Research Article

Journal of Nonlinear Science and Applications Print: ISSN 2008-1898 Online: ISSN 2008-1901

Some fixed point results of multi-valued nonlinear F-contractions without the Hausdorff metric

Zeqing Liu^a, Xue Na^a, Shin Min Kang^{b,*}, Sun Young Cho^{c,*}

^aDepartment of Mathematics, Liaoning Normal University, Dalian, Liaoning 116029, People's Republic of China.

^bDepartment of Mathematics and the RINS, Gyeongsang National University, Jinju 52828, Korea.

^cDepartment of Mathematics, Gyeongsang National University, Jinju 52828, Korea.

Communicated by S. S. Chang

Abstract

Fixed point results for several multi-valued nonlinear F-contractions without the Hausdorff metric are given and three examples are included. The results obtained in this paper differ from the corresponding results in the literature. ©2016 All rights reserved.

Keywords: Multi-valued nonlinear F-contraction, fixed point, iterative approximation. 2010 MSC: 54H25.

1. Introduction and preliminaries

Throughout this article, let $\mathbb{R} = (-\infty, +\infty)$, $\mathbb{R}^+ = [0, +\infty)$, $\mathbb{N}_0 = \{0\} \cup \mathbb{N}$, where \mathbb{N} denotes the set of all positive integers. Let (X, d) be a metric space, CL(X), CB(X) and C(X) denote the families of all nonempty closed, all nonempty bounded closed and all nonempty compact subsets of X, respectively. For $T: X \to CL(X), A, B \in X \text{ and } x \in X, \text{ put}$

$$d(x,B) = \inf\{d(x,y), y \in B\}, \quad f(x) = d(x,Tx),$$
$$H(A,B) = \begin{cases} \max\{\sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A)\}, & \text{if the maximum exists,} \\ +\infty, & \text{otherwise.} \end{cases}$$

*Corresponding author

Email addresses: zeqingliu@163.com (Zeqing Liu), xuena08@163.com (Xue Na), smkang@gnu.ac.kr (Shin Min Kang), ooly61@yahoo.co.kr (Sun Young Cho)

Such a mapping H is called a *generalized Hausdorff metric* induced by d in CL(X). A sequence $\{x_n\}_{n\in\mathbb{N}_0}\subseteq X$ is said to be an *orbit* of T if $x_{n+1}\in Tx_n$ for each $n\in\mathbb{N}_0$. A function $h:X\to\mathbb{R}^+$ is said to be T-orbitally lower semi-continuous at $z\in X$ if $h(z)\leq \liminf_{n\to\infty}h(x_n)$ for any orbit $\{x_n\}_{n\in\mathbb{N}_0}\subseteq X$ of T with $\lim_{n\to\infty}x_n=z$.

It is well-known that the Banach contraction principle has a lot of generalizations and applications, (see [2, 6, 7, 9, 10, 12, 17–19, 25]). In 1969, Nadler [19] obtained the following fixed point theorem for the multi-valued contraction mappings.

Theorem 1.1 ([19]). Let (X, d) be a complete metric space and T a mapping from X to CB(X) such that

$$H(Tx, Ty) \le cd(x, y), \quad \forall x, y \in X, \tag{1.1}$$

where $c \in [0, 1)$ is a constant. Then T has a fixed point.

Later, many researchers generalized Theorem 1.1 in various directions (see [1, 3–6, 9, 10, 13, 14, 16, 18–24]). In 1972, Reich [22] extended Theorem 1.1 and proved the following fixed point theorem for the multi-valued contraction mapping which maps points into compact sets.

Theorem 1.2 ([22]). Let (X, d) be a complete metric space and $T: X \to C(X)$ satisfies

$$H(Tx, Ty) \le \varphi(d(x, y))d(x, y), \quad \forall x, y \in X,$$
(1.2)

where

 $\varphi: (0, +\infty) \to [0, 1) \quad with \quad \limsup_{r \to t^+} \varphi(r) < 1, \quad \forall t \in (0, +\infty).$ (1.3)

Then T has a fixed point.

In 1989, Mizoguchi and Takahashi [18] responded to the conjecture which has been asked whether Reich's theorem [22] can be extended to multi-valued mappings whose range consists of bounded and closed sets and proved the following result.

Theorem 1.3 ([18]). Let (X, d) be a complete metric space and $T: X \to CB(X)$ satisfy that

$$H(Tx, Ty) \le \varphi(d(x, y))d(x, y), \quad \forall x, y \in X \text{ with } x \ne y,$$

$$(1.4)$$

where

$$\varphi: (0, +\infty) \to [0, 1) \quad with \quad \limsup_{r \to t^+} \varphi(r) < 1, \quad \forall t \in \mathbb{R}^+.$$
 (1.5)

Then T has a fixed point.

In 2006, Feng and Liu [10] generalized Theorem 1.1 to a new type of multi-valued nonlinear contraction mapping without using the Hausdorff metric. Ćirić [5, 6], and Klim and Wardowski [14] extended the result of Feng and Liu [10] and showed the existence of fixed points for some new set-valued contraction mappings. Pathak and Shahzad [21] introduced a new concept of generalized contraction of set-valued mappings and got fixed point theorems for such mappings.

In 2012, Wardowski [25] introduced the concept of F-contractions for single-valued mappings and proved a fixed point theorem for the F-contraction, which is a generalization of the Banach contraction principle.

Definition 1.4 ([25]). Let $F: (0, +\infty) \to \mathbb{R}$ be a mapping satisfying:

- (F1) F is strictly increasing;
- (F2) for each sequence $\{\alpha_n\}_{n\in\mathbb{N}}$ of positive numbers $\lim_{n\to+\infty} \alpha_n = 0$ if and only if $\lim_{n\to+\infty} F(\alpha_n) = -\infty$;
- (F3) there exists $k \in (0, 1)$ such that $\lim_{\alpha \to 0^+} \alpha^k F(\alpha) = 0$.

