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Abstract

In this paper, a general procedure to develop some four-parametric with-memory methods to find simple
roots of nonlinear equations is proposed. The new methods are improved extensions of with derivative with-
out memory iterative methods. We used four self-accelerating parameters to boost up the convergence order
and computational efficiency of the proposed methods without using any additional function evaluations.
Numerical examples are presented to support the theoretical results of the methods. We further investigate
the dynamics of the methods in the complex plane. c©2016 All rights reserved.
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1. Introduction

Approximation of simple roots of nonlinear equations with a suitable level of accuracy has a vital im-
portance in various branches of sciences and engineering. Iterative root solvers are extensively used to find
simple roots of nonlinear equations f(x) = 0 [11, 12]. According to Traub [18], iterative root solvers can
be categorized as one-step and multi-step solvers. One-step root solvers are not fruitful due to their less
efficiency. However, multi-step root solvers are of great importance because they produce approximations of
great accuracy. Multi-step root solvers that use only information from the recent iteration are called with-
out memory root solvers and the root finding methods that use information from the recent and previous
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iteration are known as with-memory iterative root solvers. Numerous multi-step with and without memory
iterative root solvers have been developed by several researchers . Due to the conjecture of Kung and Traub
[8], an optimal multi-step without memory root solver can achieve the order of convergence at most 2m−1

requiring m functional evaluations per iteration. Among all discussed methods, multi-step with-memory
root solvers are of more significance because they significantly improve the convergence speed and compu-
tational efficiency of the without memory root solvers without using any additional functional evaluations.
Generally with-memory root solvers are constructed by using one or more free parameters or self-accelerators
in any optimal derivative free without memory root solver. Newton’s interpolating polynomials are used to
approximate these self accelerators by using information from the current and previous iterations. The first
without memory derivative free method is the well known Steffensen’s method [17], which is a variant of
Newton’s method [11]:

xm+1 = xm −
f2(xm)

(f(xm + f(xm))− f(xm))
, m ≥ 0. (1.1)

A lot of derivative free without memory optimal root finding methods have been developed in recent years,
for example (see [3, 9, 13, 15, 16, 20, 21]). Sometimes it is not possible to improve the convergence order
and the efficiency index of without memory methods without additional functional evaluations based on free
parameters [3]. Recently, several multi-step with-memory, specially two-steps and three-steps root solvers
based on without memory derivative free methods have been developed, which can be seen in [2, 4, 5, 9, 10,
12, 15, 19]. Traub [18], was the first who developed the first with-memory method by modifying the famous
Steffensen’s iterative scheme (1.1). Its iterative scheme is:

wm = xm + pnf(xm),

xm+1 = xm −
f(xm)

f [xm, wm]
, m ≥ 0,

(1.2)

where, x0, p0 are given, pm+1 = −1
N ′1(xm)

, N1 = f(xm) + (x− xm)f [xm, wm] and pm is a self-accelerator. The

convergence order of the method (1.2) is 2.41421. A large number of derivative free multi-step methods have
been developed by using the Traub’s method [18] (1.2), in the first step for example (see [9, 13, 20, 21]). In
[2], Cordero et al. presented a two-parametric with-memory family of two-steps methods based on a without
memory fourth order method of Zheng et al. [21] as follows:

wm = xm + βmf(xm), βm = − 1

N ′3(xm)
, γm = − N ′′4 (wm)

2N ′4(wm)
, m ≥ 1,

ym = xm −
f(xm)

f [xm, wm] + γmf(wm)
,

xm+1 = ym −
f(ym)

f [xm, ym] + (ym − xm)f [xm, wm, ym]
,

(1.3)

where, x0, β0, γ0 are given. It is proved that the with-memory method (1.3) has R-order of convergence at
least 7 and its index of efficiency is 1.913. Lotfi et al. in [10], presented a new tri-parametric with-memory
method based on without memory two-step variant of Steffensen’s method:

wm = xm + βmf(xm), m ≥ 0,

ym = xm −
f(xm)

f [xm, wm]

(
1 + ηm

f(wm)

f [xm, wm]

)
,

xm+1 = ym −
f(ym)

f [xm, ym] + ζm(ym − xm)(ym − wm)

(
Dm + (Dm − 1)4

)
,

(1.4)

where x0, β0, q0, t0 are given Dm = f [xm,wm]
f [ym,wm] and

βm = − 1

N ′4(xm)
, ηm =

N ′′5 (wm)

