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Abstract

In this paper, we introduce several types of Ulam-Hyers stability, well-posedness and limit shadowing
property of the fixed point problem in M -metric spaces. Also, we give such results for fixed point problems
of Banach and Kannan contractive mappings in M -metric spaces and provide two examples to illustrate the
results presented herein. c©2016 All rights reserved.
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1. Introduction

It is well-known that the distance function or metric on arbitrary nonempty set is very useful in many
branches of mathematical analysis. For instance, we recall the following classical concept of the limit in
fundamental calculus:

• We say that the limit of a real-valued function y = f(x) as x closed to a point a ∈ R is a real number
L if, for any ε > 0, there exists δ > 0 such that

0 < |x− a| < δ =⇒ |f(x)− L| < ε.
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Indeed, the concept of the absolute value on R is a special case of a metric on a nonempty set X.

In 1922, one of the very famous results obtained in a metric space was Banach’s fixed point theorem
(or Banach’s contraction principle) which was introduced by Banach [5].

Theorem 1.1 (Banach’s fixed point theorem). Let (X, d) be a complete metric space and T : X → X
be a contractive mapping, that is, there exists L ∈ [0, 1) such that

d(Tx, Ty) ≤ Ld(x, y) (BC)

for all x, y ∈ X. Then T has a unique fixed point z ∈ X, that is, Tz = z. Moreover, for each x0 ∈ X, the
sequence {xn} defined by

xn+1 = Txn

for all n ∈ N ∪ {0} converges to the fixed point z of T .

Since then, because of their simplicity, usefulness and applications, it has become a very popular tools
in solving the existence problems in many branches of mathematical analysis.

From the Banach contractive condition (BC), it follows that the mapping T is continuous. In fact, to
show the existence of a fixed point of the mapping T , we have to use the continuity of the mapping T . Thus
it is natural to consider the following question:

• To show the existence of a fixed point of the mapping T , do there exist some contractive conditions
which do not force the mapping T to be continuous?

In 1968 and 1972, Kannan [11] and Chatterjea [8] gave the positive answers for this question by proving
the following fixed point theorems for contractive conditions in complete metric spaces, which are called the
Kannan contraction and Chatterjea contraction, respectively:

Theorem 1.2 (Kannan’s fixed point theorem). Let (X, d) be a complete metric space and T : X → X
be a Kannan contractive mapping, i.e., there exists k ∈ [0, 12) such that

d(Tx, Ty) ≤ k[d(x, Tx) + d(y, Ty)] (1.1)

for all x, y ∈ X. Then T has a unique fixed point z ∈ X, that is, Tz = z. Moreover, for each x0 ∈ X, the
sequence {xn} defined by

xn+1 = Txn

for all n ∈ N ∪ {0} converges to the fixed point z of T .

Theorem 1.3 (Chatterjea’s fixed point theorem). Let (X, d) be a complete metric space and T : X → X
be a Chatterjia contractive mapping, i.e., there exists k ∈ [0, 12) such that

d(Tx, Ty) ≤ k[d(x, Ty) + d(y, Tx)] (1.2)

for all x, y ∈ X. Then T has a unique fixed point z ∈ X, that is, Tz = z. Moreover, for each x0 ∈ X, the
sequence {xn} defined by

xn+1 = Txn

for all n ∈ N ∪ {0} converges to the fixed point z of T .

During the last few decades, the concept of a metric space has been generalized in many directions.

Especially, in 1994, Matthews [14] extended the concept of a metric to a partial metric and introduced
the notion of partial metric space. Indeed, the motivation for introducing the concept of a partial metric was
to obtain appropriate mathematical models in the theory of computation. Also, he obtained many results in
partial metric spaces. In particular, he gave the improvement of Banach’s contraction principle in the sense
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of partial metric spaces. Afterward, many mathematicians have studied the existence and uniqueness of a
fixed point for nonlinear mappings satisfying various contractive conditions in the setting of partial metric
spaces.