Definition 1.5 ([25]). Let (X, d) be a metric space. A self-mapping T on X is called an F-contraction if there exist $F \in \mathcal{F}$ and $\tau > 0$ such that

$$\tau + F(d(Tx, Ty)) \le F(d(x, y)), \quad \forall x, y \in X \quad \text{with} \quad d(Tx, Ty) > 0.$$

Theorem 1.6. Let (X, d) be a complete metric space and let $T : X \to X$ be an *F*-contraction. Then *T* has a unique fixed point $u \in X$ and for every $x_0 \in X$ a sequence $\{T^n x_0\}_{n \in \mathbb{N}}$ is convergent to u.

Recently, the researchers have been attracted to study new classes of F-contractions and to prove the existence of fixed point theorems for these F-contractions (see [1, 2, 8, 11, 15, 17, 20, 23, 25]). In particular, Minak et al. [17] and Cosentino and Vetro [8] introduced Ćirić type generalized F-contractions and Hardy-Rogers type F-contraction mappings and proved some fixed point results for the F-contractions.

The purpose of this paper is to introduce some new multi-valued nonlinear *F*-contractions without using the Hausdorff metric and to establish the existence and iterative approximations of fixed points for these multi-valued nonlinear *F*-contractions in complete metric spaces. Three examples are included.

2. Main results

In this section, we establish four fixed point theorems for the multi-valued nonlinear F-contractions (a1), (a3), (a4), and (a6) in complete metric spaces.

Theorem 2.1. Let (X, d) be a complete metric space, $T : X \to CL(X)$ be a multi-valued mapping such that (a1) for any $x \in X - Tx$ there is $y \in Tx - Ty$ with

$$F(d(x,y)) \le F(f(x)) + \tau, \quad F(f(y)) + \tau + \eta(f(x)) \le F(d(x,y)),$$

where $F \in \mathcal{F}, \tau > 0$ and $\eta : (0, +\infty) \to (0, +\infty)$ satisfies that

(a2) $\liminf_{s \to t^+} \eta(s) > 0, \forall t \in \mathbb{R}^+.$

Then, for each $x_0 \in X$ there exists an orbit $\{x_n\}_{n \in \mathbb{N}_0}$ of T and $z \in X$ such that $\lim_{n \to \infty} x_n = z$. Furthermore, z is a fixed point of T in X if and only if the function f is T-orbitally lower semi-continuous at z.

Proof. Let $x_0 \in X$ be an arbitrary point with $x_0 \notin Tx_0$. It follows from (a1) that there exists $x_1 \in Tx_0 - Tx_1$ satisfying

$$F(d(x_0, x_1)) \le F(f(x_0)) + \tau, \quad F(f(x_1)) + \tau + \eta(f(x_0)) \le F(d(x_0, x_1)).$$

$$(2.1)$$

In light of (2.1) and $\eta(f(x_0)) > 0$, we deduce that

$$F(f(x_1)) \le F(d(x_0, x_1)) - \tau - \eta(f(x_0))$$

$$\le F(f(x_0)) + \tau - \tau - \eta(f(x_0))$$

$$= F(f(x_0)) - \eta(f(x_0))$$

$$< F(f(x_0)).$$

In terms of (a1) there exists $x_2 \in Tx_1 - Tx_2$ with

$$F(d(x_1, x_2)) \le F(f(x_1)) + \tau, \quad F(f(x_2)) + \tau + \eta(f(x_1)) \le F(d(x_1, x_2)),$$

which together with (2.1), $\eta(f(x_0)) > 0$ and $\eta(f(x_1)) > 0$ mean that

$$F(f(x_2)) \le F(d(x_1, x_2)) - \tau - \eta(f(x_1)) \\\le F(f(x_1)) + \tau - \tau - \eta(f(x_1)) \\= F(f(x_1)) - \eta(f(x_1)) \\< F(f(x_1)),$$

$$F(d(x_1, x_2)) \le F(f(x_1)) + \tau$$

$$\le F(d(x_0, x_1)) - \tau - \eta(f(x_0)) + \tau$$

$$= F(d(x_0, x_1)) - \eta(f(x_0))$$

$$< F(d(x_0, x_1)).$$

Repeating this process, we obtain an orbit $\{x_n\}_{n\in\mathbb{N}_0}\subset X$ of T satisfying

$$F(d(x_n, x_{n+1})) \le F(f(x_n)) + \tau, F(f(x_{n+1})) + \tau + \eta(f(x_n)) \le F(d(x_n, x_{n+1})), \qquad x_{n+1} \in Tx_n - Tx_{n+1}, \quad \forall n \in \mathbb{N}_0.$$
(2.2)

In view of (2.2) and $\eta(f(x_{n-1})) > 0$ for each $n \in \mathbb{N}$, we have

$$F(f(x_n)) \leq F(d(x_{n-1}, x_n)) - \tau - \eta(f(x_{n-1}))$$

$$\leq F(f(x_{n-1})) + \tau - \tau - \eta(f(x_{n-1}))$$

$$= F(f(x_{n-1})) - \eta(f(x_{n-1}))$$

$$< F(f(x_{n-1})), \quad \forall n \in \mathbb{N}.$$
(2.3)

It follows from (2.3) and (F1) that

$$0 < f(x_n) < f(x_{n-1}), \quad \forall n \in \mathbb{N}.$$
(2.4)

