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Abstract

We prove a strong convergence theorem of a two-step viscosity iteration method for nonexpansive map-
pings in CAT(0) spaces without the nice projection property N and the restriction of the contraction constant
k ∈ [0, 12). Our result gives an affirmative answer to the open questions raised by Piatek [B. Piatek, Numer.
Funct. Anal. Optim., 34 (2013), 1245–1264], and Kaewkhao et al. [A. Kaewkhao, B. Panyanak, S. Suantai,
J. Inequal. Appl., 2015 (2015), 9 pages]. c©2016 All rights reserved.
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1. Introduction

Let E be a nonempty closed convex subset of a Hilbert space H and T : E → E be a nonexpansive map-
ping with a nonempty fixed point set Fix(T ). The following scheme is known as the viscosity approximation
method or Moudafi’s viscosity approximation method: for any given x1 ∈ E,

xn+1 = αnf(xn) + (1− αn)T (xn), ∀n ≥ 1, (1.1)

where f : E → E is a contraction with a constant k ∈ (0, 1), and {αn} is a sequence in (0, 1). In [10], under
some suitable assumptions, the author proved that the sequence {xn} defined by (1.1) converges strongly
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to a point z ∈ Fix(T ) which satisfies the following variational inequality:

〈f(z)− z, z − x〉 ≥ 0, ∀x ∈ Fix(T ).

We note that the Moudafi viscosity approximation method can be applied to convex optimization, linear
programming, monotone inclusions, and elliptic differential equations.

The first extension of Moudafi’s result to the so-called CAT(0) space was proved by Shi and Chen [14].
However, they assumed that the space CAT(0) must satisfy some addition condition P . By using the concept
of quasi-linearization introduced by Berg and Nikolaev [1], Wangkeeree and Preechasilp [16] could omit the
condition P from Shi and Chen’s result. They obtained the following theorems.

Theorem 1.1 ([16, Theorem 3.1]). Let E be a nonempty closed convex subset of a complete CAT(0) space
X, T : E → E be a nonexpansive mapping with Fix(T ) 6= ∅, and f : E → E be a contraction with a constant
k ∈ (0, 1). For each s ∈ (0, 1), let xs be given by

xs = sf(xs)⊕ (1− s)T (xs). (1.2)

Then the net {xs} converges strongly to x̃ as s→ 0 such that x̃ = PFix(T )(f(x̃)), which is equivalent to the
variational inequality: 〈−−−→

x̃f(x̃),
−→
xx̃
〉
≥ 0 ∀x ∈ Fix(T ).

Theorem 1.2 ([16, Theorem 3.4]). Let E, X, T, f, k be the same as in Theorem 1.1. Suppose that x1 ∈ E
is arbitrarily chosen and {xn} is iteratively generated by

xn+1 = αnf(xn)⊕ (1− αn)T (xn), ∀n ≥ 1, (1.3)

where {αn} is a sequence in (0, 1
2−k ) satisfying:

(C1) limn→∞ αn = 0;

(C2)
∑∞

n=1 αn =∞;

(C3)
∑∞

n=1 |αn − αn+1| <∞ or limn→∞
αn
αn+1

= 1.

Then {xn} converges strongly to x̃, where x̃ = PFix(T )(f(x̃)) which is equivalent to the variational inequality:〈−−−→
x̃f(x̃),

−→
xx̃
〉
≥ 0 ∀x ∈ Fix(T ).

Among other things, by using the geometric properties of CAT(0) spaces, Piatek [13] proved the following
strong convergence of a two-step viscosity iteration method.

Theorem 1.3 ([13, Theorem 4.3]). Let X be a complete CAT(0) space with the nice projection property
N and C be a nonempty closed convex subset of X. Let T : X → X be a nonexpansive mapping with
Fix(T ) 6= ∅ and f : X → X be a contraction with k ∈ [0, 12). Then there is a unique point q ∈ Fix(T ) such
that q = PFix(T )(f(q)). Moreover, for each u ∈ X and for each couple of sequences {αn} and {βn} in (0, 1)
satisfying

(i) limn→∞ αn = 0;

(ii)
∑∞

n=1 αn =∞;

(iii) 0 < lim infn βn ≤ lim supn βn < 1.

