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Abstract

The existence of the dual synchronization behavior between a pair of chaotic and hyperchaotic systems is
investigated via a nonlinear controller, in which the nonlinear functions of the system are used as a nonlinear
feedback term. The sufficient conditions for achieving the dual synchronization behavior between a pair of
chaotic and hyperchaotic systems using a nonlinear feedback controller are derived by using the Lyapunov
stability theorem. The dual synchronization behavior between a pair of chaotic systems (Chen and Lorenz
system) and a pair of hyperchaotic systems hyperchaotic Chen system and hyperchaotic Lü system are
taken as two illustrative examples to show the effectiveness of the proposed method. Theoretical analysis
and numerical simulations are performed to verify the results. c©2016 All rights reserved.
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1. Introduction

Several chaotic and hyperchaotic systems have been discovered and thoroughly analyzed over the past
decades. These systems are interesting as its study links between the sciences and nature. Scientists who
understand its existence have been struggling to control these systems to our benefit. There is a great need
to control the chaotic and hyperchaotic systems, as they play an important role in industrial applications
particularly in chemical reactions, biological systems, information processing and secure communications
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[1]. A very important aspect in chaos theory is the synchronization of chaotic systems. The concept of
synchronization chaos is to make two chaotic systems oscillate in a synchronized manner by using the
output of the drive system to control the response system so that the output of the response system follows
the output of the drive system. Over the past decades, much attention has been devoted to the search for
better and more efficient methods to synchronize chaotic and hyperchaotic systems. Up to now, various
methods have been developed to design controllers in the chaotic and hyperchaotic systems, such as adaptive
synchronization, active synchronization, linear and nonlinear feedback [3, 5, 9, 10, 16, 19, 21, 22] etc. However
all of the aforementioned methods are mainly concerned with the synchronization of one drive system and
one response system, so these methods cannot be applied for multiuser communication systems [20].

Recently, the concept of dual synchronization of two different pairs of chaotic dynamical systems has
been investigated and used experimentally in communication applications. Dual synchronization of chaos is a
technique to separate two mixed chaotic signals by using synchronization. In dual synchronization technique,
there is a pair of response systems that must be synchronized with pairs of drive systems by using a signal
generated through linear combination of the drive systems states. Dual synchronization in colpitts electronic
oscillators is studied in [18]. Dual and cross dual synchronization of chaotic external cavity laser diodes is
investigated in [15]. Experimental and numerical dual synchronization of chaos in two pairs of one-way
coupled microchip lasers using only one transmission channel is studied in [20]. Dual synchronization of the
Lorenz and Rössler systems is studied in [13], where the output signal from the drive systems is a scalar
signal, constructed by a linear combination of their states. Dual synchronization in modulated time delayed
systems is discussed in [7]. Projective-dual synchronization in delay dynamical systems with time-varying
coupling delay is investigated in [6]. Dual synchronization of chaotic and hyperchaotic systems with fully
uncertain parameters via Adaptive control method is discussed in [14].

To the best of our knowledge, there are few theoretical results about dual synchronization of chaotic
systems, and on the other hand, all of the aforementioned methods [6, 7, 13, 15, 18] are mainly concerned
with the dual synchronization of chaotic systems with low dimensional attractors characterized by one
positive Lyapunov exponent and do not consist of the dual synchronization of hyperchaotic systems. This
feature limits the complexity of the chaotic dynamics. It is believed that the chaotic systems with higher
dimensional attractors have much wider applications. In this work, we investigate the existence of the dual
synchronization behavior between a pair of chaotic and hyperchaotic systems via a nonlinear controller, in
which the nonlinear functions of the system are used as a nonlinear feedback term. The sufficient conditions
for achieving the dual synchronization behavior are derived by using the Lyapunov stability theorem. By
this nonlinear feedback controller, one can synchronize a pair of chaotic and hyperchaotic systems effectively.
The simulation results demonstrate that this control method is commendable, effective and feasible. The
organization of the paper is as follows. In Section 2, the problem statement and dual synchronization scheme
are presented for the chaotic and hyperchaotic systems. In Sections 3 and 4, numerical studies are performed
to show the effectiveness of proposed method. Finally a concluding remark is given.