Note that (2.4) implies that there exists a constant $a \in \mathbb{R}^+$ with

$$\lim_{n \to \infty} f(x_n) = a. \tag{2.5}$$

By virtue of (a2) there exists a constant b > 0 satisfying

$$\liminf_{s\to a^+}\eta(s)=2b,$$

which means that for $\varepsilon = b$, there exists $\delta > 0$ satisfying

$$\eta(s) - 2b > -\varepsilon, \quad \forall s \in (a, a + \delta),$$

that is,

$$\eta(s) > b, \quad \forall s \in (a, a + \delta).$$
(2.6)

Clearly, (2.4)-(2.6) ensure that there exists $n_0 \in \mathbb{N}$ satisfying

$$a < f(x_n) < a + \delta, \quad \eta(f(x_n)) > b, \quad \forall n \ge n_0.$$
 (2.7)

Making use of (2.3) and (2.7), we arrive at

$$F(f(x_n)) \leq F(f(x_{n-1})) - \eta(f(x_{n-1}))$$

$$\leq F(f(x_{n-2})) - \eta(f(x_{n-2})) - \eta(f(x_{n-1}))$$

$$\vdots$$

$$\leq F(f(x_{n_0})) - \eta(f(x_{n_0})) - \eta(f(x_{n_0+1})) - \dots - \eta(f(x_{n-1}))$$

$$\leq F(f(x_{n_0})) - (n - n_0)b,$$

which implies that

$$\lim_{n \to \infty} F(f(x_n)) = -\infty.$$
(2.8)

By means of (F2), (2.5) and (2.8), we conclude immediately that

$$a = \lim_{n \to \infty} f(x_n) = 0.$$
(2.9)

Using (2.2) and (2.7), we infer that

$$F(d(x_{n}, x_{n+1})) \leq F(f(x_{n})) + \tau$$

$$\leq F(d(x_{n-1}, x_{n})) - \tau - \eta(f(x_{n-1})) + \tau$$

$$= F(d(x_{n-1}, x_{n})) - \eta(f(x_{n-1}))$$

$$\leq F(d(x_{n-2}, x_{n-1})) - \eta(f(x_{n-2})) - \eta(f(x_{n-1}))$$

$$\vdots$$

$$\leq F(d(x_{n0}, x_{n0+1})) - \eta(f(x_{n0})) - \eta(f(x_{n0+1})) - \dots - \eta(f(x_{n-1}))$$

$$\leq F(d(x_{n0}, x_{n0+1})) - (n - n_{0})b$$

$$\to -\infty \quad \text{as } n \to \infty.$$
(2.10)

That is,

$$\lim_{n \to \infty} F(d(x_n, x_{n+1})) = -\infty.$$

It follows from (2.10) and (F2) that

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.$$
(2.11)

It is clear that (F3) and (2.11) ensure that there exists $k \in (0, 1)$ such that

$$\lim_{n \to \infty} \left[d^k(x_n, x_{n+1}) F(d(x_n, x_{n+1})) \right] = 0.$$
(2.12)

Using (2.10)-(2.12), we derive that

$$0 \leq \limsup_{n \to \infty} [(n - n_0)bd^k(x_n, x_{n+1})]$$

$$\leq \limsup_{n \to \infty} \{ (F(d(x_{n_0}, x_{n_0+1})) - F(d(x_n, x_{n+1})))d^k(x_n, x_{n+1}) \}$$

$$= 0,$$

which yields that

$$\lim_{n \to \infty} (n - n_0) b d^k(x_n, x_{n+1}) = 0,$$

that is,

$$\lim_{n \to \infty} n d^k(x_n, x_{n+1}) = 0.$$
(2.13)

It follows from (2.13) that there exists $n_1 \ge n_0$ satisfying

$$nd^k(x_n, x_{n+1}) \le 1, \quad \forall n \ge n_1,$$

that is,

$$d(x_n, x_{n+1}) \le \frac{1}{n^{\frac{1}{k}}}, \quad \forall n \ge n_1,$$

which gives that

$$d(x_n, x_m) \le d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_m)$$

$$\le \sum_{i=n}^{m-1} d(x_i, x_{i+1})$$

$$\le \sum_{i=n}^{\infty} d(x_i, x_{i+1})$$

$$\le \sum_{i=n}^{\infty} \frac{1}{i^{\frac{1}{k}}}, \quad \forall m > n \ge n_1,$$

which together with the convergence of the series $\sum_{i=1}^{\infty} \frac{1}{i^{\frac{1}{k}}}$ means that $\{x_n\}_{n \in \mathbb{N}_0}$ is a Cauchy sequence. Since

(X, d) is a complete metric space, there exists a point $z \in X$ such that

$$\lim_{n \to \infty} x_n = z. \tag{2.14}$$

Suppose that f is T-orbitally lower semi-continuous at z. It follows from (2.9) and (2.14) that

$$d(z,Tz) = f(z) \le \liminf_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(x_n) = 0,$$

that is, $z \in X$ is a fixed point of T.

Conversely, suppose that $z \in X$ is a fixed point of T. For each orbit $\{y_n\}_{n \in \mathbb{N}_0}$ of T with $\lim_{n \to \infty} y_n = z$, we deduce that

$$f(z) = d(z, Tz) = 0 \le \liminf_{n \to \infty} f(y_n).$$

which implies that f is T-orbitally lower semi-continuous in z. This completes the proof.

Theorem 2.2. Let (X, d) be a complete metric space, $T : X \to CL(X)$ be a multi-valued mapping such that

(a3) for any $x \in X - Tx$ there is $y \in Tx - Ty$ with

$$F(d(x,y)) \le F(f(x)) + \tau, \quad F(f(y)) + \tau + \eta(d(x,y)) \le F(d(x,y))$$

where $F \in \mathcal{F}, \tau > 0$ and $\eta : (0, +\infty) \to (0, +\infty)$ satisfies (a2).

Then, for each $x_0 \in X$ there exists an orbit $\{x_n\}_{n \in \mathbb{N}_0}$ of T and $z \in X$ such that $\lim_{n \to \infty} x_n = z$. Furthermore, z is a fixed point of T in X if and only if the function f is T-orbitally lower semi-continuous at z.