For the arbitrary initial point x1 = u ∈ C, the sequence {xn}, generated by

yn = αnf(xn)⊕ (1− αn)T (xn),

xn+1 = βnxn ⊕ (1− βn)yn, ∀n ≥ 1,
(1.4)

converges to q.
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(Concerning the definition of “nice projection property N” please, see, Piatek [13])

In [13], the author provided an example of a CAT(0) space lacking the nice projection property N, and
so he raised the following open question.

Open question 1. Does Theorem 1.3 still hold without the nice projection property N and k ∈ [0, 1)?

By combining the ideas of [16] and [13] intensively, Kaewkhao-Panyanak-Suantai [7] omit the property
N from Theorem 1.3, and proved the following result.

Theorem 1.4 ([7]). Let C be a nonempty, closed, and convex subset of a complete CAT(0) space X,
T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅, and f : C → C be a contraction with k ∈ [0, 12).
For the arbitrary initial point u ∈ C, let {xn} be generated by

x = u,

yn = αnf(xn)⊕ (1− αn)T (xn),

xn+1 = βnxn ⊕ (1− βn)yn, ∀n ≥ 1,

(1.5)

where {αn} and {βn} are sequences in (0, 1) satisfying the following conditions:

(i) limn→∞ αn = 0;

(ii)
∑∞

n=1 αn =∞;

(iii) 0 < lim infn βn ≤ lim supn βn < 1.

Then {xn} converges strongly to x̃ such that x̃ = PFix(T )(f(x̃)) and x̃ also satisfies〈−−−→
x̃f(x̃),

−→
xx̃
〉
≥ 0 ∀x ∈ Fix(T ).

Although Theorem 1.4 gives a partial answer to Open question 1 mentioned above, but it remains an
open problem. Therefore the authors also raised the following.

Open question 2. Whether Theorem 1.3 and Theorem 1.4 hold for k ∈ [0, 1)?

The purpose of this paper is by using a different method to prove a strong convergence theorem of a two-
step viscosity iteration for nonexpansive mappings in CAT(0) spaces without the nice projection property N
and the restriction of the contraction constant k ∈ [0, 12). Our result not only gives an affirmative answer to
the Open questions 1 and 2 mentioned above, but also extends and improves the main results of Wangkeeree
and Preechasilp [16], Piatek [13], Kaewkhao-Panyanak-Suantai [7] and Nilsrakoo-Saejung [11].

2. Preliminaries and Lemmas

Recall that a metric space (X, d) is called a CAT(0) space, if it is geodesically connected and if every
geodesic triangle in X is at least as ’thin’ as its comparison triangle in the Euclidean plane. It is known that
any complete, simply connected Riemannian manifold having non-positive sectional curvature is a CAT(0)
space. Other examples of CAT(0) spaces include pre-Hilbert spaces (see [2]), R-trees (see [8]), Euclidean
buildings (see [3]), the complex Hilbert ball with a hyperbolic metric (see [6]), and many others. A complete
CAT(0) space is often called Hadamard space. A subset K of a CAT(0) space X is convex if, for any
x, y ∈ K, [x, y] ⊂ K, where [x, y] is the uniquely geodesic joining x and y.