2. Problem statement

Consider a pair of chaotic system in the form

ẋ1 = f1(x1),

ẏ1 = g1(y1),
(2.1)

where x1 = [x11, x12, . . . , x1n]T and y1 = [y11, y12, . . . , y1n]T are the state vectors of the two master systems,
f1 ∈ C[Rn × Rn, Rn] and g1 ∈ C[Rn × Rn, Rn] are two known functions. The corresponding two slave
systems are defined by

ẋ2 = f2(x2) + u1,

ẏ2 = g2(y2) + u2,
(2.2)

where x2 = [x21, x22, . . . , x2n]T and y2 = [y21, y22, . . . , y2n]T are the state vectors of the two slave systems,
f2 ∈ C[Rn × Rn, Rn] and g2 ∈ C[Rn × Rn, Rn] are two known functions and u = (uT1 uT2 )T ∈ R2n, is a
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controller. Our goal is to design an appropriate controller u = (uT1 uT2 )T such that the trajectory of the
pair of the response system (2.2) could be synchronized with the pair of the drive system (2.1) where the
errors between systems (2.1) and (2.2) should satisfy

lim
t→∞
‖x2 (t)− x1 (t)‖ = 0, lim

t→∞
‖y2 (t)− y1 (t)‖ = 0, (2.3)

where ‖·‖ is the Euclidean norm.

2.1. Dual Synchronization

System (2.1) can be rewritten in the form[
ẋ1
ẏ1

]
=

[
f1(x1)
g1(y1)

]
, ẋ = f (x) , (2.4)

where ẋ =

[
ẋ1
ẏ1

]
, f(x) =

[
f1(x1)
g1(x1)

]
. Similarly, system (2.2) can be rewritten in the form

[
ẋ2
ẏ2

]
=

[
f2(x2)
g2(y2)

]
+

[
u1
u2

]
, ẏ = g (y) + u, (2.5)

where ẏ =

[
ẋ2
ẏ2

]
, g(y) =

[
f2(x2)
g2(x2)

]
, and u =

[
u1
u2

]
. Let

εd = (a1, a2, ..., an, b1, b2, ..., bn) (x11, x12, . . . , x1n, y11, y12, . . . , yn1)
T = Cx

denote the linear coupling of the two drive systems, and

εr = (a1, a2, . . . , an, b1, b2, . . . , bn) (x21, x22, . . . , x2n, y21, y21, . . . , y2n)T = Cy

denote the linear coupling of the two response systems, let A = (a1, a2, . . . , an)T and B = (b1, b2, . . . , bn)T

be two known matrices such that ai, bj , i = 1, 2, . . . , n, j = 1, 2, . . . , n cannot be zero at the same time. The
error for dual synchronization is es = Ce, where e = y − x and C = diag(a1, a2, . . . , an, b1, b2, . . . , bn).

Theorem 2.1. If the nonlinear feedback controller U is designed as

U = −F (e, x) + kes, (2.6)

then the response system (2.5) can synchronize the drive system (2.4) asymptotically, where x is the state
variable, e is the error of the state variable of the two systems, es is the linear coupling of the master and
slave systems, and k is a feedback gain.

Proof. The drive and the response systems (2.4) and (2.5) are split into linear terms fi(x), gi(y) and nonlinear
terms fj(x), gj(y) where

ẋ = fi(x) + fj(x), (2.7)

ẏ = gi(y) + gj(y) + u. (2.8)

Hence, the error dynamics system can be written as

ė = gi(y) + gj(y)− fi(x)− fj(x) + u, (2.9)

where e = y − x. The difference between the two linear terms gi(y), fi(x) can be written as

gi(y)− fi(x) = Ae+ f ′(x), (2.10)
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where A is the coefficient matrix of the error system. Equation (2.9) and f ′i(x) consist of residual terms.
The difference between the two nonlinear terms gj(y)− fj(x) is then written as

gj(y)− fj(x) = F (e, x)− f ′(x). (2.11)

