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Abstract

We prove an extension of Furuta inequality with nonnegative powers for multi-operator. Then we show
its application to Pedersen-Takesaki type operator equation. c©2016 All rights reserved.
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1. Introduction

A capital letter, such as T , stands for a bounded linear operator on a Hilbert space H . T ≥ 0 and
T > 0 mean that T is positive and T is strictly positive, respectively.

As an extension of Löwner-Heinz inequality (A ≥ B ≥ 0 ensures Aα ≥ Bα for any α ∈ [0, 1]), T. Furuta
in 1987 obtained the following famous inequality, which is called Furuta inequality.

Theorem 1.1 ([2], Furuta inequality). If A ≥ B ≥ 0, then for each r ≥ 0,
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hold for p ≥ 0 and q ≥ 1 with (1 + r)q ≥ p+ r.

In 1995, T. Furuta proved a grand form of Theorem 1.1, which is called grand Furuta inequality as
follows.
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Theorem 1.2 ([3], grand Furuta inequality). If A ≥ B ≥ 0 with A > 0, then for t ∈ [0, 1] and p ≥ 1,
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(1.3)

holds for s ≥ 1 and r ≥ t.

In 2008, T. Furuta proved an extension of grand Furuta inequality as follows.

Theorem 1.3 ([4], extension of grand Furuta inequality). If A ≥ B ≥ 0 with A > 0, then for t ∈ [0, 1] and
p1, p2, . . . , p2n ≥ 1, the following inequality
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holds for r ≥ t, where φ[2n] = {. . . [{[(p1 − t)p2 + t]p3 − t}p4 + t]p5 − · · · − t}p2n + r.

Furthermore, C. Yang and Y. Wang proved an extension of grand Fututa inequality for multi-operator,
which is called Further extension of grand Furuta inequality.

Theorem 1.4 ([12], Further extension of grand Furuta inequality). If A2n+1 ≥ A2n ≥ A2n−1 ≥ · · · ≥ A3 ≥
A2 ≥ A1 ≥ 0 with A2 > 0, t1, t2, . . . , tn−1, tn ∈ [0, 1], p1, p2, . . . , p2n−1, p2n ≥ 1, then the following operator
inequality
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holds for r ≥ tn, where ψ[2n] = {· · · [{[(p1 − t1)p2 + t1]p3 − t2}p4 + t2]p5 − · · · − tn}p2n + tn.

The powers of grand Furuta inequality, extension of grand Furuta inequality, further extension of grand
Furuta inequality includes negative powers. Recently, T. Furuta obtained an extension of Furuta inequality
with nonnegative powers as follows.

Theorem 1.5 ([5]). If A ≥ B ≥ 0, r1, r2, · · · , rn ≥ 0, then
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holds, where p1 ≥ 1, p2 ≥ 1+r1
p1+r1

, · · · , pn ≥ 1+r1+r2+···+rn−1

φ[n−1] , and
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There are many applications of the above-mentioned operator inequalities. See [7, 8, 9, 10, 11] for details.
In this paper, we shall prove an extension of Furuta inequality with nonnegative powers for multi-

operator. Then we show its application to Pedersen-Takesaki type operator equation.

2. Main Result

In this section, we shall show the main result.

Theorem 2.1. If An ≥ An−1 ≥ · · · ≥ A2 ≥ A1 ≥ 0, t1, t2, · · · , tn−1 ≥ 0, then
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, where β1 = p1+t1, βk = βk−1pk+tk, k = 1, 2, · · · , n−1.
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Proof. If n = 2, Theorem 2.1 is that A2 ≥ A1 ≥ 0 ensures A1+t
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is just Furuta inequality.
If the theorem holds for n = k, then we have
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For 0 < 1
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≤ 1, applying Löwner-Heinz inequality to (2.2), we have
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Equation (2.4) is just
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Equation (2.5) means that theorem holds for n = k + 1.

Corollary 2.2 ([13]). If A3 ≥ A2 ≥ A1 ≥ 0, t1, t2 ≥ 0, then
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Remark 2.3. Corollary 2.2 is a known result which is proved in [13] by the method of operator monotonic
function.

3. Application

In this section, we shall show the main result’s application to Pedersen-Takesaki type operator equation.
In order to prove the result, we list a lemma first.

Lemma 3.1 ([1], Douglas Theorem). The following statements are equivalent.

(I) BB∗ ≤ λ2AA∗, that is, ‖B∗x‖ ≤ λ‖A∗x‖ for some λ ≥ 0 and all x ∈ H ;

(II) There exists C such that B = AC.

Moreover, ‖C‖2 = inf{u : BB∗ ≤ uAA∗}.

Next, we shall show the application.

Theorem 3.2. If there is a nonnegative integer k such that (k + 1)(1 + tn−1) = βn−1, t1, t2, · · · , tn−1 ≥ 0,
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where An ≥ An−1 ≥ · · · ≥ A2 ≥ A1 > 0.
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Proof. Applying Douglas Theorem to Theorem 2.1, there exists a unique operator S, such that ‖S‖ ≤ 1 and
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Let X = SS∗, then X is unique, ‖X‖ ≤ 1, and X satisfies
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Deleting A
1+tn−1

2
n from both sides of above equation, then we can obtain (3.1).

Remark 3.3. If n = 2, Theorem 3.2 is just the main result in [6].
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