Proof. Let $x_0 \in X$ be an arbitrary point with $x_0 \notin Tx_0$. It follows from (a2) that there exists $x_1 \in Tx_0 - Tx_1$ satisfying

$$F(d(x_0, x_1)) \le F(f(x_0)) + \tau, \quad F(f(x_1)) + \tau + \eta(d(x_0, x_1)) \le F(d(x_0, x_1)).$$
(2.15)

In view of (a3), there exists $x_2 \in Tx_1 - Tx_2$ with

$$F(d(x_1, x_2)) \le F(f(x_1)) + \tau, \quad F(f(x_2)) + \tau + \eta(d(x_1, x_2)) \le F(d(x_1, x_2)),$$

which together with (2.15) and $\eta(d(x_0, x_1)) > 0$ we have

$$F(d(x_1, x_2)) \leq F(f(x_1)) + \tau$$

$$\leq F(d(x_0, x_1)) - \tau - \eta(d(x_0, x_1)) + \tau$$

$$= F(d(x_0, x_1)) - \eta(d(x_0, x_1))$$

$$< F(d(x_0, x_1)).$$

Repeating this process, we obtain an orbit $\{x_n\}_{n\in\mathbb{N}_0}\subset X$ of T satisfying

$$F(d(x_n, x_{n+1})) \le F(f(x_n)) + \tau,$$

$$F(f(x_{n+1})) + \tau + \eta(d(x_n, x_{n+1})) \le F(d(x_n, x_{n+1})), \qquad x_{n+1} \in Tx_n - Tx_{n+1}, \quad \forall n \in \mathbb{N}_0.$$
(2.16)

In light of (2.16) and $\eta(d(x_{n-1}, x_n)) > 0$ for each $n \in \mathbb{N}$, we deduce that

$$F(d(x_n, x_{n+1})) \leq F(f(x_n)) + \tau$$

$$\leq F(d(x_{n-1}, x_n)) - \tau - \eta(d(x_{n-1}, x_n)) + \tau$$

$$= F(d(x_{n-1}, x_n)) - \eta(d(x_{n-1}, x_n))$$

$$< F(d(x_{n-1}, x_n)), \quad \forall n \in \mathbb{N},$$
(2.17)

which together with (F1) implies that

$$0 < d(x_n, x_{n+1}) < d(x_{n-1}, x_n), \quad \forall n \in \mathbb{N}.$$
(2.18)

Consequently, (2.18) means that the sequence $\{d(x_n, x_{n+1})\}_{n \in \mathbb{N}_0}$ converges to a constant $a \in \mathbb{R}^+$, that is,

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = a. \tag{2.19}$$

As in the proof of Theorem 2.1, we conclude that (2.6) holds. It follows from (2.6), (2.18) and (2.19) that there exists $n_0 \in \mathbb{N}$ satisfying

$$a < d(x_n, x_{n+1}) < a + \delta, \quad \eta(d(x_n, x_{n+1})) > b, \quad \forall n \ge n_0.$$
 (2.20)

Using (2.17) and (2.20), we obtain that

$$F(d(x_n, x_{n+1})) \leq F(d(x_{n-1}, x_n)) - \eta(d(x_{n-1}, x_n))$$

$$\leq F(d(x_{n-2}, x_{n-1})) - \eta(d(x_{n-2}, x_{n-1})) - \eta(d(x_{n-1}, x_n))$$

$$\vdots$$

$$\leq F(d(x_{n_0}, x_{n_0+1})) - \eta(d(x_{n_0}, x_{n_0+1})) - \eta(d(x_{n_0+1}, x_{n_0+2})) - \dots - \eta(d(x_{n-1}, x_n))$$

$$\leq F(d(x_{n_0}, x_{n_0+1})) - (n - n_0)b$$

$$\rightarrow -\infty \quad \text{as } n \rightarrow \infty,$$

which implies (2.11). The rest of the proof is similar to that of Theorem 2.1 and is omitted. This completes the proof. $\hfill \Box$

Theorem 2.3. Let (X, d) be a complete metric space, $T : X \to CL(X)$ be a multi-valued mapping such that (a4) for any $x \in X - Tx$ there is $y \in Tx - Ty$ with

$$F(d(x,y)) \le F(f(x)) + \frac{1}{2}\eta(f(x)), \quad F(f(y)) + \eta(f(x)) \le F(d(x,y)),$$

where $F \in \mathcal{F}, \ \eta : (0, +\infty) \to (0, +\infty)$ satisfies (a2) and

(a5) $\limsup_{s\to 0^+} \eta(s) < +\infty$.

Then, for each $x_0 \in X$ there exists an orbit $\{x_n\}_{n \in \mathbb{N}_0}$ of T and $z \in X$ such that $\lim_{n \to \infty} x_n = z$. Furthermore, z is a fixed point of T in X if and only if the function f is T-orbitally lower semi-continuous at z.

