonlinear Sci. Appl. 9 (2016), 4465–4477 4467

Definition 1.2 (Periodicity). A Sequence {xn}∞n=−k is said to be periodic with period p if xn+p = xn for
all n ≥ −k.

Definition 1.3 (Fibonacci sequence). The sequence {Fm}∞m=1 = {1, 2, 3, 5, 8, 13, ...}, that is, Fm = Fm−1+
Fm−2 ≥ 0, F−2 = 0, F−1 = 1 is called Fibonacci Sequence.

Definition 1.4 (Stability).

(i) The equilibrium point x of Eq. (1.2) is locally stable if for every ε > 0, there exists δ > 0 such that
for all x−k, x−k+1, ..., x−1,x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < δ,

we have
|xn − x| < ε for all n ≥ −k.

(ii) The equilibrium point x of Eq. (1.2) is locally asymptotically stable if x is locally stable solution of
Eq. (1.2) and there exists γ > 0, such that for all x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < γ,

we have
lim
n→∞

xn = x.

(iii) The equilibrium point x of Eq. (1.2) is global attractor if for all x−k, x−k+1, ..., x−1, x0 ∈ I, we have

lim
n→∞

xn = x.

(iv) The equilibrium point x of Eq. (1.2) is globally asymptotically stable if x is locally stable, and x is
also a global attractor of Eq. (1.2).

(v) The equilibrium point x of Eq. (1.2) is unstable if x is not locally stable.

(vi) The linearized equation of Eq. (1.2) about the equilibrium x is the linear difference equation

yn+1 =
k∑

i=0

∂F (x, x, ..., x)

∂xn−i
yn−i.

Theorem A ([35]). Assume that pi ∈ R, i = 1, 2, ... and k ∈ {0, 1, 2, ...}. Then

k∑
i=1

|pi| < 1

is a sufficient condition for the asymptotic stability of the difference equation

yn+k + p1yn+k−1 + ...+ pkyn = 0, n = 0, 1, ... .

The following theorem will be useful for the proof of our results in this paper.

Theorem B ([35]). Let [α, β] be an interval of real numbers and assume that g : [α, β]2 → [α, β], is a
continuous function and consider the following equation

xn+1 = g(xn, xn−1), n = 0, 1, ..., (1.3)

satisfying the following conditions:
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(a) g(x, y) is non-decreasing in x ∈ [α, β] for each fixed y ∈ [α, β] and g(x, y) is non-increasing in y ∈
[α, β] for each fixed x ∈ [α, β].

(b) If (m,M) ∈ [α, β]× [α, β] is a solution of the system

M = g(M,m) and m = g(m,M),

then
m = M,

then Eq. (1.3) has a unique equilibrium x ∈ [α, β] and every solution of Eq. (1.3) converges to x.

2. Local stability of the equilibrium point of Eq. (1.1)

In this section we study the local stability character of the equilibrium point of Eq. (1.1). The equilibrium
points of Eq. (1.1) are given by the relation

x = ax+
x2

cx+ dx

or
x2(1− a)(c+ d) = bx2.

If (1− a)(c+ d) 6= b, then the unique equilibrium point is x = 0.
Let f : (0,∞)2 −→ (0,∞) be a continuously differentiable function defined by

f(u, v) = au+
bu2

cu+ dv
.

Therefore, at x = 0, we get (
∂f

∂u

)
x

= a+
bc+ 2bd

(c+ d)2
,

(
∂f

∂v

)
x

=
−bd

(c+ d)2
.

Then the linearized equation of Eq. (1.1) about x is

yn+1 −
(
a+

bc+ 2bd

(c+ d)2

)
yn−4 +

(
bd

(c+ d)2

)
yn−9 = 0. (2.1)

Theorem 2.1. Assume that
b(c+ 3d) < (c+ d)2(1− a), a < 1.

Then the equilibrium point x = 0 of Eq. (1.1) is locally asymptotically stable.