Equation (2.9) becomes
ė = Ae+ F (e, x) + u = Ae+ kes. (2.12)

Construct a Lyapunov function in the form

V =
1

2
eT e. (2.13)

Then its time derivative is
V̇ = eT ė. (2.14)

Inserting (2.12) into the time derivative of V leads to

V̇ = −eTPe ≤ 0. (2.15)

Since V is positive definite and V̇ is negative definite in the neighborhood of zero solution of system (2.9), it
follows that limt→∞ ‖e‖ = 0, based on the Lyapunov stability theorem [8]. Therefore, the response system
(2.8) is synchronized with the drive system (2.7). This completes the proof.

3. Dual synchronization of two chaotic systems

We define the master systems and slave systems as follows.
Master 1. Chen system [4] is given by

ẋ1 = α(y1 − x1),
ẏ1 = (δ − α)x1 − x1z1 + δy1,

ż1 = x1y1 − βz1.
(3.1)

Master 2. Lorenz system [12] is given by

ẋ2 = σ(y2 − x2),
ẏ2 = ρx2 − x2z2 − y2,
ż2 = x2y2 − γz2.

(3.2)

So the corresponding slave systems are
Slave 1.

ẋ3 = α(y3 − x3) + u1,

ẏ3 = (δ − α)x3 − x3z3 + δy3 + u2,

ż3 = x3y3 − βz3 + u3.

(3.3)

Slave 2.
ẋ4 = σ(y4 − x4) + u4,

ẏ4 = ρx4 − x4z4 − y4 + u5,

ż4 = x4y4 − γz4 + u6,

(3.4)

where U = [u1, u2, u3, u4, u5, u6]
T is the controller function. Subtracting (3.1) from (3.3) and (3.2) from

(3.4) yields the following error dynamical system:

ė1 = α(e2 − e1) + u1,

ė2 = (δ − α)e1 − e1e3 − z1e1 − x1e3 + δe2 + u2,

ė3 = e1e2 + y1e1 + x1e2 − βe3 + u3,

ė4 = σ(e5 − e4) + u4,

ė5 = ρe4 − e5 − e4e6 − z2e4 − x2e6 + u5,

ė6 = e4e5 + y2e4 + x2e5 − γe6 + u6,

(3.5)
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where e1 = x3 − x1, e2 = y3 − y1, e3 = z3 − z1, e4 = x4 − x2, e5 = y4 − y2, e6 = z4 − z2. Our goal is to find
proper control functions ui (i = 1, . . . , 6), such that the pair of the master system equations (3.1) and (3.2)
synchronizes the pair of the slave system equations (3.3) and (3.4) asymptotically, that is, limt→∞ ‖e‖ = 0,
where e = [e1, . . . , e6]

T . For this end, we propose the following corollary.

Corollary 3.1. The pair of the master system equations (3.1) and (3.2) can be synchronized the pair of the
slave system equations (3.3) and (3.4) asymptotically for any different initial condition with the following
nonlinear controller.

u1 = −αe2 + k1e,

u2 = −(δ − α)e1 + e1e3 + z1e1 + x1e3 − 2δe2 + k2e,

u3 = −e1e2 − y1e1 − x1e2 + k3e,

u4 = −σe5 + k4e,

u5 = −ρe4 + e4e6 + z2e4 + x2e6 + k5e,

u6 = −e4e5 − y2e4 − x2e5 + k6e,

(3.6)

where e = a1e1 + a2e2 + a3e3 + b1e4 + b2e5 + b3e6, is the linear coupling of the masters and slave systems.

Proof. Substituting (3.6) into (3.5) leads to the following error system

ė1 = −αe1 + k1e,

ė2 = −δe2 + k2e,

ė3 = −βe3 + k3e,

ė4 = −σe4 + k4e,

ė5 = −e5 + k5e,

ė6 = −γe6 + k6e.