2N ′5(wm)
, ζm = −1

4

N ′′6 (wm)2

N ′6(wm)
+

1

6
N ′′′6 (wm), m ≥ 1, (1.5)
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where N4(t), N5(t) and N6(t) are fourth, fifth and sixth degree interpolating polynomials respectively
which pass through best saved points. It is demonstrated that the R-order of convergence of (1.4) is at
least 7.77200 and the efficiency index is 7.77200 ≈ 1.98082. Cordero and Torregrosa in [3], developed a
three-step two-parametric derivative free method by using the approximation f ′(xm) ≈ f [xm, zm], where
zm = xm + γf(xm)4 in the three-step iterative method of Sharma et al. [14], which is given by:

ym = xm −
f(xm)

f [xm, zm]
, m ≥ 0

um+1 = ym −
f(xm) + βf(ym)

f(xm) + (β − 2)f(ym)

f(ym)

f [xm, zm]
,

xm+1 = xm −
(P +Q+R)f(xm)

Pf [um, xm] +Qf [zm, xm] +Rf [ym, xm]
,

(1.6)

where P = (xm − ym)f(xm)f(ym), Q = (ym − um)f(ym)f(um) and R = (um − xm)f(um)f(xm) with error
equation

em+1 = c22((1 + 2β)c22 − c3)(c32 − 2c3c2 + c4)e
8
m +O(e9m). (1.7)

Obviously the error equation (1.7) cannot allow to improve the convergence order of (1.6) by varying the
free parameters γ and β. Thus (1.6) cannot be extended to with-memory root solver.

Since, commonly only the derivative free methods can be extended to with-memory, in this work, firstly,
we design a procedure to develop some new optimal without memory derivative free root solvers which
can be extended to with-memory root solvers. Secondly, we extend a proposed without memory method to
with-memory by approximating the self-accelerating parameters which arise in the error equations of without
memory methods. This acceleration is based on the information from current and the previous iterative step.
Newton’s interpolating polynomials are used to calculate the parameters in such a way that the convergence
order and efficiency of the without memory root solvers is significantly increased from 8 to 15.5156. The
important advantage of these with-memory root solvers is that the convergence speed is accelerated without
additional functional evaluations. Let f(x) be a function defined on an interval D, where D is the smallest
interval containing m+ 1 distinct nodes x0, x1, . . . , xm. Then, the divided difference f [x0, x1, . . . , xm] with

mth-order is defined by f [x0] = f(x0), and f [x0, x1, . . . , xm] = f [x1,x2,...,xm]−f [x0,x1,...,xm−1]
xm−x0 .

If ρ is the convergence order of an iterative method and η is the total number of functional evaluations
per iterative step then the index E = ρ1/η is used to measure the efficiency of an iterative method and
thus called efficiency index commonly. The rest of this work is organized as follows. Section 2 is devoted to
construct three-step derivative free without memory methods extendable to with-memory methods involving
four free parameters. Section 3 provides the four-parametric with-memory methods and their R-order of
convergence by extending a without memory method given in Section 2. To support the given theory, some
numerical results are presented in Section 4. The dynamical analysis of the iterative methods is given in
Section 5 and finally, Section 6 provides the conclusions of this paper.

2. Procedure to Construct The Derivative Free Root Solvers Extendable to With-memory

The main aim of this section is to construct three-step derivative free without memory methods extend-
able to with-memory based on any optimal two-step derivative-involved method. We use weight function
approach at the second step of any optimal two-step with-derivative method followed by Newton’s method
in the third step and the first derivative arising at each step is calculated using suitable approximations.
In this way the convergence order of the proposed methods is preserved and can be increased by varying
the involved free parameters. This increase of convergence will be discussed in the next section by with-
memorization of the free parameters. We consider the following general optimal two-step method involving
first derivative of the function:

ym = φ1(xm), m ≥ 0,

zm = φ2(xm, ym),
(2.1)