Proof. It is followed by Theorem A that, Eq. (2.1) is asymptotically stable if∣∣∣∣a+
bc+ 2bd

(c+ d)2

∣∣∣∣+

∣∣∣∣ bd

(c+ d)2

∣∣∣∣ < 1

or

a+
bc+ 3bd

(c+ d)2
< 1,

and so
b(c+ 3d) < (c+ d)2(1− a),

which completes the proof.
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3. Global attractivity of the equilibrium point of Eq. (1.1)

In this section we investigate the global attractivity character of solutions of Eq. (1.1).

Theorem 3.1. The equilibrium point x of Eq. (1.1) is global attractor if c(1− a) 6= b.

Proof. Let α, β are real numbers and assume that g : [α, β]2 → [α, β], be a function defined by

g(u, v) = au+
bu2

cu+ dv
.

Suppose that (m,M) is a solution of the system

M = g(M,m) and m = g(m,M).

Then from Eq. (1.1), we see that

M = aM +
bM2

cM + dm
, m = am+

bm2

cm+ dM
.

Therefore,

M(1− a) =
bM2

cM + dm
, m(1− a) =

bm2

cm+ dM
,

or,
c(1− a)(M2 −m2) = b(M2 −m2), c(1− a) 6= b.

Thus

M = m.

It follows by the Theorem B that x is a global attractor of Eq. (1.1) and then the proof is complete.

4. Boundedness of solutions of Eq. (1.1)

In this section we study the boundedness of solution of Eq. (1.1).

Theorem 4.1. Every solution of Eq. (1.1) is bounded if(
α+

β

γ

)
< 1.

Proof: Let {xn}∞n=−9 be a solution of Eq. (1.1). It follows from Eq. (1.1) that

xn+1 = axn−4 +
bx2n−4

cxn−4 + dxn−9
≤ axn−4 +

bx2n−4
cxn−4

=

(
a+

b

c

)
xn−4.

Then,
xn+1 ≤ xn−4 for all n ≥ 0.

Then the subsequences {x5n−4}∞n=0, {x5n−3}∞n=0, {x5n−2}∞n=0, {x5n−1}∞n=0, and {x5n}∞n=0 are decreasing and
so are bounded from above by

M = max{x−9, x−8, x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0}.

In order to confirm the result of this section we consider some numerical examples for x−9 = 6, x−8 = 11,
x−7 = 10, x−6 = 5, x−5 = 8, x−4 = 2, x−3 = 9, x−2 = 5, x−1 = 9, x0 = 6, and a = 0.5, b = 6, c = 9, d = 10.
(See Figure 1) and if we put x−9 = 10, x−8 = 6, x−7 = 5, x−6 = 11, x−5 = 10, x−4 = 2, x−3 = 8, x−2 = 2,
x−1 = 9, x0 = 7, and a = 0.8, b = 6, c = 9, d = 10. (See Figure 2.)
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5. Special cases of Eq. (1.1)

5.1. First equation

In this section we study the following special case of Eq. (1.1)

xn+1 = xn−4 +
x2n−4

xn−4 + xn−9
, (5.1)

where the initial conditions x−9, x−8, x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0 are arbitrary real numbers.

Theorem 5.1. Let {xn}∞n=−9 be a solution of Eq. (5.1). Then, for n = 0, 1, 2, ...

x5n−4 =e
n∏

i=1

(
f2i+1e+ f2ij

f2ie+ f2i−1j

)
, x5n−3 = d

n∏
i=1

(
f2i+1d+ f2ii

f2id+ f2i−1i

)
,

x5n−2 =c
n∏

i=1

(
f2i+1c+ f2ih

f2ic+ f2i−1h

)
, x5n−1 = b

n∏
i=1

(
f2i+1b+ f2ig

f2ib+ f2i−1g

)
,

x5n =a
n∏

i=1

(
f2i+1a+ f2if

f2ia+ f2i−1f

)
,

where x−9 = j, x−8 = i, x−7 = h, x−6 = g, x−5 = f, x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 =
a, {fm}∞m=1 = {1, 1, 2, 3, 5, 8, 13, ...}.
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Proof. For n = 0 result holds. Now suppose that n > 0 and that our assumption hold for n− 1, n− 2. That
is,