(3.7)

Construct a Lyapunov function in the form

V =
1

2
eT e. (3.8)

The time derivative of V along the solution of error dynamical system (3.7) gives

V̇ =e1ė1 + e2ė2 + e3ė3 + e4ė4 + e5ė5 + e6ė6

=e1(−αe1 + k1e) + e2(−δe2 + k2e) + e3(−βe3 + k3e)

+ e4(−σe4 + k4e) + e5(−e5 + k5e) + e6(−γe6 + k6e)

=(k1a1 − α)e21 + (k1a2 + k2a1)e1e2 + (k1a3 + k3a1)e1e3

+ (k1b1 + k4a1)e1e4 + (k1b2 + k5a1)e1e5 + (k1b3 + k6a1)e1e6

+ (k2a2 − δ)e22 + (k2a3 + k3a2)e2e3 + (k2b1 + k4a2)e2e4

+ (k2b2 + k5a2)e2e5 + (k2b3 + k6a2)e2e6 + (k3a3 − β)e23

+ (k3b1 + k4a3)e3e4 + (k3b2 + k5a3)e3e5 + (k3b3 + k6a3)e3e6

+ (k4b1 − σ)e24 + (k4b2 + k5b1)e4e5 + (k4b3 + k6b1)e4e6

+ (k5b2 − 1)e25 + (k5b3 + k6b2)e5e6 + (k6b3 − γ)e26

=− eTPe,

(3.9)

where e = [|e1| , |e2| , |e3| , |e4| , |e5| , |e6|] and P is real symmetric. Obviously, P should be positive definite
to ensure that the origin of error system (3.5) is asymptotically stable. According to Sylvester’s theorem
[17], P is positive definite if and only if ∆i > 0, i = 1, 2, . . . , 6, where ∆i represents the ith order sequential
subdeterminant of a matrix. That is, we should choose the appropriate parameters. This completes the
proof.
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Figure 1: State trajectories between the pair of Chen systems (3.1) and (3.3), (a) signals x1 and x3; (b) signals y1 and y3; (c)
signals z1 and z3.
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Figure 2: State trajectories between the pair of Lorenz systems (3.2) and (3.4), (a) signals x2 and x4; (b) signals y2 and y4;
(c) signals z2 and z4.
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Figure 3: (a)The error signals e1, e2, e3 between the pair of Chen systems; (b)The error signals e4, e5, e6 between the pair of
Lorenz systems.

3.1. Numerical simulations

The problem of dual synchronization of Chen system and Lorenz system is simulated. The system
parameters are set to α = 35, δ = 28 and β = 3 for the pair of Chen systems and σ = 10, γ = 8/3 and
ρ = 28 for the pair of Lorenz system, so both systems exhibit chaotic behavior. In addition, the coupled
parameters are valued as ai = (1, 1, 1), bi = (1, 1, 1), i = 1, 2, 3 and ki = (−2), i = 1, . . . , 6, so that the
condition P is positive definite. The initial conditions of the master systems (3.1) and (3.2) are taken as
x1(0) = 0.5, y1(0) = 1, z1(0) = 1, x2(0) = 1.5 and y2(0) = 2.5, z2(0) = 0.65. The initial conditions of the
slave systems (3.3) and (3.4) are taken as x3(0) = 10.5, y3(0) = 1, z3(0) = 37 and x4(0) = 10, y4(0) =
15.5, z4(0) = 9.65, so the initial conditions of the error system are set to be e1(0) = 10, e2(0) = 0, e3(0) = 36
and e4(0) = 8.5, e5(0) = 13, e6(0) = 9. Dual synchronizations of Chen system and Lorenz system are shown
in Figurs 1, 2 and 3. Figure 1 (a)–(c) show the state trajectories of pair of Chen systems (3.1) and (3.3).
Figure 2 (a)–(c) show the state trajectories of pair of Lorenz systems (3.2) and (3.4). Figure 3 (a)–(b)
show the error e1, e2, e3 and e4, e5, e6 between the pair of Chen systems and the pair of Lorenz systems,
respectively.

