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Abstract

We establish some fixed point results for mappings satisfying (η, θ)-quasicontraction condition in com-
plete generalized metric spaces. Our results generalize many others. An example is provided to support our
work. ©2016 All rights reserved.
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1. Introduction and Preliminaries

Fixed point theory is one of the crucial methods in applied mathematics that ensure the existence and
uniqueness of the solutions to many application problems of the theory of ordinary differential equations,
partial differential equations and integral equations. The first fixed point theorem is the Banach contraction
principle [7]. For modifications of Banach contraction principle, we refer the reader to [4, 5, 14, 16–18].

In 1989, Bakhtin [6] presented b-metric spaces as a generalization of metric spaces. After that, several
authors have studied fixed point theory or the variational principle for single-valued and multivalued map-
pings in b-metric spaces (see [1–9] and the references therein). In 2000, Hitzler and Seda [10] introduced
dislocated metric spaces also as a generalization of metric spaces. The theory of modular spaces was initiated
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by Nakano [15] in connection with the theory of order spaces. Those spaces were redefined and generalized
in [13]. By defining a norm, particular Banach spaces of functions can be considered, and metric fixed theory
for such spaces has been widely studied. Even without metric, many problems in fixed point theory can
be formulated in modular spaces. The generalized metric spaces [11], initiated by Jleli and Samet in 2015,
generalized many spaces: ordinary metric spaces, b-metric spaces, modular metric spaces and dislocated
metric spaces.

In 1994, Khan et al. [12] presented the notation of an altering distance function as follows.

Definition 1.1 ([12]). A function η : [0,∞) → [0,∞) is called an altering distance function if η satisfies
the following conditions:

η1: η is continuous and nondecreasing;

η2: η(t) = 0 iff t = 0.

We start with the following notations that we need in our work.

Definition 1.2 ([11]). Let Y be a nonempty set and D : Y ×Y → [0,∞) a given mapping. For every y ∈ Y ,
let us define the set

K(D, Y, y) =
{
{yn} ⊂ Y : lim

n→∞
D(yn, y) = 0

}
.

Definition 1.3 ([11]). D is a generalized metric on Y if it satisfies the following conditions:

D1: for every (y, z) ∈ Y × Y , we have D(y, z) = 0⇒ y = z;

D2: for every (y, z) ∈ Y × Y , we have D(y, z) = D(z, y);

D3: there exists a k > 0 such that

if (y, z) ∈ Y × Y , {yn} ∈ K(D, Y, y), then D(y, z) ≤ k lim supn→∞D(yn, z).

Then (Y,D) is a generalized metric space.

Remark 1.4. If K(D, Y, y) is empty set for every y ∈ Y , then (Y,D) is a generalized metric space if and only
if (D1) and (D2) are satisfied.

Definition 1.5 ([11]). Let (Y,D) be a generalized metric space. Then

1. {yn} is a D-Cauchy sequence if limn,m→∞D(yn, yn+m) = 0;

2. {yn} is a D-convergent sequence if {yn} ∈ K(D, Y, y).

Definition 1.6 ([11]). Let (Y,D) be a generalized metric space. It is termed to be complete if every
D-Cauchy sequence in Y is D-convergent to an element in Y .

Proposition 1.7 ([11]). Let (Y,D) be a generalized metric space, {yn} a sequence in it, and y, z ∈ Y . If
{yn} D-converges to y and z, then y = z.

Definition 1.8 ([11]). A mapping g : Y → Y is said to be weak continuous if for each sequence {yn}
of Y that is D-convergent to an y ⊂ Y , there exists a subsequence {yns} of {yn} such that {g(yns)} is
D-convergent to g(y) (as s→∞).

Definition 1.9 ([11]). Suppose that (Y,D) is a generalized metric space and let � be a partial order on Y .
Define

Γ� = {(y, z) ∈ Y × Y : y � z}.