x5n−9 =e

n−1∏
i=1

(
f2i+1e+ f2ij

f2ie+ f2i−1j

)
, x5n−14 = e

n−2∏
i=1

(
f2i+1e+ f2ij

f2ie+ f2i−1j

)
,

x5n−8 =d

n−1∏
i=1

(
f2i+1d+ f2ii

f2id+ f2i−1i

)
, x5n−13 = d

n−2∏
i=1

(
f2i+1d+ f2ii

f2id+ f2i−1i

)
,

x5n−7 =c
n−1∏
i=1

(
f2i+1c+ f2ih

f2ic+ f2i−1h

)
, x5n−12 = c

n−2∏
i=1

(
f2i+1c+ f2ih

f2ic+ f2i−1h

)
,

x5n−6 =b
n−1∏
i=1

(
f2i+1b+ f2ig

f2ib+ f2i−1g

)
, x5n−11 = b

n−2∏
i=1

(
f2i+1b+ f2ig

f2ib+ f2i−1g

)
,

x5n−5 =a

n−1∏
i=1

(
f2i+1a+ f2if

f2ia+ f2i−1f

)
, x5n−10 = a

n−2∏
i=1

(
f2i+1a+ f2if

f2ia+ f2i−1f

)
.

Now, it follows from Eq. (5.1) that,

x5n−1 =x5n−6 +
x25n−6

x5n−6 + x5n−11

=b
n−1∏
i=1

(
f2i+1b+ f2ig

f2ib+ f2i−1g

)
+

b
n−1∏
i=1

(
f2i+1b+ f2ig

f2ib+ f2i−1g

)
b

n−1∏
i=1

(
f2i+1b+ f2ig

f2ib+ f2i−1g

)

b

n−1∏
i=1

(
f2i+1b+ f2ig

f2ib+ f2i−1g

)
+ b

n−2∏
i=1

(
f2i+1b+ f2ig

f2ib+ f2i−1g

)

=b
n−1∏
i=1

(
f2i+1b+ f2ig

f2ib+ f2i−1g

)
+

n−1∏
i=1

(
f2i+1b+ f2ig

f2ib+ f2i−1g

)(
f2n−1b+ f2n−2g

f2n−2b+ f2n−3g

)
(
f2n−1b+ f2n−2g

f2n−2b+ f2n−3g

)
+ 1

=b

n−1∏
i=1

(
f2i+1b+ f2ig

f2ib+ f2i−1g

)(
1 +

f2n−1b+ f2n−2g

f2n−1b+ f2n−2g + f2n−2b+ f2n−3g

)

=b

n−1∏
i=1

(
f2i+1b+ f2ig

f2ib+ f2i−1g

)(
1 +

f2n−1b+ f2n−2g

f2nb+ f2n−1g

)

=b

n−1∏
i=1

(
f2i+1b+ f2ig

f2ib+ f2i−1g

)(
f2n+1b+ f2ng

f2nb+ f2n−1g

)
.

Therefore,

x5n−1 = b

n∏
i=1

(
f2i+1b+ f2ig

f2ib+ f2i−1g

)
.

Also, we see from Eq. (5.1) that,

x5n =x5n−5 +
x5n−5

x5n−5 + x5n−10

=a

n−1∏
i=1

(
f2i+1a+ f2if

f2ia+ f2i−1f

)
+

a
n−1∏
i=1

(
f2i+1a+ f2if

f2ia+ f2i−1f

)
a
n−1∏
i=1

(
f2i+1a+ f2if

f2ia+ f2i−1f

)
(
f2n−1a+ f2n−2f

f2n−2a+ f2n−3f

)
+ 1
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=a
n−1∏
i=1

(
f2i+1a+ f2if

f2ia+ f2i−1f

)(
1 +

f2n−1a+ f2n−2f

f2n−1a+ f2n−2f + f2n−2a+ f2n−3f

)

=a
n−1∏
i=1

(
f2i+1a+ f2if

f2ia+ f2i−1f

)(
f2n+1a+ f2nf

f2na+ f2n−1f

)
.