4. Dual synchronization of two hyperchaotic systems

We define the master and slave systems as follows:

Master 1. Hyperchaotic Chen system [11] is given by

ẋ1 = α(y1 − x1) + w1,

ẏ1 = δx1 − x1z1 + θy1,

ż1 = x1y1 − βz1,
ẇ1 = y1z1 + %w1.

(4.1)

Master 2. Hyperchaotic Lü system [2] is given by

ẋ2 = α1(y2 − x2) + w2,

ẏ2 = −x2z2 + θ1y2,

ż2 = x2y2 − β1z2,
ẇ2 = x2z2 + %1w2.

(4.2)

So, the corresponding slave systems are:
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Slave 1.
ẋ3 = α(y3 − x3) + w3 + u1,

ẏ3 = δx3 − x3z3 + θy3 + u2,

ż3 = x3y3 − βz3 + u3,

ẇ3 = y3z3 + %w3 + u4.

(4.3)

Slave 2.
ẋ4 = α1(y4 − x4) + w4 + u5,

ẏ4 = −x4z4 + θ1y4 + u6,

ż4 = x4y4 − β1z4 + u7,

ẇ4 = x4z4 + %1w4 + u8,

(4.4)

where U = [u1, . . . , u8]
T is the controller function. Subtracting (4.3) from (4.1), and (4.4) from (4.2), yields

the following error dynamical system:

ė1 = α(e2 − e1) + e4 + u1,

ė2 = δe1 − e1e3 − z1e1 − x1e3 + θe2 + u2,

ė3 = e1e2 + y1e1 + x1e2 − βe3 + u3,

ė4 = z1e2 + y1e3 + e2e3 + %e4 + u4,

ė5 = α1(e6 − e5) + e8 + u5,

ė6 = −x2e7 − z2e5 − e5e7 + θ1e6 + u6,

ė7 = y2e5 + x2e6 + e5e6 − β1e7 + u7,

ė8 = z2e5 + x2e7 + e5e7 + %1e8 + u8,

(4.5)

where e1 = x3 − x1, e2 = y3 − y1, e3 = z3 − z1, e4 = w3 − w1, e5 = x4 − x2, e6 = y4 − y2, e7 = z4 − z2,
e8 = w4−w2. Our goal is to find proper control functions ui (i = 1, . . . , 8), such that the pair of the master
systems (4.1) and (4.2) synchronizes the pair of the slave systems (4.3) and (4.4) asymptotically, that is,
limt→∞ ‖e‖ = 0, where e = [e1, . . . , e8]

T .

For this end, we propose the following corollary.

Corollary 4.1. The pair of the master system equations (4.1) and (4.2) can be synchronized the pair of
the slave system equations (4.3) and (4.4) asymptotically for any different initial condition with following
nonlinear controller.

u1 = −αe2 − e4 + k1e,

u2 = −δe1 + e1e3 + z1e1 + x1e3 − 2θe2 + k2e,

u3 = −e1e2 − y1e1 − x1e2 + k3e,

u4 = −z1e2 − y1e3 − e2e3 − 2%e4 + k5e,

u5 = −α1e6 − e8 + k5e,

u6 = x2e7 + z2e5 + e5e7 − 2θ1e6 + k6e,

u7 = −y2e5 − x2e6 − e5e6 + k7e,

u8 = −z2e5 − x2e7 − e5e7 − 2%1e8 + k8e,

(4.6)

where e = a1e1 + a2e2 + a3e3 + a4e4 + b1e5 + b2e6 + b3e7 + b4e8 is the linear coupling of the masters and
slave systems.
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Figure 4: State trajectories between the pair of hyperchaotic Chen systems (4.1) and (4.3), (a) signals x1 and x3; (b) signals
y1 and y3; (c) signals z1 and z3; (d) signals w1 and w3.
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Figure 5: State trajectories between the pair of hyperchaotic Lü systems (4.2) and (4.4), (a) signals x2 and x4; (b) signals y2
and y4; (c) signals z2 and z4; (d) signals w2 and w4.
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Figure 6: (a) The error signals e1, e2, e3, e4 between the pair of hyperchaotic Chen systems; (b) The error signals e5, e6, e7, e8
between the pair of hyperchaotic Lü systems.