In this paper, we write (1− t)x⊕ ty for the unique point z in the geodesic segment joining from x to y
such that

d(x, z) = td(x, y), d(y, z) = (1− t)d(x, y). (2.1)

It is well known that a geodesic space (X, d) is a CAT(0) space if and only if the following inequality

d2((1− t)x⊕ ty, z) ≤ (1− t)d2(x, z) + td2(y, z)− t(1− t)d2(x, y) (2.2)
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is satisfied for all x, y, z ∈ X and t ∈ [0, 1]. In particular, if x, y, z are points in a CAT(0) space (X, d)
and t ∈ [0, 1], then

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z). (2.3)

The concept of quasi-linearization was introduced by Berg and Nikolaev [1]. Let (X, d) be a metric

space. We denote a pair (a, b) ∈ X × X by
−→
ab and call it a vector. The quasi-linearization is a mapping

〈·, ·〉 : (X ×X)× (X ×X)→ R defined by〈−→
ab,
−→
cd
〉

=
1

2

(
d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)

)
∀a, b, c, d ∈ X. (2.4)

It is easy to see that
〈−→
ab,
−→
cd
〉

=
〈−→
cd,
−→
ab
〉
,
〈−→
ab,
−→
cd
〉

= −
〈−→
ba,
−→
cd
〉

and
〈−→ax,−→cd〉+

〈−→
xb,
−→
cd
〉

=
〈−→
ab,
−→
cd
〉

for

all a, b, c, d ∈ X.
We say that (X, d) satisfies the Cauchy-Schwarz inequality if∣∣∣〈−→ab,−→cd〉∣∣∣ ≤ d(a, b)d(c, d) ∀a, b, c, d ∈ X. (2.5)

It is well known [1] that (X, d) is a CAT(0) space if and only if it satisfies the Cauchy-Schwarz inequality.
Some other properties of quasi-linearization are included as follows.

Lemma 2.1 ([4], [5]). Let C be a nonempty convex subset of a complete CAT(0) space (X, d), x ∈ X and
u ∈ C. Then u = PC(x) (the metric projection of x to C) if and only if

〈−→yu,−→ux〉 ≥ 0, ∀y ∈ C.

Lemma 2.2 ([17]). Let X be a complete CAT(0) space. For any t ∈ [0, 1] and u, v ∈ X, let ut = tu⊕(1−t)v.
Then, for any x, y ∈ X,

(i) 〈−→utx,−→uty〉 ≤ t 〈−→ux,−→uty〉+ (1− t) 〈−→vx,−→uty〉;
(ii) 〈−→utx,−→uy〉 ≤ t 〈−→ux,−→uy〉+ (1− t) 〈−→vx,−→uy〉 and 〈−→utx,−→vy〉 ≤ t 〈−→ux,−→vy〉+ (1− t) 〈−→vx,−→vy〉.

Recall that a continuous linear functional µ on l∞, the Banach space of bounded real sequences, is called
a Banach limit if ||µ|| = µ(1, 1, 1, · · · ) = 1 and µn(an) = µn(an+1) for all {an} ∈ l∞.

Lemma 2.3 ([15]). Let α be a real number and let (a1, a2, · · · ) ∈ l∞ be such that µn(an) ≤ α for all Banach
limits µ and lim supn→∞(an+1 − an) ≤ 0. Then lim supn→∞ an ≤ α.

Lemma 2.4 ([5, 17]). Let {xn} and {yn} be bounded sequences in a CAT(0) space (X, d) and {βn} a
sequence in [0, 1] with 0 < lim infn βn ≤ lim supn < 1. Suppose that xn+1 = βnxn ⊕ (1− βn)yn for all n ≥ 1
and

lim sup
n→∞

(d(yn+1, yn)− d(xn+1, xn)) ≤ 0. (2.6)

Then limn→∞ d(xn, yn) = 0.

Lemma 2.5 ([18]). Let {cn} be a sequence of non-negative real numbers satisfying the property cn+1 ≤
(1− γn)cn + γnηn, n ≥ 1, where {γn} ⊂ (0, 1) and {ηn} ⊂ R such that

(i) Σ∞n=1γn =∞;

(ii) lim supn→∞ ηn ≤ 0 or Σ∞n=1 |γnηn| <∞.

Then {cn} converges to zero as n→∞.