Therefore,

x5n = a
n∏

i=1

(
f2i+1a+ f2if

f2ia+ f2i−1f

)
.

Similarly, one can prove other relations. Hence, the proof is completed.

5.2. Second equation

In this section we solve the specific form of the Eq. (1.1).

xn+1 = xn−4 +
x2n−4

xn−4 − xn−9
, (5.2)

where the initial conditions x−9, x−8, x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0 are arbitrary real numbers.

Theorem 5.2. Suppose that {xn}∞n=−9 be a solution of Eq. (5.2). Then for n = 0, 1, 2, ... we see that

x5n−4 =e
n∏

i=1

(
f2i+1e− f2ij
f2ie− f2i−1j

)
, x5n−3 = d

n∏
i=1

(
f2i+1d− f2ii
f2id− f2i−1i

)
,

x5n−2 =c
n∏

i=1

(
f2i+1c− f2ih
f2ic− f2i−1h

)
, x5n−1 = b

n∏
i=1

(
f2i+1b− f2ig
f2ib− f2i−1g

)
,

x5n =a
n∏

i=1

(
f2i+1a− f2if
f2ia− f2i−1f

)
.

Proof. Same as the proof of Theorem 5.1 and will be omitted.

We will confirm our result by considering some numerical examples assume for Eq. (5.1) that x−9 = 5,
x−8 = 1, x−7 = 4, x−6 = 3, x−5 = 7, x−4 = 8, x−3 = 9, x−2 = 2, x−1 = 9, x0 = 4 (See Figure 3) and when
we take x−9 = 11, x−8 = 9, x−7 = 5, x−6 = 2, x−5 = 6, x−4 = 2, x−3 = 10, x−2 = 8, x−1 = 5, x0 = 12 for
Eq. (5.2) (see Figure 4).
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5.3. Third equation

In this section we deal with the form of the solutions of Eq. (1.1).

xn+1 = xn−4 −
x2n−4

xn−4 + xn−9
, (5.3)

where the initial conditions x−9, x−8, x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0 are arbitrary real numbers.

Theorem 5.3. The solution of Eq. (5.3) will takes the following formulas for n = 0, 1, 2, ...

x5n−1 =
bg

fnb+ fn+1g
, x5n−2 =

ch

fnc+ fn+1h
,

x5n−3 =
di

fnd+ fn+1i
, x5n−4 =

ej

fne+ fn+1j
,

x5n =
af

fna+ fn+1f
.

Proof. For n = 0, the result holds. Now suppose that n > 0 and that our assumption holds for n− 1, n− 2.
That is,

x5n−9 =
ej

fn−1e+ fnj
, x5n−14 =

ej

fn−2e+ fn−1j
,

x5n−8 =
di

fn−1d+ fni
, x5n−13 =

di

fn−2d+ fn−1i
,

x5n−7 =
ch

fn−1c+ fnh
, x5n−12 =

ch

fn−2c+ fn−1h
,

x5n−6 =
bg

fn−1b+ fng
, x5n−11 =

bg

fn−2b+ fn−1g
,

x5n−5 =
af

fn−1a+ fnf
, x5n−10 =

af

fn−2a+ fn−1f
.

Now, it follows from Eq. (5.3) that,

x5n−1 =x5n−6 +
x25n−6

x5n−6 + x5n−11

=
bg

fn−1b+ fng
−


bg

fn−1b+ fng

bg

fn−1b+ fng
bg

fn−1b+ fng
+

bg

fn−2b+ fn−1g
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=
bg

fn−1b+ fng
−


bg

fn−2b+ fn−1g
(fn−2b+ fn−1g)

fn−2b+ fn−1g + fn−1b+ fng


=

bg

fn−1b+ fng

(
1− fn−2b+ fn−1g

fn−2b+ fn−1g + fn−1b+ fng

)
=

bg

fn−1b+ fng

(
fn−2b+ fn−1g + fn−1b+ fng + fn−2b+ fn−1g

fn−2b+ fn−1g + fn−1b+ fng

)
=

bg

fn−1b+ fng

(
fn−1b+ fng

fnb+ fn+1g

)
.