Recently, the concept of a partial metric space was extended to the concept of an M -metric space by
Asadi et al. in [3]. They also studied topological properties in such spaces and established some fixed point
results, which are generalization of Banach’s and Kannan’s fixed point theorems in the framework of partial
metric spaces.

Theorem 1.4 ([3]). Let (X,m) be a complete M -metric space and T : X → X be a Banach contractive
mapping, i.e., there exists k ∈ [0, 1) such that

m(Tx, Ty) ≤ km(x, y) (1.3)

for all x, y ∈ X. Then T has a unique fixed point z ∈ X, that is, Tz = z. Moreover, for each x0 ∈ X, the
sequence {xn} defined by

xn+1 = Txn

for all n ∈ N ∪ {0} converges to the fixed point z of T .

Theorem 1.5 ([3]). Let (X,m) be a complete M -metric space and T : X → X be a Kannan contractive
mapping, i.e., there exists k ∈ [0, 12) such that

m(Tx, Ty) ≤ k[m(x, Tx) +m(y, Ty)] (1.4)

for all x, y ∈ X. Then T has a unique fixed point z ∈ X, that is, Tz = z. Moreover, for each x0 ∈ X, the
sequence {xn} defined by

xn+1 = Txn

for all n ∈ N ∪ {0} converges to the fixed point z of T .

On the other hand, there are a number of results that studied and extended the Ulam-Hyers stability
for fixed point problems as Bota et al. [6], Bota-Boriceanu and Petrusel [7]. Also, the notion of the well-
posedness and the limit shadowing property of the fixed point problem have evoked much interest to many
researchers, for example, De Blassi and Myjak [10], Reich and Zaslavski [15], Lahiri and Das [12].

In this paper, first, we define various types of the Ulam-Hyers stability, the well-posedness and the limit
shadowing property of the fixed point problem in M -metric spaces which are generalizations of the well-
known concepts in metric spaces. Second, we deal with the Ulam-Hyers stability, the well-posedness and
the limit shadowing property of the fixed point problem for Banach and Kannan contractive mappings in
M -metric spaces. Finally, we furnish two suitable examples to demonstrate the validity of the hypotheses
of our main results in this paper.

2. Preliminaries

Throughout this work, we denote by N, R+ and R the sets of positive integers, nonnegative real numbers
and real numbers, respectively.

The following definitions, notations and lemma are needed in the sequel:

Definition 2.1 ([14]). Let X be a nonempty set and a function p : X × X → R+ satisfies the following
conditions: for all x, y, z ∈ X,

(P1) p(x, x) = p(y, y) = p(x, y)⇐⇒ x = y;

(P2) p(x, x) ≤ p(x, y);
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(P3) p(x, y) = p(y, x);

(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

Then p is said to be a partial metric and a pair (X, p) is called a partial metric space.

It is easy to see that a metric is also a partial metric, but the converse is not true in general case. Now,
we give some examples to show that a partial metric need not to be necessarily a metric.

Example 2.2. Let X = [0,∞) and p : X ×X → R+ be defined by

p(x, y) = max{x, y}

for all x, y ∈ X. Then p is a partial metric on X, but it is not a metric on X. Indeed, for any x > 0, we
have p(x, x) = x 6= 0.

Example 2.3. Let X = {[a, b] : a, b ∈ R, a ≤ b} and p : X ×X → R+ be defined by

p([a, b], [c, d]) = max{b, d} −min{a, c}

for all [a, b], [c, d] ∈ X. Then p is a partial metric on X, but it is not a metric on X. Indeed, p([1, 2], [1, 2]) = 1.

For a nonempty set X and a function m : X ×X → R+, the following notation are useful in the sequel:

(1) mxy := min{m(x, x),m(y, y)};

(2) Mxy := max{m(x, x),m(y, y)}.