Definition 1.10 ([11]). The mapping g : Y → Y is said to be monotone if

(y, z) ∈ Γ� ⇒ (g(y), g(z)) ∈ Γ�.
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Definition 1.11 ([11]). The couple (Y,�) is D-regular if the following condition is satisfied:
For every {yn} ⊂ Y satisfying (yn, yn+1) ∈ Γ� and for every n large enough, if {yn} is D-convergent to

an y ∈ Y , then there exists a subsequence {yns} of {yn} such that (yns , y) ∈ Γ�, for every s large enough.

Definition 1.12 ([11]). Let (Y,D) be a generalized metric space. Let g : Y → Y be a mapping. For y ∈ Y,
the number δ(D, g, y) is defined by

δ(D, g, y) = sup{D(gi(y), gj(y)) : i, j ∈ N},

where gi(y) = g(gi−1(y)).

In this paper, we introduce notions of (η, θ)-contraction and (η, θ)-quasicontraction mappings in gener-
alized metric spaces and prove some fixed point results for them.

2. Main result

In the rest of this paper, we denote by Θ the family of all functions θ : [0,∞) → [0,∞) satisfying the
following conditions:

θ1: θ is a continuous;

θ2: θ is a continuous increasing;

θ3: θ(0) = 0;

θ4; limn→∞ θ
n(t) = 0 for all t ∈ [0,∞).

Definition 2.1. Let (Y,D) be a generalized metric space. Let η be an altering distance function and θ ∈ Θ.
We say that g : Y → Y is an (η, θ)-contraction mapping if

η(D(gy, gz)) ≤ θ(η(D(y, z))) (2.1)

holds for every (y, z) ∈ Y × Y .

Theorem 2.2. Suppose that (Y,D) is a complete generalized metric space. Let g : Y → Y be an (η, θ)-
contraction. Suppose that there exists a y0 ∈ Y such that δ(D, g, y0) < ∞. Then {gn(y0)} converges to a
fixed point of u ∈ Y of g. Moreover, if u′ ∈ Y is another fixed point of g such that D(u, u′) < +∞, then
u = u′.

Proof. Let n ∈ N. Since g is an (η, θ)-contraction, for all i, j ∈ N, we have

η(D(gn+i(y0), g
n+j(y0))) ≤ θ(η(D(gn−1+i(y0), g

n−1+j(y0)))).

Which implies that

η(D(gn+i(y0), g
n+j(y0))) ≤ θn(η(D(gi(y0), g

j(y0)))).

By using the definition of δ(D, g, y0), we get that

η(D(gn+i(y0), g
n+j(y0))) ≤ θn(η(δ(D, g, y0))). (2.2)

By the properties of θ and since δ(D, g, y0) < +∞, we get

lim
n→+∞

η(D(gn+i(y0), g
n+j(y0))) = 0,

and consequently

lim
n→+∞

D(gn+i(y0), g
n(y0)) = 0.
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By using (2.2), for every n,m ∈ N, we obtain

η(D(gn(y0), g
n+m(y0)) ≤ θn(η(δ(D, g, y0))).

Since δ(D, g, y0) < +∞ and θ ∈ Θ, we get

lim
n,m→+∞

η(D(gn(y0), g
n+m(y0))) = 0.

Thus, {gn(y0)} is a D-Cauchy sequence. Since Y is a complete generalized metric space, there exists a u ∈ Y
such that {gn(y0)} is D-convergent to u. Since g is an (η, θ)-contraction, for all n ≥ 1, we get

η(D(gn+1(y0), g(u)) ≤ θ(η(D(gn(y0), u))),

by taking limit in above inequality and using the property of η, we obtain

lim
n→+∞

D(gn+1(y0), g(u)) = 0,

so {gn(y0)} is D-convergent to g(u). Proposition 1.7 implies the uniqueness of the limit, so we have u = gu.
Now, assume that u

′ ∈ Y is a fixed point of g such that D(u, u
′
) < +∞. Since g is an (η, θ)-contraction

mapping, we have

η(D(u, u
′
)) = η(D(g(u), g(u

′
)))

≤ θ(η(D(u, u
′
))).

