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Abstract

In this paper, we prove a new fixed point theorem of a nondecreasing and continuous mapping satisfying
some type contractive condition in a partially ordered cone metric space by using c−distance. Also, we give
a fixed point theorem without the assumption of continuity in a partially ordered cone metric space with
normal cone. c©2016 all rights reserved.
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1. Introduction

Since Huang and Zhang [5] introduced the cone metric space which is more general than the concept of
a metric space, many fixed point theorems have been proved in normal or non-normal cone metric spaces
by some authors [1, 4–6, 8, 10, 11]. Cho et al. [4] introduced the c−distance in a cone metric space which
is a cone version of the w−distance of Kada et al. [7]. Recently the existence of fixed points for the given
contractive mappings in partially ordered metric spaces was investigated by [2, 3].

In this paper, we prove a new fixed point theorem of a nondecreasing continuous mapping satisfying
some type contractive condition in a partially ordered cone metric space by using c−distance.

Let E be a real Banach space and θ denote the zero element in E. A cone P is a subset of E such that

(i) P is closed, nonempty and P 6= {θ};

(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P ;

(iii) P ∩ (−P ) = {θ}, i.e., x ∈ P and −x ∈ P imply x = θ.
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For any cone P ⊆ E, the partial ordering � with respect to P is defined by x � y if and only if y−x ∈ P .
The notation of ≺ stands for x � y but x 6= y. Also, we use x� y to indicate that y−x ∈ intP , where intP
denotes the interior of P . A cone P is called normal if there exists a number K such that for all x, y ∈ E,

θ � x � y implies ‖x‖ ≤ K‖y‖. (1.1)

Equivalently, the cone P is normal if

xn � yn � zn and lim
n→∞

xn = lim
n→∞

zn = x imply lim
n→∞

yn = x. (1.2)

The least positive number K satisfying condition (1.1) is called the normal constant of P .

Definition 1.1. Let X be a nonempty set and let E be a real Banach space equipped with the partial
ordering � with respect to the cone P ⊆ E. Suppose the mapping d : X ×X → E satisfies the following
conditions:

(1) θ � d(x, y) for all x, y ∈ X, and d(x, y) = θ if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.

Then, d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 1.2. Let (X, d) be a cone metric space. Let {xn} be a sequence in X and x ∈ X.

(1) If for every c ∈ E with θ � c, there exists a natural number N such that d(xn, x)� c for all n > N ,
then {xn} is said to be convergent and {xn} converges to x, and the point x is the limit of {xn}. We
denote this by

lim
n→∞

xn = x or xn → x (n→∞).

(2) If for all c ∈ E with θ � c there exists a positive integer N such that d(xn, xm)� c for all m,n > N ,
then {xn} is called a Cauchy sequence in X.

(3) A cone metric space (X, d) is said to be complete if every Cauchy sequence in X is convergent.

Lemma 1.3 ([9]). Let E be a real Banach space with a cone P . Then

(1) If a� b and b� c, then a� c.

(2) If a � b and b� c, then a� c.

Lemma 1.4 ([9]). Let E be a real Banach space with cone P . Then

(1) If θ � c, then there exists δ > 0 such that ‖b‖ < δ implies b� c.

(2) If {an}, {bn} are sequences in E such that an → a, bn → b and an � bn for all n ≥ 1, then a � b.

Lemma 1.5 ([5]). Let (X, d) be a cone metric space, P a normal cone, x ∈ X, and {xn} a sequence in X.
Then

(1) {xn} converges to x if and only if d(xn, x)→ θ.

(2) The limit point of every sequence is unique.

(3) Every convergent sequence is a Cauchy sequence.

(4) {xn} is a Cauchy sequence if and only if d(xn, xm)→ θ as n,m→∞.

(5) If xn → x and yn → y, then, d(xn, yn)→ d(x, y) as n→∞.

Definition 1.6. Let (X, d) be a cone metric space. Then a mapping q : X ×X → E is called a c−distance
on X if the followings are satisfied:

(q1) θ � q(x, y) for all x, y ∈ X;

(q2) q(x, z) � q(x, y) + q(y, z) for all x, y, z ∈ X;
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(q3) for all x ∈ X and all n ≥ 1, if q(x, yn) � u for some u = ux ∈ P , then q(x, y) � u whenever {yn} is a
sequence in X converging to a point y ∈ X;

(q4) for all c ∈ E with θ � c, there exists e ∈ E with θ � e such that

q(z, x)� e and q(z, y)� e imply d(x, y)� c.

