On the extended multivalued Geraghty type contractions

Hojjat Afsharia, Hamed H. Alsulami ${ }^{\text {b }}$, Erdal Karapınar ${ }^{\text {c,* }}$
${ }^{a}$ Faculty of Basic Science, University of Bonab, Bonab, Iran.
${ }^{b}$ Nonlinear Analysis and Applied Mathematics Research Group (NAAM), King Abdulaziz University, Jeddah, Saudi Arabia.
${ }^{c}$ Atilim University, Department of Mathematics, 06836, İncek, Ankara, Turkey.
Communicated by W. Shatanawi

Abstract

In this paper we present some absolute retract results for modified Geraghty multivalued type contractions in b-metric space. Our results, generalize several existing results in the corresponding literature. We also present some examples to support the obtained results. © 2016 all rights reserved.

Keywords: Fixed points, extended multivalued Geraghty type contractions.
2010 MSC: $46 \mathrm{~T} 99,47 \mathrm{H} 10,54 \mathrm{H} 25$.

1. Introduction and preliminaries

Let $P(X)$ denote the collection of all nonempty subsets of a set $X \neq \emptyset$, and $F: X \rightarrow P(X)$ be multifunctions (multivalued mapping). Throughout the paper, set of all nonempty closed and bounded subsets of X will be represented by $P_{b, c l}(X)$ under the assumption that X is equipped with a metric. Further, the set of all fixed point(s) of F will be denoted by \mathcal{F}_{F}, that is,

$$
\mathcal{F}_{F}=\{x \in X: x \in F x\} .
$$

Let (X, d) be a metric space and $B\left(x_{0}, r\right)=\left\{x \in X: d\left(x_{0}, x\right)<r\right\}$. For $x \in X$ and $A, B \subseteq X$, we set $D: P(X) \times P(X) \rightarrow[0, \infty) \cup\{+\infty\}$, such that

$$
D(A, B)=\sup \{D(a, B): a \in A\} \text { and } D(B, A)=\sup \{D(b, A): b \in B\} .
$$

[^0]Let $H: P(X) \times P(X) \rightarrow[0, \infty) \cup\{+\infty\}$ be defined as

$$
H(A, B)= \begin{cases}\max \{D(A, B), D(B, A)\}, & A \neq \emptyset \neq B \\ 0, & A=\emptyset=B \\ +\infty, & \text { otherwise }\end{cases}
$$

Note that H forms a metric and it is called the Hausdorff metric (for more details see e.g. [13, 14] and the references therein).

For non-empty sets X, Y, a mapping $\varphi: X \rightarrow Y$ is called a selection of $F: X \rightarrow P(Y)$, whenever $\varphi(x) \in F x$ for all $x \in X$. A topological space X is an absolute retract for metric spaces if for each metric space $Y, A \in P_{c l}(Y)$ and continuous function $\psi: A \rightarrow X$, there exists a continuous function $\varphi: Y \rightarrow X$ such that $\left.\varphi\right|_{A}=\psi($ see [12]).

Let \mathcal{M} be the collection of all metric spaces, $X \in \mathcal{M}, \mathcal{D} \in P(\mathcal{M})$ and $F: X \rightarrow P_{b, c l}(X)$ a lower semicontinuous multifunction. We say that F has the selection property with respect to \mathcal{D} if for each $Y \in \mathcal{D}$, continuous function $f: Y \rightarrow X$ and continuous functional $g: Y \rightarrow(0, \infty)$ such that

$$
G(y):=\overline{F(f(y)) \cap B(f(y), g(y))} \neq \emptyset
$$

for all $y \in Y, A \in P_{c l}(Y)$, every continuous selection $\psi: A \rightarrow X$ of $\left.G\right|_{A}$ admits a continuous extension $\varphi: Y \rightarrow X$, which is a selection of G. If $\mathcal{D}=\mathcal{M}$, then we say that F has the selection property and we denote this by $F \in S p(X)$ (for more details see [13, [14]).

In this paper, we present some new results on absolute retract (see e.g. [4, 10, 12 14$]$) of the fixed points set of extended multivalued Geraghty type contractions. Our results combine, extend and generalize several existing results on the corresponding literature (see e.g. [1, 3, 8, 9, 11, 15, 16] and related references therein).

2. Fixed points set of extended multivalued Geraghty type contractions

In the all over this paper let Ψ be the set of all increasing and continuous functions $\psi:[0, \infty) \rightarrow[0, \infty)$ satisfying the following property: $\psi(c t) \leq c \psi(t)$ for all $c>1$ and $\psi(0)=0$. We denote by Θ the family of all increasing functions $\theta:[0, \infty) \rightarrow(0,1)$.

Definition 2.1. Let $F: X \rightarrow P_{b, c l}(X)$ be a multivalued mapping and $\alpha: X \times X \rightarrow[0, \infty)$ be a given function. Then F is said to be α-admissible if
(T3) $\alpha(x, y) \geq 1$ for all $y \in F x \Rightarrow \alpha(y, z) \geq 1$, for all $z \in F y$.
Example 2.2. Let $X=[1,2]$ and $F x=\left[x-\frac{1}{2}, 2\right]$. Define $\alpha(x, y)=1$ if $x=y=2$ and $\alpha(x, y)=0$ otherwise. Clearly, F is α-admissible.

Definition 2.3. Let (X, d) be a metric space and $F: X \rightarrow P_{b, c l}(X)$ be a multivalued mapping. We say that F is an extended multivalued Geraghty type contraction if there exist $\alpha: X \times X \rightarrow[0, \infty), a \in[0,1)$ and some $L \geq 0$ such that

$$
\begin{aligned}
\eta(a) D(x, F(x)) \leq d(x, y) \Longrightarrow & \alpha(x, y) \psi(H(F x, F y)) \\
& \leq \theta(\psi(M(x, y))) \psi(M(x, y))+L \phi(N(x, y))
\end{aligned}
$$

for all $x, y \in X$, where,

$$
M(x, y)=\max \left\{d(x, y), D(x, F x), D(y, F y), \frac{D(x, F y)+D(y, F x)}{2}\right\}
$$

and

$$
N(x, y)=\min \{D(x, F x), D(y, F x)\}
$$

and $\eta(a)=\frac{1}{1+a}, \theta \in \Theta$ and $\psi, \phi \in \Psi$.
Furthermore, we say that F is generalized multivalued Geraghty type contraction if

$$
\begin{equation*}
\alpha(x, y) \psi(H(F x, F y)) \leq \theta(\psi(M(x, y))) \psi(M(x, y))+L \phi(N(x, y)) \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$, where, $L, M(x, y), N(x, y), \alpha(x, y), \theta, \psi, \phi$ are defined as above.
Remark 2.4. The functions belonging to Θ are strictly smaller than 1 . Then, the expression $\theta(\psi(M(x, y)))$ in (2.1) satisfies

$$
\theta(\psi(M(x, y)))<1 \text { for any } x, y \in X \text { with } x \neq y
$$

Theorem 2.5. Let (X, d) be a complete metric space and $F: X \rightarrow P_{b, c l}(X)$ be a extended multivalued Geraghty type contraction such that
(i) F is α-admissible;
(ii) there exists $x_{0} \in X$ and $x_{1} \in F x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right) \geq 1$;
(iii) F is continuous.