Definition 2.4 ([3]). Let X be a nonempty set and m : X ×X → R+ be a function satisfying the following
conditions: for all x, y, z ∈ X,

(M1) m(x, x) = m(y, y) = m(x, y) if and only if x = y;

(M2) mxy ≤ m(x, y);

(M3) m(x, y) = m(y, x);

(M4) m(x, y)−mxy ≤ [m(x, z)−mxz] + [m(z, y)−mzy].

Then m is said to be an m-metric and a pair (X,m) is called an M -metric space.

A simple example of m-metric is arbitrary partial metric (see in [3]). Hence the class of m-metrics is
larger than the class of partial metrics. Then we obtain the following relation:

metric =⇒ partial metric =⇒ m-metric .

Remark 2.5. If m is an m-metric on a nonempty set X, then two functions mw,ms : X ×X → R+ defined
by

mw(x, y) := m(x, y)− 2mxy +Mxy

and

ms(x, y) :=

{
m(x, y)−mxy, x 6= y,
0, x = y,

are metrics on X.



A. Pansuwan, et al., J. Nonlinear Sci. Appl. 9 (2016), 4489–4499 4493

Now, we give some examples which show that an m-metric is a proper real generalization of a partial
metric.

Example 2.6. Let X = [0,∞) and m : X ×X → R+ be a function defined by

m(x, y) =
x+ y

2

for all x, y ∈ X. Then m is an m-metric, but it is not a p-metric. Indeed, m(3, 3) = 3 > 2 = m(1, 3).

Example 2.7. Let X = {1, 2, 3} and m : X ×X → R+ be a function defined by

m(x, y) =



1, x = y = 1,
9, x = y = 2,
5, x = y = 3,
10, x, y ∈ {1, 2} and x 6= y,
7, x, y ∈ {1, 3} and x 6= y,
8, x, y ∈ {2, 3} and x 6= y.

Then m is an m-metric but it is not a p-metric. Indeed, m(2, 2) = 9 > 8 = m(2, 3).

Next, we give the concepts of convergent sequence, m-Cauchy sequence and completeness in M -metric
spaces.

Definition 2.8. Let (X,m) be an m-metric space.

(1) A sequence {xn} in X is said to be convergent to point x ∈ X if

lim
n→∞

[m(xn, x)−mxnx] = 0; (2.1)

(2) A sequence {xn} in X is called an m-Cauchy sequence if

lim
n,m→∞

[m(xn, xm)−mxnxm ], lim
n,m→∞

[Mxnxm −mxnxm ] (2.2)

exist and are finite;

(3) A space X is said to be complete if every m-Cauchy sequence {xn} in X converges to a point x ∈ X
such that

lim
n→∞

[m(xn, x)−mxnx] = 0, lim
n→∞

[Mxnx −mxnx] = 0.

Lemma 2.9 ([3]). Let (X,m) be an m-metric space. Then the following assertions hold.

(1) {xn} is an m-Cauchy sequence in (X,m) if and only if it is a Cauchy sequence in the metric space
(X,mw);

(2) (X,m) is complete if and only if the metric space (X,mw) is complete. Furthermore, for a sequence
{xn} in X and x ∈ X, we have

lim
n→∞

mw(xn, x) = 0⇐⇒ lim
n→∞

[m(xn, x)−mxnx] = 0, lim
n→∞

[Mxnx −mxnx] = 0.

Moreover, two above assertions hold for ms.

Example 2.10. Let X = [0,∞) and m : X ×X → R+ be a function defined by

m(x, y) =
x+ y

2

for all x, y ∈ X. Then (X,m) is a complete M -metric space since (X,mw) = ([0,∞), 32 | · |) is a complete
metric space.
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3. On Fixed Point Problem for Banach’s Contractive Mappings in M-Metric Spaces

In this section, we introduce the concepts of the Ulam-Hyers stability, the well-posedness and the limit
shadowing property of the fixed point problem in M -metric spaces. Also, we study the Ulam-Hyers stability,
the well-posedness and the limit shadowing property results for the fixed point problem of Banach contractive
mappings in M -metric spaces.