Example 1.7 ([4]). Let (X, d) be a cone metric space and let P be a normal cone. Put q(x, y) = d(x, y)
for all x, y ∈ X. Then, q is a c−distance.

Example 1.8 ([4]). Let (X, d) be a cone metric space and let P be a normal cone. Put q(x, y) = d(u, y)
for all x, y ∈ X, where u ∈ X is constant. Then, q is a c−distance.

Example 1.9 ([4]). Let E = R and P = {x ∈ E : x ≥ 0}. Let X = [0,∞) and define a mapping
d : X ×X → E by d(x, y) = |x− y| for all x, y ∈ X. Then (X, d) is a cone metric space. Define a mapping
q : X ×X → E by q(x, y) = y for all x, y ∈ X. Then, q is a c−distance.

Remark 1.10.

(1) q(x, y) = q(y, x) does not necessarily hold for all x, y ∈ X.

(2) q(x, y) = θ is not necessarily equivalent to x = y for all x, y ∈ X.

Lemma 1.11 ([4]). Let (X, d) be a cone metric space and let q be a c-distance on X. Let {xn} and {yn}be
sequences in X and x, y, z ∈ X. Suppose that {un} is a sequence in P converging to θ. Then the following
facts hold:

(1) If q(xn, y) � un and q(xn, z) � un, then y = z.

(2) If q(xn, yn) � un and q(xn, z) � un, then {yn} converges to z.

(3) If q(xn, xm) � un for m > n, then {xn} is a Cauchy sequence in X.

(4) If q(y, xn) � un, then {xn}is a Cauchy sequence in X.

Definition 1.12. The mapping T : X → X is continuous if limn→∞ xn = x implies that limn→∞ Txn = Tx.

2. Main results

In this section, we prove a new fixed point theorem by using c−distance in partially ordered cone metric
spaces.

Theorem 2.1 ([3]). Let (X,v) be a partially ordered set and suppose that (X, d) is a complete cone metric
space. Let q be a c−distance on X and f : X → X be a nondecreasing mapping with respect to v (without
the assumption of continuity of f). Suppose that the following three assertions hold:

(i) there exist nonnegative numbers ai, i = 1, 2 with a1 + a2 < 1 such that

q(fx, fy) � a1q(x, y) + a2q(x, fx)

for all x, y ∈ X with x v y;

(ii) there exists x0 ∈ X such that x0 v fx0;

(iii) if {xn} is nondecreasing mapping with respect to v and converges to x then xn v x as n→∞.

Then, f has a fixed point x ∈ X. If v = fv then q(v, v) = θ.
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Theorem 2.2 ([4]). Let (X,v) be a partially ordered set and suppose that (X, d) is a complete cone metric
space. Let q be a c−distance on X and f : X → X be a continuous and nondecreasing mapping with respect
to v. Suppose that the following two assertions hold:

(i) there exist ai ≥ 0, i = 1, 2, 3 with a1 + a2 + a3 < 1 such that

q(fx, fy) � a1q(x, y) + a2q(x, fx) + a3q(y, fy)

for all x, y ∈ X with x v y;

(ii) there exists x0 ∈ X such that x0 v fx0.
Then, f has a fixed point x ∈ X. If v = fv, then q(v, v) = θ.

Theorem 2.3 ([3]). Let (X,v) be a partially ordered set and suppose that (X, d) is a complete cone metric
space. Let q be a c−distance on X and f : X → X be a continuous and nondecreasing mapping with respect
to v. Suppose that the following two assertions hold:

(i) there exist ai ≥ 0, i = 1, 2, 3, 4 with a1 + a2 + a3 + 2a4 < 1 such that

q(fx, fy) � a1q(x, y) + a2q(x, fx) + a3q(y, fy) + a4q(x, fy)

for all x, y ∈ X with x v y;

(ii) there exists x0 ∈ X such that x0 v fx0.

Then, f has a fixed point x ∈ X. If v = fv, then, q(v, v) = θ.

Theorem 2.4. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete cone metric
space. Let q be a c−distance on X. Let f : X → X be a continuous and nondecreasing with respect to v.
Suppose that the following two assertions hold:

(i) there exist nonnegative constants ai ∈ [0, 1) i = 1, 2, 3, 4, 5 with a1 + 2a2 + 2a3 + 3a4 +a5 < 1 such that

q(fx, fy) � a1q(x, y) + a2q(x, fx) + a3q(y, fy) + a4q(x, fy) + a5q(y, fx)

for all x, y ∈ X with x v y;

(ii) there exist x0, x1 ∈ X such that x0 v x1 v fx0.