Then F has a fixed point.
Proof. By condition (ii), there exists $x_{0} \in X$ and $x_{1} \in F x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right) \geq 1$. If $x_{1}=x_{0}$, as $x_{1} \in F x_{1}$, then x_{1} is a fixed point of F and we have nothing to prove. First, we note that

$$
\begin{aligned}
M\left(x_{0},, x_{1}\right) & =\max \left\{d\left(x_{0},, x_{1}\right), D\left(x_{0}, F x_{0}\right), D\left(x_{1}, F x_{1}\right), \frac{D\left(x_{0}, F x_{1}\right)+D\left(x_{1}, F x_{0}\right)}{2}\right\} \\
& =\max \left\{d\left(x_{0},, x_{1}\right), D\left(x_{1}, F x_{1}\right)\right\}
\end{aligned}
$$

Since $\eta(a) D\left(x_{0}, F x_{0}\right) \leq d\left(x_{0}, x_{1}\right)$, if $M\left(x_{0},, x_{1}\right)=D\left(x_{1}, F x_{1}\right)$, then

$$
\begin{aligned}
\psi\left(D\left(x_{1}, F x_{1}\right)\right) & \leq \alpha\left(x_{0}, x_{1}\right) \psi\left(H\left(F x_{0}, F x_{1}\right)\right) \leq \theta\left(\psi\left(D\left(x_{1}, F x_{1}\right)\right)\right) \psi\left(D\left(x_{1}, F x_{1}\right)\right)+L \phi(0) \\
& <\psi\left(D\left(x_{1}, F x_{1}\right)\right)
\end{aligned}
$$

which is a contradiction. It follows that $M\left(x_{0},, x_{1}\right)=d\left(x_{0},, x_{1}\right)$. Let $q=\frac{1}{\sqrt{\theta\left(\psi\left(d\left(x_{0}, x_{1}\right)\right)\right.}}>1$, then there exists $x_{2} \in F x_{1}$ such that

$$
\begin{equation*}
\psi\left(d\left(x_{1}, x_{2}\right)\right) \leq q \alpha\left(x_{0}, x_{1}\right) \psi\left(H\left(F x_{0}, F x_{1}\right)\right) \tag{2.2}
\end{equation*}
$$

Using (2.1) with $x=x_{0}$ and $y=x_{1}$, by (2.2) we get

$$
\begin{equation*}
\psi\left(d\left(x_{1}, x_{2}\right)\right) \leq \sqrt{\theta\left(\psi\left(d\left(x_{0}, x_{1}\right)\right)\right)} \psi\left(d\left(x_{0}, x_{1}\right)\right) \tag{2.3}
\end{equation*}
$$

Now, by the properties of the function ψ, we deduce

$$
\psi\left(\frac{d\left(x_{1}, x_{2}\right)}{\sqrt{\theta\left(\psi\left(d\left(x_{0}, x_{1}\right)\right)\right.}}\right) \leq \frac{1}{\sqrt{\theta\left(\psi\left(d\left(x_{0}, x_{1}\right)\right)\right)}} \psi\left(d\left(x_{1}, x_{2}\right)\right)<\psi\left(d\left(x_{0}, x_{1}\right)\right)
$$

and so $d\left(x_{1}, x_{2}\right)<\sqrt{\theta\left(\psi\left(d\left(x_{0}, x_{1}\right)\right)\right)} d\left(x_{0}, x_{1}\right)<d\left(x_{0}, x_{1}\right)$. If $x_{2} \in F x_{2}$, then x_{2} is a fixed point of F. Assume that $x_{1} \neq x_{2} \notin F x_{2}$. We have:

$$
M\left(x_{1}, x_{2}\right)=\max \left\{d\left(x_{1}, x_{2}\right), D\left(x_{2}, F x_{2}\right)\right\}, N\left(x_{1}, x_{2}\right)=0
$$

and $\eta(a) D\left(x_{1}, F x_{1}\right) \leq d\left(x_{1}, x_{2}\right)$. If $M\left(x_{1}, x_{2}\right)=D\left(x_{2}, F x_{2}\right)$, then

$$
0<\psi\left(D\left(x_{2}, F x_{2}\right)\right) \leq \alpha\left(x_{1}, x_{2}\right) \psi\left(H\left(F x_{1}, F x_{2}\right)\right)
$$

$$
\begin{aligned}
& \leq \theta\left(\psi\left(D\left(x_{2}, F x_{2}\right)\right)\right) \psi\left(D\left(x_{2}, F x_{2}\right)\right) \\
& <\psi\left(D\left(x_{2}, F x_{2}\right)\right)
\end{aligned}
$$

which is a contradiction and hence $M\left(x_{1}, x_{2}\right)=d\left(x_{1}, x_{2}\right)$.
Put $q_{1}=\frac{\sqrt{\theta\left(\psi\left(d\left(x_{0}, x_{1}\right)\right)\right)} \psi\left(d\left(x_{0}, x_{1}\right)\right)}{\psi\left(d\left(x_{1}, x_{2}\right)\right)}>1$ (by 2.3). Then there exists $x_{3} \in F x_{2}$ such that

$$
\psi\left(d\left(x_{2}, x_{3}\right)\right)<q_{1} \alpha\left(x_{1}, x_{2}\right) \psi\left(H\left(F x_{1}, F x_{2}\right)\right)
$$