Definition 3.1. Let (X,m) be an M -metric space and T : X → X be a mapping. The fixed point problem

x = Tx (3.1)

is said to be Ulam-Hyers stable if there exists c > 0 such that, for any ε > 0 and for each w∗ ∈ X which is
an ε-solution of the fixed point problem (3.1), i.e., w∗ satisfies the inequality

m(w∗, Tw∗) ≤ ε, (3.2)

there exists a solution x∗ ∈ X of the equation (3.1) such that

m(x∗, w∗) ≤ cε.

Definition 3.2. Let (X,m) be an M -metric space and T : X → X be a mapping. The fixed point problem
of T is said to be well-posed if the following conditions hold:

(1) T has a unique fixed point x∗ in X;

(2) for any sequence {xn} in X with lim
n→∞

m(xn, Txn) = 0, we have lim
n→∞

m(xn, x
∗) = 0.

Definition 3.3. Let (X,m) be an M -metric space and T : X → X be a mapping. The fixed point problem of
T is said to have the limit shadowing property in X if, for any sequence {xn} in X with lim

n→∞
m(xn, Txn) = 0,

it follows that there exists z ∈ X such that

lim
n→∞

m(Tnz, xn) = 0.

Theorem 3.4. Let (X,m) be a complete M -metric space and T : X → X be a Banach contractive mapping
with constant k ∈ [0, 1). Then the following assertions hold:

(1) the fixed point problem of T is Ulam-Hyers stable;

(2) the fixed point problem of T is well-posed;

(3) the fixed point problem of T has the limit shadowing property in X.

Proof. From Theorem 1.4, it follows that T has a unique fixed point and so let x∗ be a unique fixed point
of T .

Next, we claim that the fixed point problem of T is Ulam-Hyers stable. Let us ε > 0 and w∗ ∈ X be a
solution of (3.2), i.e.,

m(w∗, Tw∗) ≤ ε.
From (M4), we obtain that

m(x∗, w∗) ≤ [m(x∗, Tw∗)−mx∗(Tw∗)] + [m(Tw∗, w∗)−m(Tw∗)w∗ ] +mx∗w∗

= [m(Tx∗, Tw∗)−mx∗(Tw∗)] + [m(Tw∗, w∗)−m(Tw∗)w∗ ] +mx∗w∗

≤ [km(x∗, w∗)−mx∗(Tw∗)] +m(Tw∗, w∗) + [mx∗w∗ −m(Tw∗)w∗ ]

= [km(x∗, w∗)−mx∗(Tw∗)] +m(Tw∗, w∗)

+ [min{m(x∗, x∗),m(w∗, w∗)} −min{m(Tw∗, Tw∗),m(w∗, w∗)}]
= [km(x∗, w∗)−mx∗(Tw∗)] +m(Tw∗, w∗)

+ [min{m(x∗, x∗),m(w∗, w∗)} −m(w∗, w∗)]

≤ km(x∗, w∗) + ε,
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which implies that
m(x∗, w∗) ≤ cε,

where c := 1
1−k > 0. Therefore, the fixed point problem of T is Ulam-Hyers stable.

Next, we prove that the fixed point problem of T is well-posed. Assume that {xn} is a sequence in X
such that lim

n→∞
m(xn, Txn) = 0. Here, we show that lim

n→∞
m(x∗, xn) = 0. By (M4), we obtain that

m(x∗, xn) ≤ [m(x∗, Txn)−mx∗(Txn)] + [m(Txn, xn)−m(Txn)xn
] +mx∗xn

= [m(Tx∗, Txn)−mx∗(Txn)] + [m(Txn, xn)−m(Txn)xn
] +mx∗xn

≤ [km(x∗, xn)−mx∗(Txn)] +m(Txn, xn) + [mx∗xn −m(Txn)xn
]

= [km(x∗, xn)−mx∗(Txn)] +m(Txn, xn)