where φ1and φ2 are real functions such that φ1 is the well known Newton’s scheme which involves the values
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f(xm) and f ′(xm) providing the quadratic convergence of the sequence xm and φ2 requires the previously
computed values f(xm), f ′(xm) and the new value f(ym) to give the fourth order convergence. Based on any
two-step with-derivative optimal method like (2.1), we design a general three-step without-derivative method
extendable to with-memory as follows. We use a weight function S(um) in the second step of (2.1) and add
another real function φ3, (Newton’s method [11]) in the third step. The values of first derivative involved in
φ1, φ2 and φ3 are approximated by f [xm, wm] + qf(wm), f [ym, wm] + qf(wm) + s(ym − wm)(ym − xm) and
f [ym, zm]+f [zm, ym, xm](zm−ym)+f [zm, ym, xm, wm](zm−ym)(zm−xm)+ t(zm−wm)(zm−ym)(zm−xm)

respectively, where um = f(ym)
f(xm) and the scalars p, q, s and t are freely chosen parameters. Hence, we obtain

the following general three-step method having no derivative:

ym = φ1(xm, wm), wm = xm + pf(xm), m ≥ 0,

zm = φ2(xm, wm, ym),

xm+1 = φ3(xm, wm, ym, zm),

(2.2)

were φ1 is the famous Steffensen’s method [17] employing the values f(xm) and f(wm), φ2 is selected such
that it requires the previously calculated values f(xm), f(wm) and the new value f(ym) preserving the
fourth order convergence and φ3 is chosen such that it uses the already computed values f(xm), f(wm),
f(ym) and the new value f(zm) to provide the optimal eighth order convergence.

For instance, consider the optimal fourth order two-step King’s method [7],

ym = xm −
f(xm)

f ′(xm)
, m ≥ 0,

zm = ym −
f(ym)

f ′(xm)

f(xm) + λf(ym)

f(xm) + (λ− 2)f(ym)
, λ ∈ R.

(2.3)

Applying the above procedure (2.2) we propose the following without memory optimal eighth order modifi-
cation of (2.3) having no derivative:

ym = xm −
f(xm)

f [xm, wm] + qf(wm)
, wm = xm + pf(xm), m ≥ 0,

zm = ym − S(um)
f(xm) + λf(ym)

f(xm) + (λ− 2)f(ym)
× f(ym)

f [ym, wm] + qf(wm) + s(ym − wm)(ym − xm)
,

xm+1 = zm −
f(zm)

Qm
,

(2.4)

where um = f(ym)
f(xm) , λ ∈ R, Qm = f [ym, zm] + f [zm, ym, xm](zm − ym) +f [zm, ym, xm, wm](zm − ym)(zm −

xm)+ t(zm−wm)(zm−ym)(zm−xm), p, q, s and t are free parameters. Obviously, we can state the following
theorem by imposing the conditions on S(um) to achieve optimal order of convergence for (2.4).

Theorem 2.1. Let ω ∈ I be a simple root of a sufficiently differentiable function f : I ⊆ R → R, where
I ⊆ R is an open set and the starting point x0 is close enough to γ. Then, the scheme (2.4) is eighth order
convergent if S(0) = 1, S′(0) = −1 and |S′′(0)| <∞, and possesses the following error equation:

em+1 =
1

4c21
(c2 + q)2(1 + pc1)

4
(
− 4λq2pc21 + 2q2pc21 + S′′(0)q2pc21 + 4qc2pc

2
1 − 8λqc2pc

2
1

+ 2S′′(0)qc2pc
2
1 − 4λc22pc

2
1 + 2c22pc

2
1 + S′′(0)c22pc

2
1 − 4c1λq

2 + 2c1q
2 + c1S

′′(0)q2 − 8c1λqc2

+ 2c1S
′′(0)qc2 − 4c1λc

2
2 + 2c1c3 − 2c1c

2
2 + c1S

′′(0)c22 − 2s
)(

2r − 2c1c4 − 2sc2 + 2c1c1c3

− 2c32c1 + 2q2c2c1 − 4c1λc
3
2 − 8c1λqc

2
2 − 4c2c1λq

2 + c1S
′′(0)c32 + 2c1S

′′(0)qc22 + c2c1S
′′(0)q2

+ 2c32pc
2
1 + 4qc22pc

2
1 + 2q2c1pc

2
1 − 4λc32pc

2
1 − 8λqc21pc

2
1 − 4c1λq

2pc21 + S′′(0)c32pc
2
1

+ 2S′′(0)qc22pc
2
1 + c2S

′′(0)q2pc21

)
e8m +O(e9m),

(2.5)
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where, ck = f (k)(ω)
k!f ′(ω) , k ≥ 2.