Since $\eta(a) D\left(x_{2}, F x_{2}\right) \leq d\left(x_{2}, x_{3}\right)$, by (2.1) with $x=x_{2}$ and $y=x_{3}$, we have

$$
\begin{aligned}
\psi\left(d\left(x_{2}, x_{3}\right)\right) & <q_{1} \alpha\left(x_{1}, x_{2}\right) \psi\left(H\left(F x_{1}, F x_{2}\right)\right) \\
& \leq q_{1} \theta\left(\psi\left(M\left(x_{1}, x_{2}\right)\right)\right) \psi\left(M\left(x_{1}, x_{2}\right)\right)+q_{1} L N\left(x_{1}, x_{2}\right) \\
& =q_{1} \theta\left(\psi\left(d\left(x_{1}, x_{2}\right)\right)\right) \psi\left(d\left(x_{1}, x_{2}\right)\right) \\
& \leq \sqrt{\theta\left(\psi\left(d\left(x_{0}, x_{1}\right)\right)\right)} \sqrt{\theta\left(\psi\left(d\left(x_{0}, x_{1}\right)\right)\right)} \psi\left(d\left(x_{0}, x_{1}\right)\right) \\
& \leq\left(\sqrt{\theta\left(\psi\left(d\left(x_{0}, x_{1}\right)\right)\right)}\right)^{2} \psi\left(d\left(x_{0}, x_{1}\right)\right)
\end{aligned}
$$

Since

$$
\psi\left(\frac{d\left(x_{2}, x_{3}\right)}{\left(\sqrt{\theta\left(\psi\left(d\left(x_{0}, x_{1}\right)\right)\right)}\right)^{2}}\right) \leq \frac{\psi\left(d\left(x_{2}, x_{3}\right)\right)}{\left(\sqrt{\theta\left(\psi\left(d\left(x_{0}, x_{1}\right)\right)\right)}\right)^{2}}<\psi\left(d\left(x_{0}, x_{1}\right)\right)
$$

and ψ is increasing, then

$$
d\left(x_{2}, x_{3}\right)<\left(\sqrt{\theta\left(\psi\left(d\left(x_{0}, x_{1}\right)\right)\right)}\right)^{2} d\left(x_{0}, x_{1}\right)<d\left(x_{0}, x_{1}\right)
$$

By continuing this process, we obtain a sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \neq x_{n-1}$ and $d\left(x_{n}, x_{n+1}\right)<$ $\left(\sqrt{\theta\left(\psi\left(d\left(x_{0}, x_{1}\right)\right)\right)}\right)^{n} d\left(x_{0}, x_{1}\right)$ for all $n \in \mathbb{N}$.

Let $t=\sqrt{\theta\left(\psi\left(d\left(x_{0}, x_{1}\right)\right)\right)}$, then $0<t<1$. By the triangle inequality for $n<m$, we have

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leq \sum_{k=n}^{m-1} d\left(x_{k}, x_{k+1}\right) \leq\left(t^{n} \sum_{k=0}^{m-n-1} t^{k}\right) d\left(x_{0}, x_{1}\right) \\
& \leq \frac{t^{n}}{1-t} d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

The previous inequality shows that $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, d). Since (X, d) is a complete metric space, so there exists $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$. The continuity of F implies that

$$
0 \leq D\left(x^{\star}, F x^{\star}\right)=\lim _{n \rightarrow \infty} D\left(x_{n+1}, F x^{\star}\right) \leq \lim _{n \rightarrow \infty} H\left(F x_{n}, F x^{\star}\right)=0
$$

and so $x^{\star} \in F x^{\star}$.
Example 2.6. Let $X=[-1, \infty), d(x, y)=|x-y|$ and for any $A, B \subset X$

$$
\begin{aligned}
& D(A, B)=\sup \{D(a, B): a \in A\} \\
& H(A, B)=\max \left\{\sup _{x \in A} D(x, B), \sup _{y \in B} D(y, A)\right\}
\end{aligned}
$$

Define a multivalued mapping $F: X \rightarrow P_{b, c l}(X)$ by $F(x)=\left[-1, \frac{x}{4}\right]$ for every $x \in X$. It is easy to see that (X, d) is a complete metric space. We have

$$
\eta(a) D(x, F(x)) \leq d(x, y), \quad \eta(a)=\frac{1}{1+a}, a \in[0,1)
$$

whenever $x, y \in[-1,0]$. Hence, if we set $\psi(t)=t, \theta(t)=\frac{t+1}{t+2}$, and

$$
\alpha(x, y)=\left\{\begin{array}{l}
2 \text { if } x \geq y \\
\frac{1}{2} \text { if } x<y
\end{array}\right.
$$

because

$$
H(F x, F y)=\left\{\begin{array}{l}
\frac{x-y}{4} \text { if } x \geq y \\
\frac{y-x}{4} \text { if } x<y
\end{array}\right.
$$

and $M(x, y)=|x-y|, N(x, y)=0$, therefore

$$
\alpha(x, y) \psi(H(T x, T y)) \leq \theta(\psi(M(x, y))) \psi(M(x, y))+L \phi(N(x, y))
$$

It is straightforward that conditions of Theorem 2.5 are satisfied and so F has a fixed point. For this example we have $\mathcal{F}_{F}=[-1,0]$.

3. Extended multivalued Geraghty type contractions in the setting of b-metric spaces

In this section, first we recall the notion of b-metric and introduce the notion of a extended multivalued Geraghty type contractions in the setting of b-metric spaces. After then, we state and prove our main results.

Definition 3.1 (6]). Let X be a nonempty set and $s \geq 1$ be a given real number. A mapping $d: X \times X \rightarrow$ $[0, \infty)$ is said to be a b-metric if for all $x, y, z \in X$ the following conditions are satisfied:
$\left(\mathrm{bM}_{1}\right) d(x, y)=0$ if and only if $x=y ;$
$\left(\mathrm{bM}_{2}\right) d(x, y)=d(y, x) ;$
$\left(\mathrm{bM}_{3}\right) d(x, z) \leq s[d(x, y)+d(y, z)]$.
In this case, the pair (X, d) is called a b-metric space (with constant s).
For $s=1, b$-metric turns into standard metric. That is why b-metric spaces attracted the attention of researchers on this fields (see e.g. [5, 7]). Let (X, d) be a b-metric space. We consider next the following family of subsets given by

$$
\mathcal{P}(X):=\{Y \mid Y \subset X \text { and } Y \neq \emptyset\}
$$

In this case D is a generalized functional on a b-metric space (X, d) defined by $D: P(X) \times P(X) \rightarrow$ $[0, \infty) \cup\{+\infty\}$,

$$
D(A, B)= \begin{cases}\inf \{d(a, b) \mid a \in A, b \in B\}, & A \neq \emptyset \neq B \\ 0, & A=\emptyset=B \\ +\infty, & \text { otherwise }\end{cases}
$$

In particular, if $x_{0} \in X$ then $D\left(x_{0}, B\right):=D\left(\left\{x_{0}\right\}, B\right)$.
The following basic lemmas will be useful in the proof of main results.
Lemma 3.2 ([7). Let (X, d) be a b-metric space. Then, we have

$$
D(x, A) \leq s[d(x, y)+D(y, A)] \quad \text { for all } x, y \in X \text { and } A \subset X
$$