Lemma 2.6 ([12, Theorem 3.1]). Let E be a nonempty closed convex subset of a complete CAT(0) space
X and T : E → E be a nonexpansive mapping, and f : E → E be a contraction with k ∈ (0, 1). Then the
following statements hold:
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(i) the net {xs} defined by
xs = sf(xs)⊕ (1− s)T (xs), s ∈ (0, 1) (2.7)

converges strongly to x̃ as s→ 0 where x̃ = PFix(T )(f(x̃));

(ii) if {xn} is a bounded sequence in E such that limn→∞ d(xn, T (xn)) = 0, then

µn
(
d2(f(x̃), x̃)− d2(f(x̃), xn)

)
≤ 0, (2.8)

for all Banach limits µ.

3. Main Results

We are now in a position to give the main results of the paper.

Theorem 3.1. Let E be a nonempty closed convex subset of a complete CAT(0) space X, T : E → E be a
nonexpansive mapping with Fix(T ) 6= ∅. Let f : E → E be a contraction with k ∈ (0, 1). For the arbitrary
initial point u ∈ C, let {xn} be generated by

x = u,

yn = αnf(xn)⊕ (1− αn)T (xn),

xn+1 = βnxn ⊕ (1− βn)yn, ∀n ≥ 1,

(3.1)

where {αn} and {βn} are sequences in (0, 1) satisfying the following conditions:

(i) limn→∞ αn = 0;

(ii)
∑∞

n=1 αn =∞;

(iii) 0 < lim infn βn ≤ lim supn βn < 1.

Then {xn} converges strongly to x̃ such that x̃ = PFix(T ) (f(x̃)) and x̃ also satisfies〈−−−→
x̃f(x̃),

−→
xx̃
〉
≥ 0 ∀x ∈ Fix(T ).

Proof. We divide the proof into four steps.

step 1. We show that {xn}, {yn}, {T (xn)}, and {f(xn)} are bounded sequences in E.
Let p ∈ Fix(T ). By inequality (2.3), we have

d(xn+1, p) ≤ βnd(xn, p) + (1− βn)d(yn, p)

≤ βnd(xn, p) + (1− βn) [d(αnf(xn)⊕ (1− αn)T (xn), p)]

≤ βnd(xn, p) + (1− βn) {αn [d(f(xn), f(p)) + d(f(p), p)] + (1− αn)d(xn, p)}
≤ [1− αn(1− k) + (1− k)αnβn] d(xn, p) + (1− βn)αnd(f(p), p)

≤ max
{
d(xn, p),

d(f(p), p)

1− k

}
.

By induction, we have

d(xn, p) ≤ max
{
d(x1, p),

d(f(p), p)

1− k
]

}
, ∀n ≥ 1.

Hence, {xn} is bounded and so are {f(xn)}, {T (xn)} and {yn}.

step 2. Next, we show that

lim
n→∞

d(xn, yn) = 0; lim
n→∞

d(xn, T (xn)) = 0; lim
n→∞

d(xn+1, xn) = 0. (3.2)
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In fact, we have

d(yn+1, yn) ≤ d(αn+1f(xn+1)⊕ (1− αn+1)T (xn+1), αnf(xn)⊕ (1− αn)T (xn))

≤ d(αn+1f(xn+1)⊕ (1− αn+1)T (xn+1), αn+1f(xn+1)⊕ (1− αn+1)T (xn))

+ d(αn+1f(xn+1)⊕ (1− αn+1)T (xn), αn+1f(xn)⊕ (1− αn+1)T (xn))

+ d(αn+1f(xn)⊕ (1− αn+1)T (xn), αnf(xn)⊕ (1− αn)T (xn))

≤ (1− αn+1)d(T (xn+1), Txn) + αn+1d(f(xn+1), f(xn)) + |αn+1 − αn|d(f(xn), Txn)

≤ (1− αn+1)d(xn+1, xn) + αn+1kd(xn+1, xn) + |αn+1 − αn| d(f(xn), Txn).