Thus for n ∈ N, we have η(D(u, u
′
)) ≤ θn(η(D(u, u

′
))). Letting n→ +∞, we get

η(D(u, u
′
)) = 0

which implies by condition D1 that u = u
′
.

Definition 2.3. Let (Y,D) be a generalized metric space. We say that g : Y → Y is an (η, θ)-quasicont-
raction mapping if

η(D(gy, gz)) ≤ θ(ηv(y, z)), (2.3)

where
v(y, z) ∈ {D(y, z),D(y, gy),D(z, gz),D(gy, z),D(y, gz)}

holds for every (y, z) ∈ Y × Y .

Proposition 2.4. Suppose that g is an (η, θ)-quasicontraction mapping. If u ∈ Y is a fixed point of g with
D(u, u)) <∞, then D(u, u) = 0.

Proof. Let u ∈ Y be a fixed point of g such that θ(η(D(u, u)) < ∞. Since g is an (η, θ)-quasicontraction,
we have

η(D(u, u)) = η(D(gu, gu)) ≤ θ(η(D(u, u))).

By using the properties of (η, θ), we get D(u, u) = 0.

Theorem 2.5. Suppose (Y,D) is a complete generalized metric space. Let g : Y → Y be (η, θ)-quasicont
-raction mapping. If there exists y0 ∈ Y such that δ(D, g, y0) <∞, then {gn(y0)} converges to some u ∈ Y .
If D(y0, g(u)) < ∞ and D(u, g(u)) < ∞, then u is a fixed point of g. Moreover, if u′ ∈ Y is another fixed
point of g such that D(u, u′) <∞ and D(u′, u′) <∞, then u = u′.
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Proof. From (η, θ)-quasicontraction mapping for all i, j ∈ N, we have

η(D(gn+i(y0), g
n+j(y0))) ≤ θ(η(D(gn−1+i(y0), g

n−1+j(y0)),D(gn−1+i(y0), g
n+i(y0)),

D(gn−1+j(y0), g
n+j(y0)),D(gn−1+i(y0), g

n+j(y0))),

D(gn−1+j(y0), g
n+i(y0))),

which implies

η(δ(D, g, gn(y0)) ≤ θ(η(δ(D, g, gn−1(y0))), δ(D, g, gn(y0))). (2.4)

If v(gn+i(y0), g
n+j(y0)) = δ(D, g, gn(y0)), then by (2.4) and using the properties of (η, θ), we have

η(δ(D, g, gn(y0)) ≤ θ(ηδ(D, g, gn(y0)))

< η(δ(D, g, gn(y0))),

a contradiction. Hence

v(gn+i(y0), g
n+j(y0)) = δ(D, g, gn−1(y0)),

and so

η(δ(D, g, gn(y0)) ≤ θ(η(δ(D, g, gn−1(y0))) < η(δ(D, g, gn−1(y0)))

for all n ∈ N. We get

η(δ(D, g, gn(y0))) ≤ θ(η(δ(D, g, gn−1(y0))))
≤ θ2(η(δ(D, g, gn−2(y0))))
...

≤ θn(η(δ(D, g, y0))),

and by using the above inequality for every n,m ∈ N, we obtain

η(D(gn(y0), g
n+m(y0)) ≤ θ(η(δ(D, gny0)))

≤ θn(η(δ(D, g, y0))).

Since δ(D, g, y0) < ∞ and by the property of η, we get limn,m→∞ η(D(gn(y0), g
n+m(y0))) = 0, and

consequently

lim
n,m→∞

D(gn(y0), g
n+m(y0)) = 0,

thus, {gn(y0)} is a D-Cauchy sequence. Since Y is a complete generalized metric space, there exists a u ∈ Y
such that {gn(y0)} is D-convergent to u.

We assume that D(y0, g(u)) <∞. By the inequality

η(D(gn(y0), g
n+m(y0)) ≤ θn(η(δ(D, g, y0))) (2.5)

for every n,m ∈ N, and by the condition (D3), there exists a k > 0 such that

ψ(D(u, gn(y0))) ≤ k lim sup
n→∞

η(D(gn(y0), g
n+m(y0)) ≤ kθn(η(δ(D, g, y0))) (2.6)

for every n ≥ 1.
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Now, we show that u is a fixed point of g. We have

η(D(g(y0), g(u))) ≤ θ(η{D(y0, u),D(y0, g(y0)),D(u, g(u)),D(g(y0), u),D(y0, g(u))}.