Proof. Let $x_0 \in X$ be an arbitrary point with $x_0 \notin Tx_0$. It follows from (a4) that there exists $x_1 \in Tx_0 - Tx_1$ satisfying

$$F(d(x_0, x_1)) \le F(f(x_0)) + \frac{1}{2}\eta(f(x_0)), \quad F(f(x_1)) + \eta(f(x_0)) \le F(d(x_0, x_1)).$$
(2.21)

It follows from (2.21) and $\eta(f(x_0)) > 0$ that

$$F(f(x_1)) \le F(d(x_0, x_1)) - \eta(f(x_0))$$

$$\le F(f(x_0)) + \frac{1}{2}\eta(f(x_0)) - \eta(f(x_0))$$

$$= F(f(x_0)) - \frac{1}{2}\eta(f(x_0))$$

$$< F(f(x_0)).$$

(a4) implies that there exists $x_2 \in Tx_1 - Tx_2$ with

$$F(d(x_1, x_2)) \le F(f(x_1)) + \frac{1}{2}\eta(f(x_1)), \quad F(f(x_2)) + \eta(f(x_1)) \le F(d(x_1, x_2)),$$

which together with (2.21) and $\eta(f(x_1)) > 0$ give that

$$F(f(x_2)) \le F(d(x_1, x_2)) - \eta(f(x_1))$$

$$\le F(f(x_1)) + \frac{1}{2}\eta(f(x_1)) - \eta(f(x_1))$$

$$= F(f(x_1)) - \frac{1}{2}\eta(f(x_1))$$

$$< F(f(x_1)),$$

$$F(d(x_1, x_2)) \le F(f(x_1)) + \frac{1}{2}\eta(f(x_1))$$

$$\le F(d(x_0, x_1)) - \eta(f(x_0)) + \frac{1}{2}\eta(f(x_1))$$

Repeating this process, we obtain an orbit $\{x_n\}_{n\in\mathbb{N}_0}\in X$ of T satisfying

$$F(d(x_n, x_{n+1})) \le F(f(x_n)) + \frac{1}{2}\eta(f(x_n)),$$

$$F(f(x_{n+1})) + \eta(f(x_n)) \le F(d(x_n, x_{n+1})), \qquad x_{n+1} \in Tx_n - Tx_{n+1}, \quad \forall n \in \mathbb{N}_0.$$
(2.22)

In view of (2.22) and $\eta(f(x_{n-1})) > 0$ for each $n \in \mathbb{N}$, we deduce that

$$F(f(x_n)) \leq F(d(x_{n-1}, x_n)) - \eta(f(x_{n-1}))$$

$$\leq F(f(x_{n-1})) + \frac{1}{2}\eta(f(x_{n-1})) - \eta(f(x_{n-1}))$$

$$\leq F(f(x_{n-1})) - \frac{1}{2}\eta(f(x_{n-1}))$$

$$< F(f(x_{n-1})), \quad \forall n \in \mathbb{N}$$
(2.23)

and

$$F(d(x_n, x_{n+1})) \le F(f(x_n)) + \frac{1}{2}\eta(f(x_n))$$

$$\le F(d(x_{n-1}, x_n)) - \eta(f(x_{n-1})) + \frac{1}{2}\eta(f(x_n)), \quad \forall n \in \mathbb{N}.$$
(2.24)

Similar to the arguments of Theorem 2.1, we conclude that (2.4)-(2.7) hold. In terms of (2.23) and (2.7), we arrive at

$$F(f(x_n)) \leq F(f(x_{n-1})) - \frac{1}{2}\eta(f(x_{n-1}))$$

$$\leq F(f(x_{n-2})) - \frac{1}{2}\eta(f(x_{n-2})) - \frac{1}{2}\eta(f(x_{n-1}))$$

$$\vdots$$

$$\leq F(f(x_{n_0})) - \frac{1}{2}\eta(f(x_{n_0})) - \frac{1}{2}\eta(f(x_{n_0+1})) - \dots - \frac{1}{2}\eta(f(x_{n-1}))$$

$$\leq F(f(x_{n_0})) - \frac{1}{2}(n - n_0)b$$

$$\to -\infty \quad \text{as } n \to \infty,$$

which together with (2.5) and (F2), we derive that (2.8) and (2.9) hold.

In light of (2.7) and (2.24), we get that

$$F(d(x_{n}, x_{n+1})) \leq F(d(x_{n-1}, x_{n})) - \eta(f(x_{n-1})) + \frac{1}{2}\eta(f(x_{n}))$$

$$\leq F(d(x_{n-2}, x_{n-1})) - \eta(f(x_{n-2})) - \frac{1}{2}\eta(f(x_{n-1})) + \frac{1}{2}\eta(f(x_{n}))$$

$$\vdots$$

$$\leq F(d(x_{n_{0}}, x_{n_{0}+1})) - \eta(f(x_{n_{0}})) - \frac{1}{2}\eta(f(x_{n_{0}+1})) - \dots - \frac{1}{2}\eta(f(x_{n-1})) + \frac{1}{2}\eta(f(x_{n})))$$

$$\leq F(d(x_{n_{0}}, x_{n_{0}+1})) - \frac{1}{2}(n - n_{0} - 1)b + \frac{1}{2}\eta(f(x_{n})), \quad \forall n \geq n_{0}.$$

$$(2.25)$$

Taking upper limit in (2.25) and using (2.7), (2.9) and (a5), we get that

$$\limsup_{n \to \infty} F(d(x_n, x_{n+1})) \le \limsup_{n \to \infty} \left[F(d(x_{n_0}, x_{n_0+1})) - \frac{1}{2}(n - n_0 - 1)b + \frac{1}{2}\eta(f(x_n)) \right]$$
$$\le \limsup_{n \to \infty} \left[F(d(x_{n_0}, x_{n_0+1})) - \frac{1}{2}(n - n_0 - 1)b \right] + \frac{1}{2}\limsup_{n \to \infty} \eta(f(x_n))$$
$$= -\infty,$$

that is, (2.11) holds. Similarly, we know that (2.12) holds.