This implies that

d(yn+1, yn)− d(xn+1, xn) ≤ (αn+1k − αn+1) d(xn+1, xn) + |αn+1 − αn| d(f(xn), Txn).

Hence we have,
lim sup
n→∞

{d(yn+1, yn)− d(xn+1, xn)} ≤ 0.

By Lemma 2.4, we have
lim
n→∞

d(xn, yn) = 0. (3.3)

It follows from (3.3) and (3.1) that

d(xn, T (xn)) ≤ d(xn, yn) + d(yn, Txn) ≤ d(xn, yn) + αnd(f(xn), Txn)→ 0 (as n→∞),

d(xn+1, yn) ≤ βnd(xn, yn)→ 0,

d(xn+1, xn) ≤ d(xn+1, yn) + d(yn, xn)→ 0.

step 3. Next, we prove that

lim sup
n→∞

{
d2(f(x̃), x̃)− d2(f(x̃), Txn)

}
≤ 0, (3.4)

where x̃ = PFix(T )(f(x̃)).
In fact, since {xn} is bounded and d(xn, Txn)→ 0, by Lemma 2.6 (ii), for all Banach limits µ, we have

µn
(
d2(f(x̃), x̃)− µnd2(f(x̃), xn)

)
≤ 0. (3.5)

Since d(xn+1, xn)→ 0, we have

lim sup
n→∞

{
(d2(f(x̃), x̃)− d2(f(x̃), xn+1)− (d2(f(x̃), x̃)− d2(f(x̃), xn))

}
≤ 0. (3.6)

It follows from (3.5), (3.6) and Lemma 2.3 that

lim sup
n→∞

{
d2(f(x̃), x̃)− d2(f(x̃), xn)

}
≤ 0. (3.7)

From (3.2) and (3.7), we have

lim sup
n→∞

{
d2(f(x̃), x̃)− d2(f(x̃), Txn)

}
≤ lim sup

n→∞

{
d2(f(x̃), x̃)− d2(f(x̃), xn)

}
+ lim sup

n→∞

{
d2(f(x̃), xn)− d2(f(x̃), Txn)

}
≤ lim sup

n→∞

{
d2(f(x̃), x̃)− d2(f(x̃), xn)

}
+ lim sup

n→∞
{d(f(x̃), xn) + d(f(x̃), T (xn)) d(f(x̃), xn)− d(f(x̃), T (xn))}

≤ lim sup
n→∞

{
d2(f(x̃), x̃)− d2(f(x̃), xn)

}
+ lim sup

n→∞
{d(f(x̃), xn) + d(f(x̃), T (xn)) d(xn, T (xn))} ≤ 0.

(3.8)
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step 4. Finally, we show that {xn} converges strongly to a point x̃ ∈ Fix(T ) where x̃ = PFix(T )(f(x̃)).
In fact, it follows from (2.2) and (3.1) that

d2(xn+1, x̃) = d2(βnxn ⊕ (1− βn)yn, x̃)

≤ βnd2(xn, x̃) + (1− βn)d2(yn, x̃)− βn(1− βn)d2(xn, yn)

≤ βnd2(xn, x̃) + (1− βn)d2(yn, x̃),

(3.9)

and

d2(yn, x̃) = d2(αnf(xn)⊕ (1− αn)T (xn), x̃)

≤ αnd2(f(xn), x̃) + (1− αn)d2(Txn, x̃)− αn(1− αn)d2(f(xn), Txn)

= (1− αn)d2(Txn, x̃) + αn(d2(f(xn), x̃)− d2(f(xn), , Txn)) + α2
nd

2(f(xn), Txn)

≤ (1− αn)d2(xn, x̃) + αn(d2(f(xn), x̃)− d2(f(xn), Txn)) + α2
nd

2(f(xn), Txn)

(3.10)