Lemma 3.3 ([7]). Let (X, d) be a b-metric space and let $\left\{x_{k}\right\}_{k=0}^{n} \subset X$. Then

$$
d\left(x_{n}, x_{0}\right) \leq s d\left(x_{0}, x_{1}\right)+\ldots+s^{n-1} d\left(x_{n-2}, x_{n-1}\right)+s^{n} d\left(x_{n-1}, x_{n}\right)
$$

We denote by \mathcal{F} the family of all functions $\beta:[0, \infty) \rightarrow\left[0, \frac{1}{s^{2}}\right)$ for some $s>1$.
Definition 3.4. Let (X, d) be a complete b-metric space and $F: X \rightarrow P_{b, c l}(X)$ be a multivalued mapping. We say that F is a extended multivalued Geraghty type contraction in b-metric space with $(s>1)$, whenever there exist $\alpha: X \times X \rightarrow[0, \infty), a \in[0,1)$ and some $L \geq 0$ such that for

$$
M(x, y)=\max \left\{d(x, y), D(x, F x), D(y, F y), \frac{D(x, F y)+D(y, F x)}{2 s}\right\}
$$

and

$$
N(x, y)=\min \{D(x, F x), D(y, F x)\}
$$

we have

$$
\begin{align*}
\eta(a) D(x, F(x)) \leq d(x, y) \Longrightarrow & \alpha(x, y) \psi\left(s^{3} H(F x, F y)\right) \\
& \leq \beta(\psi(M(x, y))) \psi(M(x, y))+L \phi(N(x, y)) \tag{3.1}
\end{align*}
$$

for all $x, y \in X$, where $\eta(a)=\frac{1}{1+a}, \beta \in \mathcal{F}$ and $\psi, \phi \in \Psi$.
Theorem 3.5. Let (X, d) be a complete b-metric space with $(s>1)$, and $F: X \rightarrow P_{b, c l}(X)$ be a extended multivalued Geraghty type contraction such that
(i) F is α-admissible;
(ii) there exists $x_{0} \in X$ and $x_{1} \in F x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right) \geq 1$;
(iii) F is continuous.

Then F has a fixed point.
Proof. By condition (ii), there exists $x_{0} \in X$ and $x_{1} \in F x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right) \geq 1$. If $x_{1}=x_{0}$, as $x_{1} \in F x_{1}$, then x_{1} is a fixed point of F and we have nothing to prove. First, we note that

$$
\begin{aligned}
M\left(x_{0},, x_{1}\right) & =\max \left\{d\left(x_{0},, x_{1}\right), D\left(x_{0}, F x_{0}\right), D\left(x_{1}, F x_{1}\right), \frac{D\left(x_{0}, F x_{1}\right)+D\left(x_{1}, F x_{0}\right)}{2 s}\right\} \\
& =\max \left\{d\left(x_{0},, x_{1}\right), D\left(x_{1}, F x_{1}\right)\right\}
\end{aligned}
$$

Since $\eta(a) D\left(x_{0}, F x_{0}\right) \leq d\left(x_{0}, x_{1}\right)$, if $M\left(x_{0},, x_{1}\right)=D\left(x_{1}, F x_{1}\right)$, then

$$
\begin{aligned}
\psi\left(D\left(x_{1}, F x_{1}\right)\right) & \leq \alpha\left(x_{0}, x_{1}\right) \psi\left(s^{3} H\left(F x_{0}, F x_{1}\right)\right) \leq \beta\left(\psi\left(D\left(x_{1}, F x_{1}\right)\right)\right) \psi\left(D\left(x_{1}, F x_{1}\right)\right)+L \phi(0) \\
& <\psi\left(D\left(x_{1}, F x_{1}\right)\right)
\end{aligned}
$$

which is a contradiction. It follows that $M\left(x_{0},, x_{1}\right)=d\left(x_{0},, x_{1}\right)$. Let us take a real q such that $1<q<s$. Then

$$
0<\psi\left(D\left(x_{1}, F x_{1}\right)\right) \leq \alpha\left(x_{0}, x_{1}\right) \psi\left(H\left(F x_{0}, F x_{1}\right)\right)<q \alpha\left(x_{0}, x_{1}\right) \psi\left(s^{3} H\left(F x_{0}, F x_{1}\right)\right)
$$

Hence, there exists $x_{2} \in F x_{1}$ such that

$$
\begin{equation*}
\psi\left(d\left(x_{1}, x_{2}\right)\right)<q \alpha\left(x_{0}, x_{1}\right) \psi\left(s^{3} H\left(F x_{0}, F x_{1}\right)\right) \tag{3.2}
\end{equation*}
$$

Using (3.1) with $x=x_{0}$ and $y=x_{1}$, by (3.2) we get

$$
\begin{equation*}
\psi\left(d\left(x_{1}, x_{2}\right)\right)<\frac{q}{s^{2}} \psi\left(d\left(x_{0}, x_{1}\right)\right) \tag{3.3}
\end{equation*}
$$

Now, by the properties of the function ψ and regarding the fact that $\frac{q}{s^{2}}<1$, we deduce

$$
\begin{aligned}
\psi\left(\frac{s^{2}}{q} d\left(x_{1}, x_{2}\right)\right) & \leq \frac{s^{2}}{q} \psi\left(d\left(x_{1}, x_{2}\right)\right)<\psi\left(d\left(x_{0}, x_{1}\right)\right) \\
d\left(x_{1}, x_{2}\right) & \leq \frac{q}{s^{2}} d\left(x_{0}, x_{1}\right)<d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

If $x_{2} \in F x_{2}$, then x_{2} is a fixed point of F. Assume that $x_{1} \neq x_{2} \notin F x_{2}$. We have:

$$
M\left(x_{1}, x_{2}\right)=\max \left\{d\left(x_{1}, x_{2}\right), D\left(x_{2}, F x_{2}\right)\right\}, N\left(x_{1}, x_{2}\right)=0
$$

and $\eta(a) D\left(x_{1}, F x_{1}\right) \leq d\left(x_{1}, x_{2}\right)$. If $M\left(x_{1}, x_{2}\right)=D\left(x_{2}, F x_{2}\right)$, then

$$
\begin{aligned}
0<\psi\left(D\left(x_{2}, F x_{2}\right)\right) & \leq \alpha\left(x_{1}, x_{2}\right) \psi\left(s^{3} H\left(F x_{1}, F x_{2}\right)\right) \\
& \leq \theta\left(\psi\left(D\left(x_{2}, F x_{2}\right)\right)\right) \psi\left(D\left(x_{2}, F x_{2}\right)\right) \\
& <\psi\left(D\left(x_{2}, F x_{2}\right)\right)
\end{aligned}
$$

which is a contradiction and hence $M\left(x_{1}, x_{2}\right)=d\left(x_{1}, x_{2}\right)$. Put

$$
q_{1}=\frac{\frac{q}{s^{2}} \psi\left(d\left(x_{0}, x_{1}\right)\right)}{\psi\left(d\left(x_{1}, x_{2}\right)\right)}
$$