It follows from (a5), (2.11), (2.12), and (2.25) that

$$0 \leq \limsup_{n \to \infty} \left[\frac{1}{2} (n - n_0 - 1) b d^k(x_n, x_{n+1}) \right]$$

$$\leq \limsup_{n \to \infty} \left\{ \left(F(d(x_{n_0}, x_{n_0+1})) - F(d(x_n, x_{n+1})) + \frac{1}{2} \eta(f(x_n)) \right) d^k(x_n, x_{n+1}) \right\}$$

$$\leq \limsup_{n \to \infty} \{ (F(d(x_{n_0}, x_{n_0+1})) - F(d(x_n, x_{n+1}))) d^k(x_n, x_{n+1}) \}$$

$$+ \frac{1}{2} \limsup_{n \to \infty} [\eta(f(x_n)) d^k(x_n, x_{n+1})]$$

$$\leq 0 + \frac{1}{2} \limsup_{n \to \infty} \eta(f(x_n)) \cdot \limsup_{n \to \infty} d^k(x_n, x_{n+1})$$

$$= 0,$$

which means that

$$\limsup_{n \to \infty} [(n - n_0 - 1)bd^k(x_n, x_{n+1})] = 0,$$

which yields (2.13). The rest of the proof is similar to that of Theorem 2.1 and is omitted. This completes the proof. \Box

Theorem 2.4. Let (X, d) be a complete metric space, $T : X \to CL(X)$ be a multi-valued mapping such that

(a6) for any $x \in X - Tx$ there is $y \in Tx - Ty$ with

$$F(d(x,y)) \le F(f(x)) + \frac{1}{2}\eta(d(x,y)), \quad F(f(y)) + \eta(d(x,y)) \le F(d(x,y)),$$

where $F \in \mathcal{F}, \ \eta : (0, +\infty) \to (0, +\infty)$ satisfies

(a7) η is decreasing,

(a8) $\lim_{s\to 0^+} \eta(s) > 0.$

Then, for each $x_0 \in X$ there exists an orbit $\{x_n\}_{n \in \mathbb{N}_0}$ of T and $z \in X$ such that $\lim_{n \to \infty} x_n = z$. Furthermore, z is a fixed point of T in X if and only if the function f is T-orbitally lower semi-continuous at z.

Proof. Let $x_0 \in X$ be an arbitrary point with $x_0 \notin Tx_0$. It follows from (a6) that there exists $x_1 \in Tx_0 - Tx_1$ satisfying

$$F(d(x_0, x_1)) \le F(f(x_0)) + \frac{1}{2}\eta(d(x_0, x_1)), \quad F(f(x_1)) + \eta(d(x_0, x_1)) \le F(d(x_0, x_1)).$$
(2.26)

In view of (2.26) and $\eta(d(x_0, x_1)) > 0$, we arrive at

$$F(f(x_1)) \le F(d(x_0, x_1)) - \eta(d(x_0, x_1))$$

$$\le F(f(x_0)) + \frac{1}{2}\eta(d(x_0, x_1)) - \eta(d(x_0, x_1))$$

$$= F(f(x_0)) - \frac{1}{2}\eta(d(x_0, x_1))$$

$$< F(f(x_0)).$$

(a6) implies that there exists $x_2 \in Tx_1 - Tx_2$ with

$$F(d(x_1, x_2)) \le F(f(x_1)) + \frac{1}{2}\eta(d(x_1, x_2)), \quad F(f(x_2)) + \eta(d(x_1, x_2)) \le F(d(x_1, x_2)),$$

which together with (2.26) and $\eta(d(x_1, x_2)) > 0$ show that

$$F(f(x_2)) \le F(d(x_1, x_2)) - \eta(d(x_1, x_2))$$

$$\le F(f(x_1)) + \frac{1}{2}\eta(d(x_1, x_2)) - \eta(d(x_1, x_2))$$

$$= F(f(x_1)) - \frac{1}{2}\eta(d(x_1, x_2))$$

$$< F(f(x_1)),$$

$$F(d(x_1, x_2)) \le F(f(x_1)) + \frac{1}{2}\eta(d(x_1, x_2))$$

$$\le F(d(x_0, x_1)) - \eta(d(x_0, x_1)) + \frac{1}{2}\eta(d(x_1, x_2)).$$

Repeating this process, we obtain an orbit $\{x_n\}_{n\in\mathbb{N}_0}\subset X$ of T satisfying

$$F(d(x_n, x_{n+1})) \le F(f(x_n)) + \frac{1}{2}\eta(d(x_n, x_{n+1})),$$

$$F(f(x_{n+1})) + \eta(d(x_n, x_{n+1})) \le F(d(x_n, x_{n+1})), \quad x_{n+1} \in Tx_n - Tx_{n+1}, \quad \forall n \in \mathbb{N}_0.$$
(2.27)

Suppose that there exists some $n_0 \in \mathbb{N}$ satisfying

$$d(x_{n_0}, x_{n_0+1}) \ge d(x_{n_0-1}, x_{n_0}), \tag{2.28}$$

which together with (a7) gives that

$$\eta(d(x_{n_0}, x_{n_0+1})) \le \eta(d(x_{n_0-1}, x_{n_0})).$$
(2.29)

In terms of (2.27)-(2.29) and $\eta(d(x_{n_0}, x_{n_0+1})) > 0$, we deduce that

$$F(d(x_{n_0-1}, x_{n_0})) \le F(d(x_{n_0}, x_{n_0+1}))$$

$$\le F(f(x_{n_0})) + \frac{1}{2}\eta(d(x_{n_0}, x_{n_0+1}))$$

$$\leq F(d(x_{n_0-1}, x_{n_0})) - \eta(d(x_{n_0-1}, x_{n_0})) + \frac{1}{2}\eta(d(x_{n_0}, x_{n_0+1}))$$

$$\leq F(d(x_{n_0-1}, x_{n_0})) - \eta(d(x_{n_0}, x_{n_0+1})) + \frac{1}{2}\eta(d(x_{n_0}, x_{n_0+1}))$$

$$= F(d(x_{n_0-1}, x_{n_0})) - \frac{1}{2}\eta(d(x_{n_0}, x_{n_0+1}))$$

$$< F(d(x_{n_0-1}, x_{n_0})),$$

which is contradiction. Therefore,

$$0 < d(x_n, x_{n+1}) < d(x_{n-1}, x_n), \quad \forall n \in \mathbb{N}.$$
(2.30)