+ [min{m(x∗, x∗),m(xn, xn)} −min{m(Txn, Txn),m(xn, xn)}]
= [km(x∗, xn)−mx∗(Txn)] +m(Txn, xn)

+ [min{m(x∗, x∗),m(xn, xn)} −m(xn, xn)]

≤ km(x∗, xn) +m(Txn, xn)

for all n ∈ N, which implies that

m(x∗, xn) ≤ 1

1− k
m(Txn, xn) (3.3)

for all n ∈ N. Taking the limit as n → ∞ in (3.3), we have lim
n→∞

m(xn, x
∗) = 0 and hence the fixed point

problem of T is well-posed.
Finally, we prove that T has the limit shadowing property. Let {xn} be a sequence in X such that

lim
n→∞

m(xn, Txn) = 0. By the similar method as in (3.3), we have lim
n→∞

m(xn, x
∗) = 0. Since x∗ is a fixed

point of T , we have
lim
n→∞

m(xn, T
nx∗) = lim

n→∞
m(xn, x

∗) = 0.

Therefore, T has the limit shadowing property. This completes the proof.

Now, we give two examples to illustrate Theorem 3.4.

Example 3.5. Let X = [0,∞) and m : X ×X → R+ be a function defined by

m(x, y) =
x+ y

2

for all x, y ∈ X. Then (X,m) is a complete M -metric space. Define a mapping T : X → X by Tx = x
2 for

all x ∈ X. For each x, y ∈ X, we obtain

m(Tx, Ty) =
1

2

(x
2

+
y

2

)
=

1

2
m(x, y).

It follows that T is a Banach contractive mapping.
First, we claim that the fixed point problem of T is Ulam-Hyers stable. Assume that ε > 0 and w∗ ∈ X

is an ε-solution of the fixed point problem of T , that is,

m(w∗, Tw∗) ≤ ε =⇒ 1

2

(
w∗ +

w∗

2

)
≤ ε =⇒ w∗

2
≤ 2

3
ε.

It is easy to see that x∗ = 0 is a solution of the fixed point of T and

m(x∗, w∗) = m(0, w∗) =
w∗

2
≤ 2

3
ε
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and so the fixed point problem of T is Ulam-Hyers stable.
Next, we prove that the fixed point problem of T is well-posed. We can see that x∗ = 0 is a unique fixed

point of T .
Now, we assume that {xn} is a sequence in X such that lim

n→∞
m(xn, Txn) = 0, that is,

lim
n→∞

1

2

(
xn +

xn
2

)
= 0 =⇒ lim

n→∞
xn = 0.

Then we obtain
lim
n→∞

m(xn, x
∗) = lim

n→∞
m(xn, 0) = lim

n→∞

xn
2

= 0

and so the fixed point problem of T is well-posed.
Finally, we show that the fixed point problem of T has the limit shadowing property in X. Suppose

that {xn} is any sequence in X such that lim
n→∞

m(xn, Txn) = 0. It follows that lim
n→∞

xn = 0. We can see that

there is z = 0 ∈ X such that

lim
n→∞

m(Tnz, xn) = lim
n→∞

m(0, xn) = lim
n→∞

xn
2

= 0,

which implies that the fixed point problem of T has the limit shadowing property in X.

Example 3.6. Let X = [0, 1] and m : X ×X → R+ be a function defined by

m(x, y) =
x+ y

2

for all x, y ∈ X. Then (X,m) is a complete M -metric space. Define a mapping T : X → X by Tx = x2

2 for
all x ∈ X. For each x, y ∈ X, we have

m(Tx, Ty) =
1

2

(
x2

2
+
y2

2

)
≤ 1

2

(x
2

+
y

2

)
=

1

2
m(x, y).

This implies that T is a Banach contractive mapping.
First, we prove that the fixed point problem of T is Ulam-Hyers stable. Suppose that ε > 0 and w∗ ∈ X

is an ε-solution of the fixed point problem of T , that is,

m(w∗, Tw∗) ≤ ε =⇒ 1

2

(
w∗ +

(w∗)2

2

)
≤ ε =⇒ w∗

2
+

(w∗)2

4
≤ ε.