By (3.3), we have $q_{1}>1$. Hence, there exists $x_{3} \in F x_{2}$ such that

$$
\psi\left(d\left(x_{2}, x_{3}\right)\right)<q_{1} \alpha\left(x_{1}, x_{2}\right) \psi\left(s^{3} H\left(F x_{1}, F x_{2}\right)\right)
$$

Since $\eta(a) D\left(x, F x_{2}\right) \leq d\left(x_{2}, x_{3}\right)$, by (3.1) with $x=x_{2}$ and $y=x_{3}$, we have

$$
\begin{aligned}
\psi\left(d\left(x_{2}, x_{3}\right)\right) & <q_{1} \alpha\left(x_{1}, x_{2}\right) \psi\left(s^{3} H\left(F x_{1}, F x_{2}\right)\right) \\
& \leq q_{1} \beta\left(\psi\left(M\left(x_{1}, x_{2}\right)\right)\right) \psi\left(M\left(x_{1}, x_{2}\right)\right)+q_{1} L \phi\left(N\left(x_{1}, x_{2}\right)\right) \\
& <\frac{q_{1}}{s^{2}} \psi\left(d\left(x_{1}, x_{2}\right)\right)
\end{aligned}
$$

So

$$
\psi\left(d\left(x_{2}, x_{3}\right)\right) \leq \frac{q_{1}}{s^{2}} \psi\left(d\left(x_{1}, x_{2}\right)\right) \leq\left(\frac{q}{s^{2}}\right)^{2} \psi\left(d\left(x_{0}, x_{1}\right)\right)
$$

By properties of ψ we obtain

$$
d\left(x_{2}, x_{3}\right) \leq\left(\frac{q}{s^{2}}\right)^{2} d\left(x_{0}, x_{1}\right)
$$

By continuing this process, we obtain a sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \in F x_{n-1}, x_{n} \neq x_{n-1}$ and $d\left(x_{n}, x_{n+1}\right)<\left(\frac{q}{s^{2}}\right)^{n} d\left(x_{0}, x_{1}\right)$ for all $n \in \mathbb{N}$. By the triangle inequality for $n<m$, we have

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leq \sum_{k=n}^{m-1} s^{k-n+1} d\left(x_{k}, x_{k+1}\right) \\
& \leq \sum_{k=n}^{\infty} s^{k-n+1}\left(\frac{q}{s^{2}}\right)^{k} d\left(x_{0}, x_{1}\right) \\
& =\left[\frac{s\left(\frac{q}{s^{2}}\right)^{n}}{1-s\left(\frac{q}{s^{2}}\right)}\right] d\left(x_{0}, x_{1}\right) \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

We deduce that $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, d). Since (X, d) is a complete b-metric space, so there exists $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$. The mapping F is continuous, so

$$
D\left(x^{\star}, F x^{\star}\right)=\lim _{n \rightarrow \infty} D\left(x_{n+1}, F x^{\star}\right) \leq \lim _{n \rightarrow \infty} H\left(F x_{n}, F x^{\star}\right)=0
$$

and so $x^{\star} \in F x^{\star}$.

Example 3.6. Put $X=\{1\} \cup\left\{m+\frac{1}{n+2}: m, n \in \mathbb{N}\right\}$ and define a metric d on X by

$$
d(x, y)=|x-y|
$$

Define a mapping F on X by

$$
F(x)= \begin{cases}1 & x=1 \\ 7 m+\frac{1}{n+2} & x=m+\frac{1}{n}\end{cases}
$$

Then F satisfies in the assumptions of Theorem 3.5.
Proof. It is obvious that (X, d) is a complete metric space and 1 is a unique fixed point of F. if $n<m$, we have

$$
\left.\begin{array}{rl}
\eta(a) D\left(m+\frac{1}{n+2}, F\left(m+\frac{1}{n+2}\right)\right) & <d\left(m+\frac{1}{n+2}, n+\frac{1}{n+2}\right) \\
\eta(a) d\left(m+\frac{1}{n+2}, 7 m+\frac{1}{n+2}\right) & <d\left(m+\frac{1}{n+2}, n+\frac{1}{n+2}\right) \\
\Uparrow & \Uparrow \\
\eta(a)\left|m+\frac{1}{n+2}-7 m-\frac{1}{n+2}\right| & <\left|m+\frac{1}{n+2}-n-\frac{1}{n+2}\right| \\
\Uparrow
\end{array}\right\} \begin{aligned}
& \Uparrow \\
& \frac{1}{2}|-6 m| \leq \eta(a)|-6 m|<\left|m+\frac{1}{n+2}-n-\frac{1}{n+2}\right| . \\
& \Uparrow \\
& 3 m<m-n<m .
\end{aligned}
$$

This is a contradiction. Therefore F satisfies in the assumptions of Theorem 3.5.
Example 3.7. Let X be the set of Lebesgue measurable functions on $[0,1]$ such that $\int_{0}^{1}|x(t)| d t<1$. Define $d: X \times X: \rightarrow[0, \infty)$ by

$$
d(x, y)=\int_{0}^{1}|x(t)-y(t)|^{2} d t
$$

Then, d is a b-metric on X, with $s=2$. The multivalued mapping $T: X \rightarrow 2^{X}$ is defined by

$$
T x(t)= \begin{cases}3 x+4, & \text { if } x(t)<-1 \\ {[-x, 1],} & \text { if }-1 \leq x(t)<0 \\ \frac{1}{8} \ln (1+x(t)), & \text { if } x(t) \geq 0\end{cases}
$$

Consider the mapping $\alpha: X \times X \rightarrow[0, \infty)$ by the following

$$
\alpha(x, y)= \begin{cases}2, & \text { if } y \leq x \leq-3 \\ 1, & \text { if } x \geq y \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