It is clear that (2.30) implies (2.19) for some $a \in \mathbb{R}$. (a7), (a8), (2.19), and (2.30) imply that

$$\lim_{n \to \infty} \eta(d(x_n, x_{n+1})) = 2b \tag{2.31}$$

for some b > 0. It is easy to see that (2.19), (2.30), and (2.31) ensure that there exists $n_1 > n_0$ satisfying

$$a < d(x_n, x_{n+1}) < a + \delta, \quad \eta(d(x_n, x_{n+1})) > b, \quad \forall n \ge n_1.$$
 (2.32)

It follows from (2.27), (2.30), and (2.32) that

$$F(d(x_{n}, x_{n+1})) \leq F(f(x_{n})) + \frac{1}{2}\eta(d(x_{n}, x_{n+1}))$$

$$\leq F(d(x_{n-1}, x_{n})) - \eta(d(x_{n-1}, x_{n})) + \frac{1}{2}\eta(d(x_{n}, x_{n+1}))$$

$$\leq F(d(x_{n-2}, x_{n-1})) - \eta(d(x_{n-2}, x_{n-1})) - \frac{1}{2}\eta(d(x_{n-1}, x_{n})) + \frac{1}{2}\eta(d(x_{n}, x_{n+1}))$$

$$\vdots \qquad (2.33)$$

$$\leq F(d(x_{n1}, x_{n1+1})) - \eta(d(x_{n1}, x_{n1+1})) - \frac{1}{2}\eta(d(x_{n1+1}, x_{n1+2})) - \cdots$$

$$-\frac{1}{2}\eta(d(x_{n-1}, x_{n})) + \frac{1}{2}\eta(d(x_{n}, x_{n+1}))$$

$$\leq F(d(x_{n1}, x_{n1+1})) - \frac{1}{2}(n - n_{1} - 1)b + \frac{1}{2}\eta(d(x_{n}, x_{n+1})), \quad \forall n \ge n_{1}.$$

Using (2.33) and (a7), we arrive at

$$\limsup_{n \to \infty} F(d(x_n, x_{n+1})) \le \limsup_{n \to \infty} \left[F(d(x_{n_1}, x_{n_1+1})) - \frac{1}{2}(n - n_1 - 1)b + \frac{1}{2}\eta(d(x_n, x_{n+1})) \right]$$
$$\le \limsup_{n \to \infty} \left[F(d(x_{n_1}, x_{n_1+1})) - \frac{1}{2}(n - n_1 - 1)b \right] + \frac{1}{2}\limsup_{n \to \infty} \eta(d(x_n, x_{n+1}))$$
$$= -\infty,$$

that is,

$$\lim_{n \to \infty} F(d(x_n, x_{n+1})) = -\infty.$$

In view of (F2) and (2.19), we get that

$$a = \lim_{n \to \infty} d(x_n, x_{n+1}) = 0.$$
(2.34)

In view of (F3) and (2.33), ensure that there exists $k \in (0, 1)$ such that

$$\lim_{n \to \infty} [d^k(x_n, x_{n+1})F(d(x_n, x_{n+1}))] = 0.$$
(2.35)

In light of (a7) and (2.33)-(2.35), we deduce that

$$\begin{aligned} 0 &\leq \limsup_{n \to \infty} \left[\frac{1}{2} (n - n_0 - 1) b d^k(x_n, x_{n+1}) \right] \\ &\leq \limsup_{n \to \infty} \left[\left(F(d(x_{n_1}, x_{n_1+1})) - F(d(x_n, x_{n+1})) + \frac{1}{2} \eta(d(x_n, x_{n+1})) \right) d^k(x_n, x_{n+1}) \right] \\ &\leq \limsup_{n \to \infty} [(F(d(x_{n_1}, x_{n_1+1})) - F(d(x_n, x_{n+1}))) d^k(x_n, x_{n+1})] \\ &\quad + \limsup_{n \to \infty} \left[\frac{1}{2} \eta(d(x_n, x_{n+1}) d^k(x_n, x_{n+1}) \right] \\ &\leq 0 + \limsup_{n \to \infty} \frac{1}{2} \eta(d(x_n, x_{n+1}) \cdot \limsup_{n \to \infty} d^k(x_n, x_{n+1})) \\ &= 0, \end{aligned}$$

which connotes (2.13). The rest of the proof is similar to that of Theorem 2.1 and is omitted. This completes the proof. \Box

3. Remarks and examples

Remark 3.1. The following examples show that Theorems 2.1-2.4 differ from Theorems 1.1-1.3.

Example 3.2. Let $X = \mathbb{R}$ be endowed with the Euclidean metric $d = |\cdot|$. Let $\tau = \ln \frac{4}{3}$, $T : X \to CL(X)$, $F : (0, +\infty) \to \mathbb{R}$ and $\eta : (0, +\infty) \to (0, +\infty)$ be defined by

$$Tx = \begin{cases} (-\infty, 2x] \cup \left[\frac{x}{2}, 0\right), & x \in (-\infty, 0), \\ \left[0, \frac{x}{3}\right] \cup \left[3x, +\infty\right), & x \in [0, +\infty), \end{cases}$$
$$F(t) = \ln t, \quad \eta(t) = \ln \frac{6}{5}, \quad \forall t \in (0, +\infty).$$

It is easy to see that

$$f(x) = d(x, Tx) = \begin{cases} -\frac{x}{2}, & x \in (-\infty, 0), \\ \frac{2x}{3}, & x \in [0, +\infty), \end{cases}$$

is continuous in X,

$$\liminf_{s \to t^+} \eta(s) = \liminf_{s \to t^+} \ln \frac{6}{5} > 0, \quad \forall t \in \mathbb{R}^+.$$