Then, f has a fixed point in X. If v = fv, then, q(v, v) = θ.

Proof. Since f is nondecreasing with respect to v, we have

x0 v x1 v fx0 = x2 v fx1 = x3 v · · · .

Then, we have

q(x2n, x2n+1)

=q(fx2n−2, fx2n−1)

�a1q(x2n−2, x2n−1) + a2q(x2n−2, fx2n−2) + a3q(x2n−1, fx2n−1)

+ a4q(x2n−2, fx2n−1) + a5q(x2n−1, fx2n−2)

=a1q(x2n−2, x2n−1) + a2q(x2n−2, x2n) + a3q(x2n−1, x2n+1) + a4q(x2n−2, x2n+1) + a5q(x2n−1, x2n)

�a1q(x2n−2, x2n−1) + a2{q(x2n−2, x2n−1) + q(x2n−1, x2n)}+ a3{q(x2n−1, x2n) + q(x2n, x2n+1)}
+ a4{q(x2n−2, x2n−1) + q(x2n−1, x2n) + q(x2n, x2n+1)}+ a5q(x2n−1, x2n).

Hence,

q(x2n, x2n+1) � αq(x2n−1, x2n) + βq(x2n−2, x2n−1),



Y.-O. Yang, H. J. Choi, J. Nonlinear Sci. Appl. 9 (2016), 4571–4579 4575

where, α = a2+a3+a4+a5
1−a3−a4 and β = a1+a2+a4

1−a3−a4 .
Similarly,

q(x2n−1, x2n) � αq(x2n−2, x2n−1) + βq(x2n−3, x2n−2).

Clearly 0 ≤ α, β < 1. Set b1 = α and c1 = β. By applying the above inequalities and putting b2 = c1+αb1 =
β + αb1, c2 = βb1, we obtain

q(x2n, x2n+1) � b1q(x2n−1, x2n) + c1q(x2n−2, x2n−1)

� b2q(x2n−2, x2n−1) + c2q(x2n−3, x2n−2)

...

� b2n−1q(x1, x2) + c2n−1q(x0, x1),

(2.1)

where, b2n−1 = βb2n−3 + αb2n−2 and c2n−1 = βb2n−2.
Similarly,

q(x2n−1, x2n) � b2n−2q(x1, x2) + c2n−2q(x0, x1), (2.2)

where b2n−2 = βb2n−4 + αb2n−3 and c2n−2 = βb2n−3. From (2.1) and (2.2),

q(xn+1, xn+2) � bnq(x1, x2) + cnq(x0, x1),

where, bn = βbn−2 + αbn−1 and cn = βbn−1. Thus

bn+2 = αbn+1 + βbn (0 ≤ α, β ≤ 1, b1, b2 ≥ 0)

and bn ≥ 0 for all n ∈ N. Its characteristic equation is t2 − αt− β = 0. If 1− α− β > 0 and 1 + α− β > 0,
then it has two roots t1, t2 such that −1 < t1 ≤ 0 ≤ t2 < 1. Also the hypothesis a1 +2a2 +2a3 +3a4 +a5 < 1
implies 1 − α − β > 0 and 1 + α − β > 0. For such t1 and t2, we obtain bn = k1(t1)

n + k2(t2)
n for some

k1, k2 ∈ R.
Let m > n ≥ 1. It follows that

q(xn, xm) �q(xn, xn+1) + q(xn+1, xn+2) + · · ·+ q(xm−1, xm)

�(bn−1 + bn + · · ·+ bm−2)q(x1, x2) + (cn−1 + cn + · · ·+ cm−2)q(x0, x1)

�{k1(tn−11 + tn1 + · · ·+ tm−21 ) + k2(t
n−1
2 + · · ·+ tm−22 )}q(x1, x2)

+ β{k1(tn−21 + · · ·+ tm−31 ) + k2(t
n−2
2 + · · ·+ tm−32 )}q(x0, x1)

�(
k1t

n−1
1

1− t1
+
k2t

n−1
2

1− t2
)q(x1, x2) + β(

k1t
n−2
1

1− t1
+
k2t

n−2
2

1− t2
)q(x0, x1)

→θ

as n → ∞. Therefore, {xn} is a Cauchy sequence in X by Lemma 1.11 (3). Since X is complete, there
exists x ∈ X such that xn → x as n→∞. Using the continuity of f ,

x = lim
n→∞

xn = lim
n→∞

fxn−2 = fx.