We take $\beta:[0, \infty) \rightarrow\left[0, \frac{1}{4}\right)$ and $\psi:[0, \infty) \rightarrow[0, \infty)$ as

$$
\psi(t)=t \quad \text { and } \quad \beta(t)=\frac{t^{2}+1}{4 t^{2}+8}
$$

Evidently, $\psi \in \Psi$ and $\beta \in \mathcal{F}$. Moreover, T is α-admissible, $\alpha(1, T 1) \geq 1$ and T is continuous. Now, we prove that T is a generalized $\alpha-\psi$-Suzuki-Geraghty multivalued type contraction. For $x(t) \geq 0$, we have

$$
\begin{aligned}
& \alpha(x(t), y(t)) \psi\left(s^{3} d(T x(t), T y(t))\right) \leq 2^{3}\left(\int_{0}^{1}|T x(t)-T y(t)|^{2} d t\right) \\
& \quad=2^{3} \int_{0}^{1}\left|\frac{1}{8} \ln (1+x(t))-\frac{1}{8} \ln (1+y(t))\right|^{2} d t \\
& \quad=2^{-3} \int_{0}^{1}\left|\ln \left(\frac{1+x(t)}{1+y(t)}\right)\right|^{2} d t=2^{-3} \int_{0}^{1}\left|\ln \left(1+\frac{x(t)-y(t)}{1+y(t)}\right)\right|^{2} d t \\
& \quad \leq 2^{-3} \int_{0}^{1}|\ln (1+|x(t)-y(t)|)|^{2} d t \leq 2^{-3} \int_{0}^{1}|x(t)-y(t)|^{2} d t \\
& \quad=2^{-3} d(x, y) \leq \frac{d(x, y)^{2}+1}{4 d(x, y)^{2}+8} d(x, y)=\beta(d(x, y) d(x, y)
\end{aligned}
$$

For $x(t)<0$, by definition of $T x(t)$ and $\alpha(x(t), y(t))$ the condition of 3.1) is satisfied. Thus, T is a generalized $\alpha-\psi$-Suzuki-Geraghty multivalued type contraction. By Theorem 3.5, T has a fixed point. Here $0,-2$ are fixed points.

If in $(3.2), \mathcal{F}$ is a family of all functions $\beta:[0, \infty) \rightarrow\left[0, \frac{1}{s}\right)$ for some $s \geq 1$, we can deduce the following theorem.

Theorem 3.8. Let (X, d) be a complete b-metric space and absolute retract for b-metric spaces, $F: X \rightarrow$ $P_{b, c l}(X)$ an extended multivalued Geraghty type contraction, F is continuous, and $F \in S P(X)$. If $\alpha(x, y) \geq 1$ for all $x \in X$ and $y \in F(x)$, then \mathcal{F}_{F} is an absolute retract for b-metric spaces.

Proof. Let Y be a b-metric space, $A \in P_{c l}(Y)$ and $\xi: A \rightarrow \mathcal{F}_{F}$ a continuous function. Since X is an absolute retract for b-metric spaces, there exists a continuous function $\varphi_{0}: Y \rightarrow X$ such that $\left.\varphi_{0}\right|_{A}=\xi$. Define the function $g_{0}: Y \rightarrow(0, \infty)$ by

$$
g_{0}(y)=\sup \left\{d\left(\varphi_{0}(y), z\right) \mid z \in F\left(\varphi_{0}(y)\right)\right\}+1
$$

for all $y \in Y$. It is not difficult to see that g_{0} is continuous and

$$
F\left(\varphi_{0}(y)\right) \cap B\left(\varphi_{0}(y), g_{0}(y)\right)=F\left(\varphi_{0}(y)\right)
$$

for all $y \in A$ (see [14]). Also we observe that the function $\xi: A \rightarrow \mathcal{F}_{F}$ has the property $\xi(y) \in F\left(\varphi_{0}(y)\right)$ $(y \in A)$, so is a continuous selection of the multivalued mapping. Since $F \in S p(X)$, there exists a continuous function $\varphi_{1}: Y \rightarrow X$ such that $\left.\varphi_{1}\right|_{A}=\xi$ and $\varphi_{1}(y) \in F\left(\varphi_{0}(y)\right)$ for all $y \in Y$. First, we note that

$$
\begin{aligned}
M\left(\varphi_{0}(y), \varphi_{1}(y)\right)= & \max \left\{d\left(\varphi_{0}(y), \varphi_{1}(y)\right), D\left(\varphi_{0}(y), F \varphi_{0}(y)\right), D\left(\varphi_{1}(y), F \varphi_{1}(y)\right)\right. \\
& \left., \frac{D\left(\varphi_{0}(y), F \varphi_{1}(y)\right)+D\left(\varphi_{1}(y), F \varphi_{0}(y)\right)}{2 s}\right\} \\
= & \max \left\{d\left(\varphi_{0}(y),, \varphi_{1}(y)\right), D\left(\varphi_{1}(y), F \varphi_{1}(y)\right)\right\}
\end{aligned}
$$

Since $\eta(a) D\left(\varphi_{0}(y), F\left(\varphi_{0}(y)\right)\right) \leq d\left(\varphi_{0}(y), \varphi_{1}(y)\right)$, if $M\left(\varphi_{0}(y), \varphi_{1}(y)\right)=D\left(\varphi_{1}(y), F \varphi_{1}(y)\right)$, then

$$
\begin{aligned}
\psi\left(D\left(\varphi_{1}(y), F \varphi_{1}(y)\right)\right) & \leq \alpha\left(\varphi_{0}(y), \varphi_{1}(y)\right) \psi\left(s^{3} H\left(F\left(\varphi_{0}(y), F\left(\varphi_{1}(y)\right)\right)\right)\right) \\
& \leq \beta\left(\psi\left(D\left(\varphi_{1}(y), F \varphi_{1}(y)\right)\right)\right) \psi\left(D\left(\varphi_{1}(y), F \varphi_{1}(y)\right)\right)+L \phi(0) \\
& <\psi\left(D\left(\varphi_{1}(y), F \varphi_{1}(y)\right)\right)
\end{aligned}
$$

which is contradiction. It follows that $M\left(\varphi_{0}(y), \varphi_{1}(y)\right)=d\left(\varphi_{0}(y), \varphi_{1}(y)\right)$. Let $1<q<s$ and $r \in\left(1, \frac{s}{q}\right)$, then

$$
\begin{aligned}
\psi\left(D\left(\varphi_{1}(y), F \varphi_{1}(y)\right)\right) & \leq \alpha\left(\varphi_{0}(y), \varphi_{1}(y)\right) \psi\left(s^{3} H\left(F\left(\varphi_{0}(y), F\left(\varphi_{1}(y)\right)\right)\right)\right) \\
& \leq \beta\left(\psi\left(d\left(\varphi_{0}(y), \varphi_{1}(y)\right)\right) \psi\left(d\left(\varphi_{0}(y), \varphi_{1}(y)\right)\right)\right. \\
& <\frac{q}{s} \psi\left(d\left(\varphi_{0}(y), \varphi_{1}(y)\right)\right)
\end{aligned}
$$