Proof. The proof would be similar to those already considered in [9, 13, 15, 16, 20], using the Taylor
expansions of the function f in the mth iterative step. Hence, it is omitted.

In the same fashion, we, now, extend the optimal fourth order iterative method of Kung and Traub [8],
which is given by:

ym = xm −
f(xm)

f ′(xm)
, m ≥ 0,

zm = ym −
f(ym)

f ′(xm)

1

(1− f(ym)/f(xm))2
.

(2.6)

We obtain the following three-step without memory method based on (2.6):

ym = xm −
f(xm)

f [xm, wm] + qf(wm)
, wm = xm + pf(xm), m ≥ 0,

zm = ym − S(um)
1

(1− f(ym)/f(xm))2
× f(ym)

f [ym, wm] + qf(wm) + s(ym − wm)(ym − xm)
,

xm+1 = zm −
f(zm)

Qm
,

(2.7)

where, p, q, s, t, um and Qm are same as given in (2.4). The error equation of (2.7) is:

em+1 =
1

c21
(c2 + q)2(1 + pc1)

4
(
pq2c21 + 2qc2pc

2
1 + pc22c

2
1 + c1q

2

+ 4qc1c2 − c1c3 + 3c1c
2
2 + s

)(
− t+ c1c4 + sc2 − c1c2c3 + 3c32c1

+ 4qc22c1 + q2c2c1 + c32pc
2
1 + 2qc22pc

2
1 + q2c2pc

2
1

)
e8m +O(e9m).

(2.8)

In [1], Chun suggested the following fourth order two-step derivative involved method:

ym = xm −
f(xm)

f ′(xm)
, m ≥ 0,

zm = ym −
f(xm)3

f(xm)3 − 2f(xm)2f(ym)− f(xm)f(ym)2 − 1
2f(ym)3

f(ym)

f ′(xm)
.

(2.9)

We suggest the following three-step without memory derivative free method based on (2.9):

ym =xm −
f(xm)

f [xm, wm] + qf(wm)
, wm = xm + pf(xm),

zm =ym − S(um)
f(xm)3

f(xm)3 − 2f(xm)2f(ym)− f(xm)f(ym)2 − 1
2f(ym)3

×

f(ym)

f [ym, wm] + qf(wm) + s(ym − wm)(ym − xm)
,

xm+1 =zm −
f(zm)

Qm
,

(2.10)

where, p, q, s, t, um and Qm are same as given in (2.4). The error equation of (2.10) is:

em+1 =
1

c21
(c2 + q)2(1 + pc1)

4
(

2q2pc21 + 4qc2pc
2
1 + 2c22pc

2
1 + 2c1q

2

+ 2c1qc2 + c1c3 − s
)(
t− c1c4 − sc2 + c1c2c3 + 2qc22c1 + 2q2c2c1

+ 2c32pc
2
1 + 4qc22pc

2
1 + 2q2c2pc

2
1

)
e8m +O(e9m).

(2.11)
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3. Four-Parametric With-Memory Root Solvers

In this section, we give our main contribution by extracting a with-memory method from our newly
suggested without memory method (2.4). For this, we approximate the involved parameters in such a way
that the local order of convergence is increased. It can be noted that the coefficient of e8m in (2.5) disappears

if p = −1
c1
, q = −c2, s = c1c3 and t = c1c4, where c1 = f ′(ω) and ck = f (k)(ω)

k!f ′(ω) , k ≥ 2. Therefore, to construct

with-memory method the free parameters p, q, s and t are calculated by the formulas pn = −1
f ′(ω)

, qn =

− f ′′(ω)

2f ′(ω)
, sn = f ′′′(ω)

6 and tn = f iv(ω)
24 respectively, for n = 1, 2, · · · . Where f ′, f ′′(ω), f ′′′(ω) and f iv(ω) are

the best approximations to f ′(ω), f ′′(ω), f ′′′(ω) and f iv(ω), since exact value of simple root is not known
and consequently the derivatives of the function cannot be computed. The approximations f ′, f ′′(ω), f ′′′(ω)
and f iv(ω) are computed by Newton’s interpolating polynomials of appropriate degrees respectively. Hence,
we replace the free parameters p, q, s and t in (2.4) with self-accelerators pn, qn, sn and tn and present the
following with-memory root solver:

ym =xm −
f(xm)

f [xm, wm] + qnf(wm)
, wm = xm + pnf(xm), m ≥ 2,

zm =ym − S(um)
f(xm) + λf(ym)

f(xm) + (λ− 2)f(ym)
× f(ym)

f [ym, wm] + qnf(wm) + sn(ym − wm)(ym − xm)
,

xm+1 =zm −
f(zm)