Therefore, x is a fixed point of f . Moreover, suppose that v = fv. Then we have

q(v, v) =q(fv, fv)

�a1q(v, v) + a2q(v, fv) + a3q(v, fv) + a4q(v, fv) + a5q(v, fv)

=(a1 + a2 + a3 + a4 + a5)q(v, v).

Since 0 ≤ a1 + a2 + a3 + a4 + a5 < 1, we have q(v, v) = θ.
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The following corollaries can be obtained as consequences of Theorem 2.4.

Corollary 2.5. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete cone metric
space. Let q be a c−distance on X. Let f : X → X be a continuous and nondecreasing mapping with respect
to v. Suppose that the following two assertions hold:

(i) there exist nonnegative constants a ∈ [0, 1/4) such that

q(fx, fy) � aq(x, fx) + aq(y, fy)

for all x, y ∈ X with x v y;

(ii) there exist x0, x1 ∈ X such that x0 v x1 v fx0.

Then, f has a fixed point in X. If v = fv, then, q(v, v) = θ.

Corollary 2.6. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete cone metric
space. Let q be a c−distance on X. Let f : X → X be a continuous and nondecreasing mapping with respect
to v. Suppose that the following two assertions hold:

(i) there exist nonnegative constants ai ∈ [0, 1) i = 1, 2 with a1 + a2 < 1 such that

q(fx, fy) � a1q(x, y) + a2q(y, fx)

for all x, y ∈ X with x v y;

(ii) there exist x0, x1 ∈ X such that x0 v x1 v fx0.

Then, f has a fixed point in X. If v = fv, then, q(v, v) = θ.

Corollary 2.7. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete cone metric
space. Let q be a c−distance on X. Let f : X → X be a continuous and nondecreasing mapping with respect
to v. Suppose that the following two assertions hold:

(i) there exist nonnegative constants a ∈ [0, 1) such that

q(fx, fy) � aq(x, y)

for all x, y ∈ X with x v y;

(ii) there exist x0, x1 ∈ X such that x0 v x1 v fx0.

Then, f has a fixed point in X. If v = fv, then, q(v, v) = θ.

We obtain the following fixed point theorem without the assumption of continuity in a partially ordered
cone metric space with normal cone.

Theorem 2.8. Let (X,v) be a partially ordered set. Suppose that (X, d) is a complete cone metric space
and P is a normal cone with normal constant K. Let q be a c−distance on X. Let f : X → X be a
nondecreasing mapping with respect to v. Suppose that the following three assertions hold:

(i) there exist nonnegative constants ai ∈ [0, 1) i = 1, 2, 3, 4, 5 with a1 + 2a2 + 2a3 + 3a4 +a5 < 1 such that

q(fx, fy) � a1q(x, y) + a2q(x, fx) + a3q(y, fy) + a4q(x, fy) + a5q(y, fx)

for all x, y ∈ X with x v y;

(ii) there exist x0, x1 ∈ X such that x0 v x1 v fx0;

(iii) for all y ∈ X with fy 6= y,

inf{‖q(x, y)‖+ ‖q(x, fx)‖+ ‖q(fx, y)‖ : x ∈ X} > 0.
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Then, f has a fixed point in X. If v = fv, then, q(v, v) = θ.

Proof. Since f is nondecreasing with respect to v, we have

x0 v x1 v fx0 = x2 v fx1 = x3 v · · · .

If m > n ≥ 1, then by the proof of Theorem 2.4,

q(xn, xm) �q(xn, xn+1) + q(xn+1, xn+2) + · · ·+ q(xm−1, xm)

�(
k1t

n−1
1

1− t1
+
k2t

n−1
2

1− t2
)q(x1, x2) + β(

k1t
n−2
1

1− t1
+
k2t

n−2
2

1− t2
)q(x0, x1)

→θ

as n → ∞. Therefore, {xn} is a Cauchy sequence in X by Lemma 1.11 (3). Since X is complete, there
exists x′ ∈ X such that xn → x′ as n→∞. By (q3),

q(xn, x
′) � (

k1t
n−1
1

1− t1
+
k2t

n−1
2

1− t2
)q(x1, x2) + β(

k1t
n−2
1

1− t1
+
k2t

n−2
2

1− t2
)q(x0, x1).