Now, by the property of $\psi \in \Psi$ and regarding the fact that $\frac{q}{s}<1$ we have

$$
\psi\left(\frac{s}{q} D\left(\varphi_{1}(y), F \varphi_{1}(y)\right)\right) \leq \frac{s}{q} \psi\left(D\left(\varphi_{1}(y), F \varphi_{1}(y)\right)\right)<\psi\left(d\left(\varphi_{0}(y), \varphi_{1}(y)\right)\right)
$$

Since ψ is increasing, therefore

$$
\begin{equation*}
\left.D\left(\varphi_{1}(y), F \varphi_{1}(y)\right)\right) \leq \frac{q}{s} d\left(\varphi_{0}(y), \varphi_{1}(y)\right)<\frac{q}{s} d\left(\varphi_{0}(y), \varphi_{1}(y)\right)+r^{-1} \tag{3.4}
\end{equation*}
$$

Hence, $G_{2}(y):=F\left(\varphi_{1}(y)\right) \cap B\left(\varphi_{1}(y), \frac{q}{s^{2}}\left(d\left(\varphi_{0}(y), \varphi_{1}(y)\right)\right)+r^{-1}\right) \neq \emptyset$ for all $y \in Y$. Since we know that $F \in S p(X)$, there exists a continuous function $\varphi_{2}: Y \rightarrow X$ such that $\left.\varphi_{2}\right|_{A}=\xi$ and $\varphi_{2}(y) \in \overline{G_{2}(y)}$ for all $y \in Y$. Thus, $\varphi_{2}(y) \in F\left(\varphi_{1}(y)\right)$ for all $y \in Y$ and

$$
d\left(\varphi_{1}(y), \varphi_{2}(y)\right)<\frac{q}{s}\left(d\left(\varphi_{0}(y), \varphi_{1}(y)\right)\right)+r^{-1}
$$

Similarly we have

$$
M\left(\varphi_{1}(y), \varphi_{2}(y)\right)=\max \left\{d\left(\varphi_{1}(y),, \varphi_{2}(y)\right), D\left(\varphi_{2}(y), F \varphi_{2}(y)\right)\right\}, N\left(\varphi_{1}(y), \varphi_{2}(y)\right)=0
$$

If $M\left(\varphi_{1}(y), \varphi_{2}(y)\right)=D\left(\varphi_{2}(y), F \varphi_{2}(y)\right)$, then

$$
\begin{aligned}
0<\psi\left(D\left(\varphi_{2}(y), F \varphi_{2}(y)\right)\right) & \leq \alpha\left(\varphi_{1}(y), \varphi_{2}(y)\right) \psi\left(s^{3} H\left(F\left(\varphi_{1}(y), F\left(\varphi_{2}(y)\right)\right)\right)\right) \\
& \leq \beta\left(\psi\left(D\left(\varphi_{2}(y), F \varphi_{2}(y)\right)\right) \psi\left(D\left(\varphi_{2}(y), F \varphi_{2}(y)\right)\right)\right. \\
& <\frac{q}{s} \psi\left(D\left(\varphi_{2}(y), F \varphi_{2}(y)\right)\right) \\
& <\psi\left(D\left(\varphi_{2}(y), F \varphi_{2}(y)\right)\right)
\end{aligned}
$$

which is contradiction. It follows that $M\left(\varphi_{1}(y), \varphi_{2}(y)\right)=d\left(\varphi_{1}(y), \varphi_{2}(y)\right)$.
Now, by the property of ψ we have

$$
\psi\left(\frac{s}{q} D\left(\varphi_{2}(y), F \varphi_{2}(y)\right)\right) \leq \frac{s}{q} \psi\left(D\left(\varphi_{2}(y), F \varphi_{2}(y)\right)\right)<\psi\left(d\left(\varphi_{1}(y), \varphi_{2}(y)\right)\right)
$$

Since ψ is increasing, therefore

$$
D\left(\varphi_{2}(y), F \varphi_{2}(y)\right) \leq \frac{q}{s} d\left(\varphi_{1}(y), \varphi_{2}(y)\right)<\frac{q}{s} d\left(\varphi_{1}(y), \varphi_{2}(y)\right)+r^{-1}
$$

By (3.4) we have

$$
D\left(\varphi_{2}(y), F \varphi_{2}(y)\right)<\left(\frac{q}{s}\right)^{2} d\left(\varphi_{0}(y), \varphi_{1}(y)\right)+r^{-2}
$$

Hence, $\left.G_{3}(y):=F\left(\varphi_{2}(y)\right) \cap B\left(\varphi_{2}(y)\right),\left(\frac{q}{s}\right)^{2} d\left(\varphi_{0}(y), \varphi_{1}(y)\right)+r^{-2}\right) \neq \emptyset$. Since $F \in S p(X)$, there exists a continuous function $\varphi_{3}: Y \rightarrow X$ such that $\left.\varphi_{3}\right|_{A}=\xi$ and $\varphi_{3}(y) \in \overline{G_{3}(y)}$ for all $y \in Y$. Also, we have $d\left(\varphi_{2}(y), \varphi_{3}(y)\right)<\left(\frac{q}{s}\right)^{2} d\left(\varphi_{0}(y), \varphi_{1}(y)\right)+r^{-2}$ and $\varphi_{3}(y) \in F\left(\varphi_{2}(y)\right)$ for all $y \in Y$. By continuing this process, we obtain $\left\{\varphi_{n}: Y \rightarrow X\right\}_{n \geq 0}$ a sequence of continuous functions such that $\left.\varphi_{n}\right|_{A}=\xi$ and $d\left(\varphi_{n-1}(y), \varphi_{n}(y)\right)<\left(\frac{q}{s}\right)^{n-1} d\left(\varphi_{0}(y), \varphi_{1}(y)\right)+r^{-(n-1)}$ and $\varphi_{n}(y) \in F\left(\varphi_{n-1}(y)\right)$ for all $y \in Y$ and $n \geq 1$. Now, for each $\lambda>0$ we put

$$
Y_{\lambda}:=\left\{y \in Y: d\left(\varphi_{0}(y), \varphi_{1}(y)\right)<\lambda\right\}
$$

Since $\varphi_{1}(y) \in F\left(\varphi_{0}(y)\right)$ and

$$
F\left(\varphi_{0}(y)\right) \cap B\left(\varphi_{0}(y), g_{0}(y)\right)=F\left(\varphi_{0}(y)\right)
$$