Proof. Substituting (4.6) into (3.5) leads to the following error system

ė1 = −αe1 + k1e,

ė2 = −θe2 + k2e,

ė3 = −βe3 + k3e,

ė4 = −%e4 + k4e,

ė5 = −α1e5 + k5e,

ė6 = −θ1e6 + k6e,

ė7 = −β1e7 + k7e,

ė8 = −%1e8 + k8e.

(4.7)

Construct a Lyapunov function in the form

V =
1

2
eT e. (4.8)

The time derivative of V along the solution of error dynamical system (4.7) gives

V̇ =e1ė1 + e2ė2 + e3ė3 + e4ė4 + e5ė5 + e6ė6 + e7ė7 + e8ė8

=(a1k1 − α)e21 + (a2k1 + a1k2)e1e2 + (a3k1 + a1k3)e1e3 + (a4k1 + a1k4)e1e4

+ (b1k1 + a1k5)e1e5 + (b2k1 + a1k6)e1e6 + (b3k1 + a1k7)e1e7 + (b4k1 + a1k8)e1e8

+ (a2k2 − θ)e22 + (a3k2 + a2k3)e2e3 + (a4k2 + a2k4)e2e4 + (b1k2 + a2k4)e2e5

+ (b2k2 + a2k6)e2e6 + (b3k2 + a2k7)e2e7 + (b4k2 + a2k8)e2e8 + (a3k3 − β)e23

+ (a4k3 + a3k4)e3e4 + (b1k3 + a3k5)e3e5 + (b2k3 + a3k6)e3e6 + (b3k3 + a3k7)e3e7

+ (b4k3 + a3k8)e3e8 + (a4k4 − %)e24 + (b1k4 + a4k5)e4e5 + (b2k4 + a4k6)e4e6

+ (b3k4 + a4k7)e4e7 + (b4k4 + a4k8)e4e8 + (b1k5 − α1)e
2
5 + (b2k5 + b1k6)e5e6

+ (b3k5 + b1k7)e5e7 + (b4k5 + b1k8)e5e8 + (b2k6 − θ1)e26 + (b3k6 + b2k7)e6e7

+ (b4k6 + b2k8)e6e8 + (b3k7 − β1)e27 + (b3k8 + b4k7)e7e8 + (b4k8 − %1)e28
=− eTPe,

(4.9)

where e = [|e1| , |e2| , |e3| , |e4| , |e5| , |e6| , |e7| , |e8|] and P is real symmetric. Obviously, P should be positive
definite to ensure that the origin of error system (4.5) is asymptotically stable. According to Sylvester’s
theorem [17], P is positive definite if and only if ∆i > 0, i = 1, 2, ..., 8, where ∆i represents the ith order
sequential subdeterminant of matrix. That is, we should choose the appropriate parameters. This completes
the proof.