Using (2.5) and (2.6), we obtain

η(D(g(y0), g(u))) ≤ {kθ(ηδ(D, g, y0)), θ(ηδ(D, g, y0)), θ(η(D(u, g(u)))), θ(η(D(y0, g(u))))}.

Again, using the previous inequality, we get

η(D(g2(y0), g(u))) ≤ {kθ2(ηδ(D, g, y0)), θ2(ηδ(D, g, y0)), θ2(η(D(u, g(u)))), θ2(η(D(y0, g(u))))}.

Continuing this process, by induction, we obtain

η(D(gn(y0), g(u))) ≤ {kθn(ηδ(D, g, y0)), θn(ηδ(D, g, y0)), θn(η(D(u, g(u)))), θn(η(D(y0, g(u))))}

for every n ∈ N, and therefore

lim
n,m→∞

η(D(gn(y0), g(u))) ≤ θ(η(D(u, g(u))).

Since D(y0, g(u)) <∞ and δ(D, g, y0) <∞. By using the property(D3), we get

η(D(g(u), u))) ≤ lim sup
n,m→∞

D(gn(y0), g(u)) ≤ θ(η(D(u, g(u))),

which implies that θ((D(u, g(u)))) = 0. From the properties of (η, θ), we get (D(u, g(u))) = 0 and since
D(u, g(u)) <∞, then u is a fixed point of g. By Proposition 2.4, we have D(u, u) = 0.

Finally, assume that u
′ ∈ Y is another fixed point of g such that D(u, u

′
) < ∞ and D(u

′
, u
′
) < ∞. By

Proposition 2.4, we have D(u
′
, u
′
) = 0. Since g is an (η, θ)-quasicontraction, we have

η(D(u, u
′
) = η(D(g(u), g(u

′
)) ≤ θ(η(D(u, u

′
)),

which implies that u = u
′

Corollary 2.6. Suppose (Y,D) is a complete generalized metric space. Let g : Y → Y be a mapping
satisfying

η(D(gy, gz)) ≤ θ(η(M(y, z))), (2.7)

where
M(y, z) = max{D(y, z),D(y, gy),D(z, gz),D(gy, z),D(y, gz)}

for every (y, z) ∈ Y × Y. If there exists a y0 ∈ Y such that δ(D, g, y0) < ∞, then {gn(y0)} converges to a
u ∈ Y . If D(y0, g(u)) < ∞ and D(u, g(u)) < ∞, then u is a fixed point of g. Moreover, if a u′ ∈ Y is
another fixed point of g such that D(u, u′) <∞ and D(u′, u′) <∞, then u = u′.

Proof. Since v(y, z) = max{D(y, z),D(y, gy),D(z, gz),D(gy, z),D(y, gz)}, the result follows from Theorem
2.5.

In the following theorems, we extend the Banach contraction principle to (η, θ)-contraction mappings in
complete generalized metric spaces with partial orders.

Theorem 2.7. Suppose (Y,D) is a complete generalized metric space. Let g : Y → Y be an (η, θ)-
contraction mapping, weak continuous and monotone. If there exists a y0 ∈ Y such that δ(D, g, y0) < ∞
and (g(y), g(z)) ∈ Γ�, then {gn(y0)} converges to a u ∈ Y such that u is a fixed point of g. Moreover, if
D(u, u) <∞, then D(u, u) = 0.
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Proof. Since g is �-monotone and (y0, g(y0)) ∈ Γ�, then

(gn(y0, g
n+1(y0))) ∈ Γ�

for every n ∈ N. The relation � is a partial order (hence it is transitive), so

(s, r) ∈ N× N, s ≤ r ⇒ gs(y0) � gr(y0).