We can show that x∗ = 0 is a solution of the fixed point of T and hence

m(x∗, w∗) = m(0, w∗) =
w∗

2
≤ w∗

2
+

(w∗)2

4
≤ ε.

This finishes our claim.
Next, we prove that the fixed point problem of T is well-posed. It is easy to see that x∗ = 0 is a unique

fixed point of T . Now, we assume that {xn} is a sequence in X such that lim
n→∞

m(xn, Txn) = 0. For each

n ∈ N, we obtain

m(xn, x
∗) = m(xn, 0) =

xn
2
≤ 1

2

(
xn +

xn
2

)
= m(xn, Txn).

Since lim
n→∞

m(xn, Txn) = 0, we also have lim
n→∞

m(xn, x
∗) = 0 and so the fixed point problem of T is well-posed.

Finally, we prove that the fixed point problem of T has the limit shadowing property in X. Suppose
that {xn} is any sequence in X so that lim

n→∞
m(xn, Txn) = 0. Let us z := 0 ∈ X. It follows from

m(Tnz, xn) = m(0, xn) =
xn
2
≤ 1

2

(
xn +

xn
2

)
= m(xn, Txn)→ 0

as n→∞. Thus the fixed point problem of T has the limit shadowing property in X.
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4. On Fixed Point Problem for Kannan’s Contractive Mappings in M-Metric Spaces

The purpose of this section is to introduce another type of the Ulam-Hyers stability, the well-posedness
and the limit shadowing property of the fixed point problem in M -metric spaces. By using these concept,
we give the second main results for the fixed point problem of Kannan contractive mappings in M -metric
spaces.

Definition 4.1. Let (X,m) be an M -metric space and T : X → X be a mapping. The fixed point problem

x = Tx (4.1)

is said to be Ulam-Hyers stable type (K) if there exists c > 0 such that, for each ε > 0, for each w∗ ∈ X
which is an ε-solution of the fixed point equation (4.1), i.e., w∗ satisfies the inequality

m(w∗, Tw∗) ≤ ε, (4.2)

there exists a solution x∗ ∈ X of the equation (4.1) such that

m(x∗, w∗)− cm(x∗, x∗) ≤ cε.

Remark 4.2. It is easy to see that the Ulam-Hyers stability of the fixed point problem implies the Ulam-Hyers
stability type (K).

Definition 4.3. Let (X,m) be an M -metric space and T : X → X be a mapping. The fixed point problem
of T is said to be well-posed type (K) if the following conditions hold:

(1) T has a unique fixed point x∗ in X;

(2) there exists c > 0 such that, for any sequence {xn} in X such that lim
n→∞

m(xn, Txn) = 0, we have

lim
n→∞

m(xn, x
∗) = cm(x∗, x∗).

Definition 4.4. Let (X,m) be an M -metric space and T : X → X be a mapping. The fixed point problem of
T is said to have the limit shadowing property type (K) in X if there exists c > 0 such that, for any sequence
{xn} in X with lim

n→∞
m(xn, Txn) = 0, it follows that there exists z ∈ X such that lim

n→∞
m(Tnz, xn) = cm(z, z).

Theorem 4.5. Let (X,m) be a complete M -metric space and T : X → X be a Kannan contractive mapping
with constant k ∈ [0, 1/2). Then the following assertions hold:

(1) the fixed point problem of T is Ulam-Hyers stable type (K);

(2) the fixed point problem of T is well-posed type (K);

(3) the fixed point problem of T has the limit shadowing property type (K) in X.

Proof. From Theorem 1.5, it follows that T has a unique fixed point and so let x∗ be a unique fixed point
of T .