By using (2.4), Lemma 2.2, the Cauchy-Schwarz inequality (2.5) and for any n ≥ 1, we have

αn
(
d2(f(xn), x̃)− d2(f(xn), Txn)

)
= 2αn

{〈−−−−→
f(xn)x̃,

−−−−→
T (xn)x̃

〉
− d2(Txn, x̃)

}
= 2αn

{〈−−−−−−−→
f(xn)f(x̃),

−−−−→
T (xn)x̃

〉
,+
〈−−−→
f(x̃)x̃,

−−−−→
T (xn)x̃

〉
− d2(Txn, x̃)

}
≤ 2αn

{
kd(xn, x̃)d(Txn, x̃) +

〈−−−→
f(x̃)x̃,

−−−−→
T (xn)x̃

〉
− d2(Txn, x̃)

}
≤ αnk

{
d2(xn, x̃) + d2(Txn, x̃)

}
+ 2αn

〈−−−→
f(x̃)x̃,

−−−−→
T (xn)x̃

〉
− 2αnd

2(Txn, x̃)

= αnkd
2(xn, x̃) + αn(k − 2)d2(Txn, x̃) + αn

{
d2(f(x̃), x̃) + d2(Txn, x̃)− d2(f(x̃), Txn)

}
= αnkd

2(xn, x̃) + αn(k − 1)d2(Txn, x̃) + αn
{
d2(f(x̃), x̃)− d2(f(x̃), Txn)

}
≤ αnkd2(xn, x̃) + αn

{
d2(f(x̃), x̃)− d2(f(x̃), Txn)

}
(since αn(k − 1) ≤ 0).

(3.11)

Substituting (3.11) into (3.10), and after simplifying, we have

d2(yn, x̃) ≤ (1− αn(1− k))d2(xn, x̃)

+ αn
{
d2(f(x̃), x̃)− d2(f(x̃), Txn)

}
+ α2

nd
2(f(xn), Txn).

(3.12)

Substituting (3.12) into (3.9) and simplifying, for any n ≥ 1, we have

d2(xn+1, x̃) ≤ βnd2(xn, x̃) + (1− βn)
{

(1− αn(1− k)) d2(xn, x̃)

+ αn
(
d2(f(x̃), x̃)− d2(f(x̃), Txn)

)
+ α2

nd
2(f(xn), Txn)

}
≤ (1− (1− βn)(1− k)αn) d2(xn, x̃)

+ (1− βn)αn
(
d2(f(x̃), x̃)− d2(f(x̃), Txn)

)
+ α2

nd
2(f(xn), Txn).

(3.13)

Putting, in Lemma 2.5, cn = d2(xn, x̃), γn = (1− βn)(1− k)αn and

ηn =
(1− βn)

(
d2(f(x̃), x̃)− d2(f(x̃), Txn)

)
+ αnd

2(f(xn), Txn)

(1− k)(1− βn)
,

then (3.13) can be written as
cn+1 ≤ (1− γn)cn + γnηn, ∀n ≥ 1. (3.14)

By virtue of the conditions (i), (ii), (iii), and by using (3.4), we know that
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(i) γn ∈ (0, 1) and
∑∞

n=1 γn =∞;

(ii) lim supn→∞ ηn ≤ 0.

Therefore all conditions in Lemma 2.5 are satisfied. We have cn → 0 as n → ∞. This implies that xn
converges strongly to x̃, where x̃ = PFix(T )f(x̃).

The proof of Theorem 3.1 is completed.

Remark 3.2. Theorem 3.1 not only gives an affirmative answer to the Open questions 1 and 2 raised by Piatek
[13] and Kaewkhao-Panyanak-Suantai [7], respectively, but also extends and improves the corresponding
results of Wangkeeree and Preechasilp [16], Piatek [13], Kaewkhao-Panyanak-Suantai [7] and Nilsrakoo-
Saejung [11], Kumam et al. [9] and many others.
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