Qm
,

(3.1)

where um and Qm are same as given in (2.4) and

pn =
−1

N ′4(xm)
, qn = − N ′′5 (wm)

2N ′5(wm)
, sn =

N ′′′6 (ym)

6
, tn =

N iv
7 (zm)

24
. (3.2)

The self-accelerators are calculated recursively using available information in the current and previous
iterations. Hence, we use Newton’s interpolation method to approximate the derivatives of f , where
N4(xm), N5(wm), N6(ym) and N7(zm) are Newton’s interpolation polynomials of degree four, five, six and
seven respectively defined by:

N4(t) = N4(t;xm, zm−1, ym−1, wm−1, zm−2),

N5(t) = N5(t;wm, xm, zm−1, ym−1, wm−1, zm−2),

N6(t) = N6(t; ym, wm, xm, zm−1, ym−1, wm−1, zm−2),

N7(t) = N7(t; zm, ym, wm, xm, zm−1, ym−1, wm−1, zm−2),

for any m ≥ 2. We will now prove that the with-memory method (3.1) has convergence order 15.51560 by
applying the Herzberger’s matrix method [6] provided that self-accelerators given in (3.2) are used.

Theorem 3.1. Let x0 be an initial approximation sufficiently close to the root ω of the function f(x). If
the parameters pn, qn, sn and tn are recursively computed by the forms given in (3.2), then the convergence

R-order of (3.1) is at least 15.51560 with the efficiency index 15.51560
1
4 ≈ 1.98468.

Proof. To determine the R-order of convergence, we use the Herzberger’s matrix method. It can be seen that
the spectral radius of a matrix A(s) = (hij)(1 ≤ i, j ≤ s) associated with a with-memory one-step s−point
method xk = φ(xk−1, xk−2, . . . , xk−s) is the lower bound of the its order of convergence. The elements of
this matrix are given by:

h1,j = number of function evaluations required at point xk−j, j = 1, 2, . . . , s,

hi,i−1 = 1 for i = 2, 3, . . . , s,

hi,j = 0. otherwise.

On the other hand, the spectral radius of product of the matrices A1, A2, . . . , As, is the lower bound of
order of an s−step method φ = φ1 ◦ φ2 ◦ · · · ◦ φs, where the matrices Ar correspond to the iteration steps
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φr, 1 ≤ r ≤ s. From the relations (3.1) and (3.2), we construct the corresponding matrices as follows:

xm+1 =φ1 (zm, ym, wm, xm, zm−1, ym−1, wm−1, xm−1)

→ A1 =



1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


,

zm =φ2 (ym, wm, xm, zm−1, ym−1, wm−1, xm−1, zm−2)

→ A2 =



1 1 1 1 1 1 1 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


,

ym =φ3 (wm, xm, zm−1, ym−1, wm−1, xm−1, zm−2, ym−2)

→ A3 =



1 1 1 1 1 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


,

wm =φ4 (xm, zm−1, ym−1, wm−1, xm−1, zm−2, ym−2, wm−2)

→ A4 =



1 1 1 1 1 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


.

Hence, we obtain

A(4) = A1 ·A2 ·A3 ·A4 =



8 8 8 8 8 0 0 0
4 4 4 4 4 0 0 0
2 2 2 2 2 0 0 0
1 1 1 1 1 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0


.
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The eigen values of A(4) are {0, 0, 0, 0, 0, 0, 15.51560977,−.515609770} . Therefore, the lower bound of the
R-order of convergence of the method (3.1) is the spectral radius of matrix A(4), which is ρ(A(4)) = 15.51560.

Remark 3.2. It can be seen that, we have obtained the R-order 15.51560, which gives the highest efficiency
index 1.98468 for the presented with-memory method (3.1).

To develop a special case of (3.1), we choose S(um) in such a way that the following conditions are
satisfied:

S(0) = 1, S′(0) = −1, S′′(0) <∞.