Now, we claim that the fixed point problem of T is Ulam-Hyers stable type (K). Let ε > 0 and w∗ ∈ X
be a solution of (3.2), that is,

m(w∗, Tw∗) ≤ ε.
From (M4), we obtain

m(x∗, w∗) ≤ [m(x∗, Tw∗)−mx∗(Tw∗)] + [m(Tw∗, w∗)−m(Tw∗)w∗ ] +mx∗w∗

= [m(Tx∗, Tw∗)−mx∗(Tw∗)] + [m(Tw∗, w∗)−m(Tw∗)w∗ ] +mx∗w∗

≤ m(Tx∗, Tw∗) +m(Tw∗, w∗) +mx∗w∗

≤ k[m(x∗, Tx∗) +m(w∗, Tw∗)] +m(Tw∗, w∗) +m(x∗, x∗)

= k[m(x∗, x∗) +m(w∗, Tw∗)] +m(Tw∗, w∗) +m(x∗, x∗)

= (k + 1)m(x∗, x∗) + (k + 1)ε,
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which implies that
m(x∗, w∗)− cm(x∗, x∗) ≤ cε,

where c := k + 1 > 0. Thus the fixed point problem of T is Ulam-Hyers stable type (K).
Next, we prove that the fixed point problem of T is well-posed type (K). Assume that {xn} is a sequence

in X such that lim
n→∞

m(xn, Txn) = 0. From (M4), it follows that

m(x∗, xn) ≤ [m(x∗, Txn)−mx∗(Txn)] + [m(Txn, xn)−m(Txn)xn
] +mx∗xn

= [m(Tx∗, Txn)−mx∗(Txn)] + [m(Txn, xn)−m(Txn)xn
] +mx∗xn

≤ m(Tx∗, Txn) +m(Txn, xn) +mx∗xn

≤ k[m(x∗, Tx∗) +m(xn, Txn)] +m(Txn, xn) +m(x∗, x∗)

= k[m(x∗, x∗) +m(xn, Txn)] +m(Txn, xn) +m(x∗, x∗)

= (k + 1)[m(x∗, x∗) +m(xn, Txn)]

for all n ∈ N. Taking the limit as n→∞ in the above inequality, we have

lim
n→∞

m(xn, x
∗) = (k + 1)m(x∗, x∗) (4.3)

and so the fixed point problem of T is well-posed type (K).
Finally, we prove that the fixed point problem of T has the limit shadowing property type (K). Let {xn}

be a sequence in X such that lim
n→∞

m(xn, Txn) = 0. Since x∗ is a fixed point of T , from (4.3), it follows that

lim
n→∞

m(xn, T
nx∗) = lim

n→∞
m(xn, x

∗) = (k + 1)m(x∗, x∗).

Therefore, the fixed point problem of T has the limit shadowing property type (K). This completes the
proof.

5. Conclusions and Open Problems

In this paper, based on the fixed point results of Asadi et al. [3], we have studied the Ulam-Hyers
stability, well-posedness and limit shadowing property results for the fixed point problems of Banach and
Kannan contractive mappings in M -metric spaces. Also, we give two examples to illustrate the validity of
the hypotheses and degree of utility of our results.

However, several fixed point results established in M -metric spaces and other spaces have been studied
by many mathematicians, for example, see Asadi’s results in [2] and Abodayeh et al. [1]. Therefore, in
the next paper, we will study the Ulam-Hyers stability, well-posedness and limit shadowing of fixed point
problems for various kinds of nonlinear mappings in many distance spaces.

Finally, we propose the following problems:

(1) Can we define other types of the Ulam-Hyers stability, well-posedness and limit shadowing property
of the fixed point problem in M -metric spaces?

(2) Can we extend the results in this paper to some other spaces, for example, b-metric spaces [9], complex-
valued metric spaces [4], C∗-algebra-valued metric spaces [13] and others?

(3) Can we define new contractive condition in M -metric spaces and prove new Ulam-Hyers stability,
well-posedness and limit shadowing property of the fixed point problems in M -metric spaces?
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