Assume n ∈ N. Since g is an (η, θ)-contraction and by condition (D2) in Definition 1.3, for all i, j ∈ N,
we get

η(D(gn+i(y0), g
n+j(y0))) ≤ θ(η(D(gn−1+i(y0), g

n−1+j(y0)))),

which implies that
η(δ(D, g, gn(y0)) ≤ θ(η(δ(D, g, gn−1(y0)))).

Thus, for every n ≥ 1, we get

η(δ(D, g, gn(y0)) ≤ θn(η(δ(D, g, y0))).

By using the above inequality, for every n,m ∈ N, we obtain

η(D(gn(y0), g
n+m(y0)) ≤ η(δ(D, g, gn(y0))) ≤ θn(η(δ(D, g, y0))).

Since δ(D, g, y0) < ∞ and by the property of η, we get limn,m→∞ η(D(gn(y0), g
n+m(y0))) = 0, and

consequently
lim

n,m→∞
D(gn(y0), g

n+m(y0)) = 0,

thus, {gn(y0)} is a D-Cauchy sequence. Since (Y,�) is a complete generalized metric space, there exists a
u ∈ Y such that {gn(y0)} is D-convergent to u. Since g is an (η, θ)-contraction, for all n ≥ 1, there exists
a subsequence {gns+1(y0)} of {gn(y0)} such that {gns(y0)} is D-convergent to g(u) as (s → ∞). From the
uniqueness of the limit, we have gu = u. By the assumption D(u, u) < ∞ and assume D(u, u) 6= 0. Since
(u, u) ∈ E�, we have

D(u, u) = D(g(u), g(u)) ≤ θ(η(D(u, u)).

By using the properties of (η, θ), we have D(u, u) ≤ D(u, u)), which is a contradiction. HenceD(u, u) =
0.

In the following theorem, we use the D-regularity of (Y,�) instead of the weak continuity assumption.

Theorem 2.8. Suppose (Y,�,D) is a D-regular complete generalized metric space. Let g : Y → Y be
an (η, θ)-contraction mapping. If there exists a y0 ∈ Y such that δ(D, g, y0) < ∞ and (y0, g(y0)) ∈ E�,
then {gn(y0)} converges to some u ∈ Y such that u is a fixed point of g. Moreover, if D(u, u) < ∞, then
D(u, u) = 0.

Proof. Following the proof of Theorem 2.7, we realize that {gn(y0)} is D-convergent to a u ∈ Y and

(gn(y0), g
n+1(y0)) ∈ Γ�

for every n ∈ N. Since (Y,�) is D-regular, there exists a subsequence {gns(y0)} of {gn(y0)} such that
(gns(y0), u) ∈ Γ�. Furthermore, g is an (η, θ)-contraction, so we obtain

ηD(gns+1, g(u)) ≤ θ(ηD(gns(y0)), g(u))

for every s large enough. Taking s→∞ in the previous inequality and by using the properties of η, we get

lim
n,m→∞

D(gns+1, g(u)) = 0,

which implies that {gns+1} is D-convergent to g(u). From the uniqueness of the limit, we get gu = u.
Similar to the proof of Theorem 2.7, we get D(u, u) = 0.
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Remark 2.9. Theorems (3.3), (4.3), (5.5) and (5.7) in [11] are a special case of Theorems 2.2,2.5, 2.7 and
2.8 respectively.

Example 2.10. Let Y = [0,∞] and D(y, z) = |y−z| for each y, z ∈ [0,∞], D(y,∞) =∞ for each y ∈ [0,∞]
and assume D(y,∞) = 0. Then (Y,D) is a complete generalized metric space. Let g : Y → Y be given by
gy = 2y for each y ∈ [0,∞] and g∞ =∞. Take η(t) = t and θ(t) = 1

2 t; then we get

η(|gy − gz|) ≤ θ(η{|y − z|, |y − gy|, |z − gz|, |y − gz|, |z − gy|}),

and D(y, gy) < ∞ for each y, z ∈ Y . Hence, all the hypothesis of Theorem 2.5 are satisfied, thus g has a
unique fixed point y =∞.
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