For example we choose S(um) = 1− um in (3.1), where, um = f(ym)
f(xm) . Now, we can define a particular with

memory method as follows:
FWM:

ym =xm −
f(xm)

f [xm, wm] + qnf(wm)
, wm = xm + pnf(xm),m ≥ 2,

zm =ym − (1− um)
f(xm) + λf(ym)

f(xm) + (λ− 2)f(ym)

× f(ym)

f [ym, wm] + qnf(wm) + sn(ym − wm)(ym − xm)
,

xm+1 =zm −
f(zm)

Qm
,

(3.3)

where Qm is same as given in (2.4) and

pn =
−1

N ′4(xm)
, qn = − N ′′5 (wm)

2N ′5(wm)
, sn =

N ′′′6 (ym)

6
, tn =

N iv
7 (zm)

24
. (3.4)

4. Numerical Results

In this section, numerical examples are taken from [10] to test the proposed with-memory root solver (3.3)
(FWM) in comparison with the with-memory family of methods of Kung and Traub [8] and with-memory
method of Lotfi et al. [10] (1.4). Kung and Traub [8] presented the iterative method Φr(f) (r = −1, 0, . . . , n)
as follows:

yk,0 = Φ0(f)(xk) = xk, yk,−1 = Φ−1(f)(xk) = xk + γkf(xk), k ≥ 0,

yk,r = Φr(f)(x) = Pr(0), r = 1, . . . , n, for n > 0,

xk+1 = yk,n = Φn(f)(xk),

(4.1)

where x0 is an initial approximation and n is an arbitrary natural number. The free parameter, γk is calcu-
lated by Newton’s interpolation polynomial of third degree and Pr(t) is the rth degree inverse interpolating
polynomial such that Pr(f(yk,m)) = yk,m, m = −1, 0, . . . , r − 1. All numerical computations are performed
using the programming package Maple16 with multiple-precision arithmetic by applying 3000 fixed floating
point arithmetic. For the comparison, we have taken the following test functions:

f1(x) = ex
2−3x sin(x) + log(x2 + 1), x0 = 0.35, ω = 0,

f2(x) = ex
2+x cos(x)−1 sin(πx) + x log(x sin(x) + 1), x0 = 0.6, ω = 0,

f3(x) = e−x
2+x+2 + sin(πx)ex

2+x cos(x)−1 + 1, x0 = 1.3, ω ≈ 1.55031 · · · .

Tables 1–3 display the behavior of the approximate values for the test functions, where A(−d) denotes
A × 10−d. For all the compared with-memory methods, we have considered p0 = s0 = t0 = 0.01, q0 =
0.1. From the obtained results it is evident that the proposed with-memory method (3.1) has very fast
convergence behavior than the with-memory method of Kung and Traub [8] and Lotfi et al. [10] (1.4).
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Table 1: Results of With-memory Method (1.4), β0 = η0 = ζ0 = −0.1

Functions |f(x1)| |f(x2)| |f(x3)| |f(x4)|
f1(x) 0.2(−3) 0.32(−21) 0.11(−155) 0.44(−1196)
f2(x) 0.58(−4) 0.24(−27) 0.12(−206) 0.98(−1592)
f3(x) 0.45(−2) 0.41(−17) 0.10(−129) 0.10(−1007)

Table 2: Results of With-Memory Method for (4.1), n = 3 γ0 = 0.1

Functions |f(x1)| |f(x2)| |f(x3)| |f(x4)|
f1(x) 0.45(−6) 0.16(−51) 0.87(−435) 0.95(−3683)
f2(x) 0.37(−1) 0.67(−13) 0.13(−110) 0.23(−939)
f3(x) 0.79(−3) 0.16(−33) 0.21(−291) 0.34(−2477)

Table 3: Results of Proposed With-memory Method (FWM)

Functions |f(x1)| |f(x2)| |f(x3)| |f(x4)|
f1(x) 0.18(−7) 0.15(−58) 0.45(−905) 0.53(−9180)
f2(x) 0.11(−2) 0.14(−22) 0.69(−356) 0.65(−5434)
f3(x) 0.18(−4) 0.13(−43) 0.58(−702) 0.20(−3998)