$\varphi_{1}(y) \in B\left(\varphi_{0}(y), g_{0}(y)\right)$. Hence, $d\left(\varphi_{0}(y), \varphi_{1}(y)\right)<\lambda_{y}:=g_{0}(y)$. Thus, $y \in Y_{\lambda_{y}}$. Since Y_{λ} is open for each $\lambda>0$, the family of sets $\left\{Y_{\lambda} \mid \lambda>0\right\}$ is an open covering of Y and we have

$$
d\left(\varphi_{n-1}(y), \varphi_{n}(y)\right) \leq\left(\frac{q}{s}\right)^{n-1} d\left(\varphi_{0}(y), \varphi_{1}(y)\right)+r^{-(n-1)}
$$

for all $n \geq 1$ and $y \in Y$. Since $\frac{q}{s}<1, r>1$, and X is complete, the sequence $\left\{\varphi_{n}\right\}_{n \geq 0}$ converges uniformly on Y_{λ} for all $\lambda>0$. Let $\varphi: Y \rightarrow X$ be the pointwise limit of $\left\{\varphi_{n}\right\}_{n \geq 0}$ and note that φ is continuous and $\left.\varphi\right|_{A}=\xi$ because $\left.\varphi_{n}\right|_{A}=\xi$ for all $n \geq 0$. Since F is continuous, hence $\varphi(y) \in F(\varphi(y))$ for all $y \in Y$. Therefore, $\varphi: Y \rightarrow B$ is a continuous extension of ξ, that is, $B=\{x \in X: x \in F(x)\}$ is an absolute retract for b-metric spaces.

4. Corollaries

By letting $\alpha(x, y)=1$ for all $x, y \in X$, we get the following consequences:
Corollary 4.1. Let (X, d) be a complete b-metric space and absolute retract for b-metric spaces, $F: X \rightarrow$ $P_{b, c l}(X)$, also there exists $a \in[0,1)$ and some $L \geq 0$ such that,

$$
\begin{align*}
\eta(a) D(x, F(x)) \leq d(x, y) \Longrightarrow & \psi\left(s^{3} d(T x, T y)\right) \\
& \leq \beta(\psi(d(x, y))) \psi(d(x, y))+L \phi(N(x, y)) \tag{4.1}
\end{align*}
$$

for all $x, y \in X$, where $\eta(a)=\frac{1}{1+a}, \beta \in \mathcal{F}$, and $\psi, \phi \in \Psi$ and

$$
N(x, y)=\min \{d(x, T x), d(y, T x)\}
$$

F is continuous and $F \in S P(X)$. If $\alpha(x, y) \geq 1$ for all $x \in X$ and $y \in F(x)$, then \mathcal{F}_{F} is an absolute retract for b-metric spaces.

If in (4.1), we let $L=0$ then we obtain the following sequence.
Corollary 4.2. Let (X, d) be a complete b-metric space and absolute retract for b-metric spaces, $F: X \rightarrow$ $P_{b, c l}(X)$, also there exist $a \in[0,1)$ such that,

$$
\eta(a) D(x, F(x)) \leq d(x, y) \Longrightarrow \psi\left(s^{3} d(T x, T y)\right) \leq \beta(\psi(d(x, y))) \psi(d(x, y))
$$

for all $x, y \in X$, where $\eta(a)=\frac{1}{1+a}, \beta \in \mathcal{F}$ and $\psi, \phi \in \Psi, F$ is continuous, and $F \in S P(X)$. If $\alpha(x, y) \geq 1$ for all $x \in X$ and $y \in F(x)$, then \mathcal{F}_{F} is an absolute retract for b-metric spaces.

5. Consequences

As it is expected, the main results of the paper yield several existing results in the literature by choosing the auxiliary functions α, η, ψ, ϕ in a proper way. To list more results it is sufficient to take $d(x, y)$ instead of $M(x, y)$, and /or take $L=0$. Notice also that, one can replace the single valued mapping instead of multivalued mapping to cover more results in the literature. Furthermore, by relaxing b-metric with metric, we observe more results as a consequence of our main results.

Acknowledgment

The authors thank to editor and anonymous referees for their remarkable comments, suggestion and ideas that help to improve this paper.

References

[1] H. Afshari, Sh. Rezapour, Absolute retractivity of some sets to two-variables multifunctions, Anal. Theory Appl., 28 (2012), 73-78. 1
[2] H. Afshari, Sh. Rezapour, N. Shahzad, Absolute retractivity of the common fixed points set of two multifunctions, Topol. Methods Nonlinear Anal., 40 (2012), 429-436.
[3] H. Afshari, Sh. Rezapour, N. Shahzad, Some results on absolute retractivity of the fixed points set of KSmultifunctions, Math. Slovaca, 65 (2015), 1509-1516. 1
[4] M. C. Alicu, O. Mark, Some properties of the fixed points set for multifunctions, Studia Univ. Babe-Bolyai Math., 25 (1980), 77-79. 1
[5] H. Aydi, M. F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak ϕ-contractions on b-metric spaces, Fixed Point Theory, 13 (2012), 337-346. 3
[6] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5-11. 3.1
[7] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263-276. 3. $3.2,3.3$
[8] M. Kikkawa,T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal., 69 (2008), 2942-2949. 1
[9] M. Kikkawa,T. Suzuki, Some similarity between contractions and Kannan mappings, Fixed Point Theory Appl., 2008 (2008), 8 pages. 1
[10] B. Ricceri, Une propriété topologique de l'ensemble des points fixes d'une contraction multivoque á valeurs convexes (French), Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 81 (1987), 283-286. 1
[11] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal., 75 (2012), 2154-2165. 1
[12] H. Schirmer, Properties of the fixed point set of contractive multifunctions, Canad. Math. Bull., 13 (1970), 169173. 1
[13] A. Sîntǎmǎrian, A topological property of the common fixed points set of two multivalued operators satisfying a Latif-Beg type condition, Fixed Point Theory, 9 (2008), 561-573. 1
[14] A. Sîntămărian, A topological property of the common fixed points set of two multivalued operators, Nonlinear Anal., 70 (2009), 452-456. 1, 3
[15] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008), 1861-1869. 1
[16] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340 (2008), 1088-1095. 1

[^0]: *Corresponding author
 Email addresses: hojat.afshari@yahoo.com, hojat.afshari@bonabu.ac.ir (Hojjat Afshari), hamed9@hotmail.com, hhaalsalmi@kau.edu.sa (Hamed H. Alsulami), erdalkarapinar@yahoo.com, erdal.karapinar@atilim.edu.tr (Erdal Karapınar)