Thus

x5n−1 =
bg

fnb+ fn+1g
.

Also, from Eq. (5.3), we see that

x5n =x5n−5 −
x25n−10

x5n−10 + x5n−12

=
af

fn−1a+ fnf
−


af

fn−1a+ fnf

af

fn−1a+ fnf
af

fn−1a+ fnf
+

af

fn−2a+ fn−1f



=
af

fn−1a+ fnf
−


af

fn−1a+ fnf
(fn−2a+ fn−1f)

fn−2a+ fn−1f + fn−1a+ fnf


=

af

fn−1a+ fnf

(
fn−1a+ fnf

fna+ fn+1f

)
.

Then,

x5n =
af

fna+ fn+1f
.

Hence, the proof is completed.

We consider a numerical example of this special case assume x−9 = 5, x−8 = 8, x−7 = 2, x−6 = 7,
x−5 = 9, x−4 = 12, x−3 = 9, x−2 = 11, x−1 = 6, x0 = 12 (See Figure 5).
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Figure 5

5.4. Fourth equation

In this section we obtain the expressions of the solutions of Eq. (1.1).
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xn+1 = xn−4 −
x2n−4

xn−4 − xn−9
, (5.4)

where the initial conditions x−9, x−8, x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0 are arbitrary real numbers.

Theorem 5.4. Assume that {xn}∞n=−9 be a solution of Eq. (5.4). Then every solution of Eq. (5.4) is
periodic with period 30. Moreover, {xn}∞n=−9 takes the form

j, i, h, g, f, e, d, c, b, a,
−ej
e− j

,
−di
d− i

,
−ch
c− h

,
−bg
b− g

,
−af
a− f

,

−j,−i,−h,−g,−f,−e,−d,−c,−b,−a, ej

e− j
,
di

d− i
,

ch

c− h
,
bg

b− g
,
af

a− f
, j, i, h, g, f, e, d, c, b, a, ...,


or,

x30n−9 = j, x30n−8 = i, x30n−7 = h,

x30n−6 = g, x30n−5 = f, x30n−4 = e,

x30n−3 = d, x30n−2 = c, x30n−1 = b,

x30n = a, x30n+1 =
−ej
e− j

, x30n+2 =
−di
d− i

,

x30n+3 =
−ch
c− h

, x30n+4 =
−bg
b− g

, x30n+5 =
−af
a− f

,

x30n+6 = −j, x30n+7 = −i, x30n+8 = −h,
x30n+9 = −g, x30n+10 = −f, x30n+11 = −e,
x30n+12 = −d, x30n+13 = −c, x30n+14 = −b,

x30n+15 = −a, x30n+16 =
ej

e− j
, x30n+17 =

di

d− i
,

x30n+18 =
ch

c− h
, x30n+19 =

bg

b− g
, x30n+20 =

af

a− f
,

where x−9 = j, x−8 = i, x−7 = h, x−6 = g, x−5 = f, x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a.

Proof. Same as the proof of Theorem 5.3 and will be omitted.

Figure 6 shows the solution of Eq. (5.4) when x−9 = 8, x−8 = 4, x−7 = 2, x−6 = 3, x−5 = 10, x−4 = 14,
x−3 = 19, x−2 = 5, x−1 = 9, x0 = 13.
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6. Conclusion

In This paper we studied global stability, boundedness and the form of solutions of some special cases of
Eq. (1.1). In Section 2, we proved when b(c+ 3d) < (c+ d)2(1− a), Eq. (1.1) has local stability. In Section
3, we showed that the unique equilibrium of Eq. (1.1) is globally asymptotically stable if c(1 − a) 6= b. In

Section 4, we proved that the solution of Eq. (1.1) is bounded if

(
a+

b

c

)
< 1. In Section 5, we obtained

the form of the solution of four special cases of Eq. (1.1) and gave numerical examples of each of the case
with different initial values.
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