5. Dynamical Behavior

To visualize the stability of iterative methods, we analyze the dynamical properties of rational functions
associated to these methods. We present the comparison of the dynamical planes of discussed iterative
methods in this section. For this, we associate a rational function obtained by applying the proposed
with-memory method (3.3) and Kung-Traub Method with-memory [8] (4.1) to a complex function in the
complex plane. Two different approaches of dynamical planes are obtained on Matlab R2013a software
as follows: By taking a rectangle [−2, 2] × [−2, 2] of the complex plane, we define a mesh of 1000 × 1000
initial approximations. The starting point is in the basin of attraction of a root to which the sequence of
the iterative method converges with an error approximation lower than 10−5 and at most 30 iterations.
In the first technique this initial point is assigned with a specific color which is already selected for the
corresponding root. If the sequence of the iterative method converges in less number of iterations then
the color will be more intense and if it is not converging to any of the roots after maximum number of 30
iterations, then initial point is marked with dark blue color. For the second technique, maximum number
of iterations are 25 with an error estimation lower than 10−5 and each initial guess is assigned with a
color depending upon to the number of iterations for the iterative method to converge to any of the root
of the given function. In this technique we use colormap ’Hot’. The color of the initial point will be
more intense if the sequence of the iterative method converges in less number of iterations and if it is
not converging to any of the roots after maximum number of 25 iterations, then initial point is assigned
with black color. The proposed with-memory method (2.3) and Kung-Traub Method with-memory [8]
(4.1) are applied to the following complex functions: p1(z) = z3 − 1, with roots 1.0, −0.5000 + 0.86605I,
−0.5000−0.86605I, p2(z) = z5−1, with roots 1.0, 0.3090+0.95105I, −0.8090+0.58778I,−0.8090−0.58778I,

0.30902− 0.95105I and p3(z) = z6− 1
2z

5 + 11(i+1)
4 z4− 3i+19

4 z3 + 5i+11
4 z2 + i−11

4 z+ 3
2 − 3i, with the solutions

−1.0068 + 2.0047i, 0.0281 + 0.9963i, 0.0279− 1.5225i, 1.0235− 0.9556i, 0.9557− 0.0105i,−0.5284− 0.5125i.
Dynamical planes of the with-memory methods (3.3) and (4.1) for n = 3 and β0 = 0.01 applied to the

functions p1(z), p2(z), p3(z) are shown in the Figures 1–6. Two types of attraction basins are given in all
the figures. Color maps for both types are provided with each figure which show the root to which an initial
guess converges and the number of iterations in which the convergence occurs. From the appearance of
darker region shown in the Figures 1–6, we conclude that, the iterative method (3.3) consumes less number
of iterations in comparison with (4.1). As a conclusion, the proposed with-memory method (3.3) is highly
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efficient than the with-memory family of Kung and Traub (4.1) (KT).

Figure 1: Dynamical Planes for (4.1) for n = 3 and β0 = 0.01 on p1.

Figure 2: Dynamical Planes for (3.3) for p0 = −0.01, q0 = 0.01, s0 = 0.01, and t0 = 0.01 on p1.

Figure 3: Dynamical Planes for (4.1) for n = 3 and β0 = 0.01 on p2.
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Figure 4: Dynamical Planes for (3.3) for p0 = −0.01, q0 = 0.01, s0 = 0.01, and t0 = 0.01 on p2.

Figure 5: Dynamical Planes for (4.1) for n = 3 and β0 = 0.01 on p3.

Figure 6: Dynamical Planes for (3.3) for p0 = −0.01, q0 = 0.01, s0 = 0.01, and t0 = 0.01 on p3.

6. Conclusions

In this paper, we have designed a procedure to develop without memory optimal iterative methods
extendable to with-memory methods. Some examples are given for this design. We also extend a proposed
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three-step without memory optimal eighth-order method to an efficient with-memory method. To achieve
an efficient method with low computational load, we proposed a with-memory method including three
steps involving four accelerators. It has been shown that the new method in Section 3 possesses very high
computational efficiency index 15.51560

1
4 ≈ 1.98468 which is even higher than many of the developed with-

memory methods in the literature, e.g. 7
1
3 ≈ 1.913, of two-step with-memory method using two accelerators

discussed in [2]. Finally numerical results and dynamical behavior are presented which illustrate that the
proposed with-memory iterative method have good enough behavior for finding roots of nonlinear functions.
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