A. A. Othman, M. S. M. Noorani, M. M. Al-Sawalha, J. Nonlinear Sci. Appl. 9 (2016), 4666–4677 4676

4.1. Numerical simulations

The dual synchronization problem of the hyperchaotic Chen system and hyperchaotic Lü system is
simulated. The system parameters are set to α = 35, θ = 12, β = 3, δ = 7 and % = 0.5 for the pair of
the hyperchaotic Chen systems and α1 = 36, θ1 = 20, β1 = 3 and %1 = 1.3 for the pair of hyperchaotic
Lorenz system, so both systems exhibits hyperchaotic behavior. In addition, the coupled parameters are
valued as ai = (1, 1, 1, 1), bi = (1, 1, 1, 1), i = 1, 2, 3, 4 and ki = (−2), i = 1, ..., 8 so that the condition P is
positive definite. The initial conditions of the master system (3.1) and the master system (3.2) are taken as
x1(0) = 5, y1(0) = 8, z1(0) = −1, w1(0) = −3, and x2(0) = 5, y2(0) = 8, z2(0) = −1, w2(0) = −3, the initial
conditions of the slave system (3.3) and the slave system (3.4) are taken as x3(0) = 3, y3(0) = 4, z3(0) =
5, w3(0) = 5 and x4(0) = 3, y4(0) = 4, z4(0) = 5, w4(0) = 5, so the initial conditions of the error system are
set to be e1(0) = −2, e2(0) = −4, e3(0) = 6, e4(0) = 8, e5(0) = −2, e6(0) = −4, e7(0) = 6, e8(0) = 8. Dual
synchronization of pair hyperchaotic Chen system and pair hyperchaotic Lü system are shown in Figures 4,
5 and 6. Figure 4 (a)–(d) show the state trajectories of pair of hyperchaotic Chen systems (4.1) and (4.3).
Figure 5 (a)–(d) show the state trajectories of pair of hyperchaotic Lü systems (4.2) and (4.4). Figure 6
(a)–(b) show the errors e1, e2, e3, e4 and e5, e6, e7, e8 between the pair of the hyperchaotic Chen systems and
the pair of the hyperchaotic Lü systems, respectively.

5. Concluding remark

We investigate the dual synchronization behavior of a pair of chaotic systems and extend the dual
synchronization behavior for a pair of hyperchaotic systems. We proposed a novel nonlinear feedback
control scheme for chaos and hyperchaos dual synchronization according to the Lyapunov method. The
dual synchronization behavior between a pair of chaotic systems (Chen and Lorenz systems) and a pair of
hyperchaotic systems (hyperchaotic Chen and hyperchaotic Lü systems) are illustrated by two examples to
show the effectiveness of the proposed method. Theoretical analysis and numerical simulations verified the
results.
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systems, J. Comput. Appl. Math., 206 (2007), 1046–1050. 1
[14] M. S. M. Noorani, M. M. Al-Sawalha, Adaptive dual synchronization of chaotic and hyperchaotic systems with

fully uncertain parameters, Optik-Int. J. Light Electron Optics, 127 (2016), 7852–7864. 1
[15] E. M. Shahverdiev, S. Sivaprakasam, K. A. Shore, Dual and dual-cross synchronization in chaotic systems, Opt.

Commun., 216 (2003), 179–183. 1
[16] P. P. Singh, J. P. Singh, B. K. Roy, Synchronization and anti-synchronization of Lu and Bhalekar-Gejji chaotic

systems using nonlinear active control, Chaos Solitons Fractals, 69 (2014), 31–39. 1
[17] J. J. E. Slotine, W. Li, Applied nonlinear control, Englewood Cliffs, Prentice-Hall, New Jersey, (1991). 3, 4
[18] A. Uchida, S. Kinugawa, T. Matsuura, S. Yoshimori, Dual synchronization of chaos in one-way coupled microchip

lasers, Phys. Rev. E, 68 (2003), 026220. 1
[19] C. Wang, Y. He, J. Ma, L. Huang, Parameters estimation, mixed synchronization, and antisynchronization in

chaotic systems, Complexity, 20 (2014), 64–73. 1
[20] K. Yoshimura, Multichannel digital communications by the synchronization of globally coupled chaotic systems,

Phys. Rev. E, 60 (1999), 1648–1657. 1
[21] Z. Zhang, J. H. Park, H. Shao, Adaptive synchronization of uncertain unified chaotic systems via novel feedback

controls, Nonlinear Dyn., 81 (2015), 695–706. 1
[22] S. Zheng, Adaptive modified function projective synchronization of unknown chaotic systems with different order,

Appl. Math. Comput., 218 (2012), 5891–5899. 1


	1 Introduction
	2 Problem statement
	2.1 Dual Synchronization

	3 Dual synchronization of two chaotic systems
	3.1 Numerical simulations

	4 Dual synchronization of two hyperchaotic systems
	4.1 Numerical simulations

	5 Concluding remark