Since P is a normal cone with normal constant K, we have

‖q(xn, xm)‖ ≤K‖(k1t
n−1
1

1− t1
+
k2t

n−1
2

1− t2
)q(x1, x2) + β(

k1t
n−2
1

1− t1
+
k2t

n−2
2

1− t2
)q(x0, x1)‖

≤K(
k1t

n−1
1

1− t1
+
k2t

n−1
2

1− t2
)‖q(x1, x2)‖+Kβ(

k1t
n−2
1

1− t1
+
k2t

n−2
2

1− t2
)‖q(x0, x1)‖

→0

as n→∞. Also

‖q(xn, x′)‖ ≤K‖(
k1t

n−1
1

1− t1
+
k2t

n−1
2

1− t2
)q(x1, x2) + β(

k1t
n−2
1

1− t1
+
k2t

n−2
2

1− t2
)q(x0, x1)‖

≤K(
k1t

n−1
1

1− t1
+
k2t

n−1
2

1− t2
)‖q(x1, x2)‖+Kβ(

k1t
n−2
1

1− t1
+
k2t

n−2
2

1− t2
)‖q(x0, x1)‖

→0

as n→∞.
Suppose that x′ is not a fixed point of f . Then by assumption,

0 < inf{‖q(x, x′)‖+ ‖q(x, fx)‖+ ‖q(fx, x′)‖ : x ∈ X}
≤ inf{‖q(xn, x′)‖+ ‖q(xn, fxn)‖+ ‖q(fxn, x′)‖ : n ∈ N}
= inf{‖q(xn, x′)‖+ ‖q(xn, xn+2)‖+ ‖q(xn+2, x

′)‖ : x ∈ N}
=0,

which is a contradiction. Therefore, x′ is a fixed point of f .
Moreover, suppose that v = fv. Then we have

q(v, v) = q(fv, fv) �a1q(v, v) + a2q(v, fv) + a3q(v, fv) + a4q(v, fv) + a5q(v, fv)

=(a1 + a2 + a3 + a4 + a5)q(v, v).

Since 0 ≤ a1 + a2 + a3 + a4 + a5 < 1, we have q(v, v) = θ.

We give an example which can not be applied to Theorem 2.3 and Theorem 2.2, but can be applied to
Theorem 2.4.
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Example 2.9. Let X = {0, 1, 2, 3}, E = R, and P = {x ∈ R : x ≥ 0}. Define d : X × X → E by
d(x, y) = |x− y| and define v by

x v y ⇔ x ≥ y.

Then, (X, d) is a complete cone metric space and X is a partially ordered set. Define q : X ×X → E by
the following :

q(0, 0) =0, q(0, 1) = 1, q(0, 2) = 1.1, q(0, 3) = 0.5,

q(1, 0) =1, q(1, 1) = 0, q(1, 2) = 0.1, q(1, 3) = 0.5,

q(2, 0) =1, q(2, 1) = 1, q(2, 2) = 0, q(2, 3) = 0.5,

q(3, 0) =1, q(3, 1) = 0.5, q(3, 2) = 0.6, q(3, 3) = 0.

Then, it is easy to show that q is a c−distance.
Define f : X → X by f0 = 1, f1 = 2, f2 = 2, f3 = 2. Then, f is nondecreasing. If we take x = 2, y = 0,

then, q(f2, f0) = q(2, 1) = 1 and

a1q(2, 0) + a2q(2, f2) + a3q(0, f0) + a4q(2, f0) =a1q(2, 0) + a2q(2, 2) + a3q(0, 1) + a4q(2, 1)

=a1 + a3 + a4 ≤ a1 + a3 + 2a4 < 1

for any nonnegative real numbers ai (i = 1, 2, 3, 4) with a1 + a2 + a3 + 2a4 < 1. Hence, the contractive
conditions of Theorem 2.3 and Theorem 2.2 are not satisfied and so Theorem 2.3 and Theorem 2.2 can not
be applied to this example.

But Theorem 2.4 can be applied to this example. In fact we take a1 = 0.14, a2 = a3 = a4 = 0 and
a5 = 0.85. Then,

1 =q(f1, f0) < a1q(1, 0) + a5q(0, f1) = 1.075,

1 =q(f2, f0) < a1q(2, 0) + a5q(0, f2) = 1.075,

1 =q(f3, f0) < a1q(3, 0) + a5q(0, f3) = 1.075.

If we take x0 = 3 and x1 = 2, then, x0 v x1 v fx0. Clearly f is continuous. Hence, the hypotheses are
satisfied and so by Theorem 2.4 f has a fixed point 2.
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