Put $x \in X - Tx$. In order to verify (a1) and (a3), we consider the following two possible cases: Case 1. Let $x \in (-\infty, 0) - Tx$. It follows that $x \in (2x, \frac{x}{2})$. Put

$$y = \frac{x}{2} \in (-\infty, 2x] \cup \left[\frac{x}{2}, 0\right) - (-\infty, x] \cup \left[\frac{x}{4}, 0\right) = Tx - Ty$$

It follows that

$$F(d(x,y)) = \ln \left|\frac{x}{2}\right| \le \ln \left|\frac{x}{2}\right| + \ln \frac{4}{3} = F(f(x)) + \tau$$

and

$$F(f(y)) + \tau + \eta(f(x)) = F(f(y)) + \tau + \eta(d(x,y))$$

= $\ln \left|\frac{x}{4}\right| + \ln \frac{4}{3} + \ln \frac{6}{5}$
= $\ln \left|\frac{2x}{5}\right| \le \ln \left|\frac{x}{2}\right|$
= $F(d(x,y)).$

Case 2. Let $x \in [0, +\infty) - Tx$. It follows that $x \in (\frac{x}{3}, 3x)$. Put

$$y = \frac{x}{3} \in \left[0, \frac{x}{3}\right] \cup [3x, +\infty) - \left[0, \frac{x}{9}\right] \cup [x, +\infty) = Tx - Ty.$$

It is clear that

and

$$F(d(x,y)) = \ln \frac{2x}{3} \le \ln \frac{2x}{3} + \ln \frac{4}{3} = F(f(x)) + \tau,$$

$$F(f(y)) + \tau + \eta(f(x)) = F(f(y)) + \tau + \eta(d(x,y))$$

$$= \ln \frac{2x}{9} + \ln \frac{4}{3} + \ln \frac{6}{5}$$
$$= \ln \frac{16x}{45} \le \ln \frac{2x}{3}$$
$$= F(d(x,y)).$$

That is, (a1) and (a3) hold. It follows from both of Theorems 2.1 and 2.2 that T has a fixed point in X. However, the mapping T does not satisfy (1.1), (1.2) and (1.4) in Theorems 1.1-1.3, respectively. In fact, put $x_0 = -1$ and $y_0 = 1$. It is clear that

$$H(Tx_0, Ty_0) = H\left((-\infty, -2] \cup \left[-\frac{1}{2}, 0\right), \left[0, \frac{1}{3}\right] \cup [3, +\infty)\right)$$

= $+\infty \nleq 2r = rd(x_0, y_0), \quad \forall r \in [0, 1),$
 $H(Tx_0, Ty_0) = +\infty \nleq 2\varphi(d(x_0, y_0)) = \varphi(d(x_0, y_0))d(x_0, y_0)$

for any mapping $\varphi: (0, +\infty) \to [0, 1)$ with each of (1.3) and (1.5).

Example 3.3. Let $X = \mathbb{R}^+$ be endowed with the Euclidean metric $d = |\cdot|$. Let $T : X \to CL(X)$, $F : (0, +\infty) \to \mathbb{R}, \eta : (0, +\infty) \to (0, +\infty)$ be defined by

$$Tx = \begin{cases} \left[0, \frac{x^2}{2}\right], & x \in [0, 1], \\ \left[0, \frac{1}{4}\right], & x \in (1, +\infty), \end{cases}$$
$$F(t) = \ln t, \quad \eta(t) = \ln \frac{4}{3}, \quad \forall t \in (0, +\infty).$$

It is easy to see that

$$f(x) = d(x, Tx) = \begin{cases} x - \frac{x^2}{2}, & x \in [0, 1], \\ x - \frac{1}{4}, & x \in (1, +\infty), \end{cases}$$

is lower semi-continuous in X,

$$\limsup_{s \to 0^+} \eta(s) = \ln \frac{4}{3} < +\infty, \quad \liminf_{s \to t^+} \eta(s) = \ln \frac{4}{3} > 0, \quad \forall t \in \mathbb{R}^+.$$

In order to verify (a4), we consider the following two possible cases:

Case 1. Let $x \in [0,1] \cap (X - Tx)$. It follows that $x \in \left(\frac{x^2}{2}, 1\right]$. Put $y = \frac{x^2}{2} \in \left[0, \frac{x^2}{2}\right] - \left[0, \frac{x^4}{8}\right] = Tx - Ty$. It follows that

$$F(d(x,y)) = \ln\left(x - \frac{x^2}{2}\right) \le \ln\left(x - \frac{x^2}{2}\right) + \frac{1}{2}\ln\frac{4}{3} = F(f(x)) + \frac{1}{2}\eta(f(x)),$$

and

$$F(f(y)) + \eta(f(x)) = \ln\left(\frac{x^2}{2} - \frac{x^4}{8}\right) + \ln\frac{4}{3}$$

$$= \ln\left(\frac{1}{2}\left(x + \frac{x^2}{2}\right)\right) + \ln\left(x - \frac{x^2}{2}\right) + \ln\frac{4}{3}$$
$$\leq \ln\frac{3}{4} + \ln\left(x - \frac{x^2}{2}\right) + \ln\frac{4}{3}$$
$$= F(d(x, y)).$$

Case 2. Let $x \in (1, +\infty) \cap (X - Tx)$. It follows that $x \in (1, +\infty)$. Put $y = \frac{1}{4} \in [0, \frac{1}{4}] - [0, \frac{1}{32}] = Tx - Ty$. It is clear that

$$F(d(x,y)) = \ln\left(x - \frac{1}{4}\right) \le \ln\left(x - \frac{1}{4}\right) + \frac{1}{2}\ln\frac{4}{3} = F(f(x)) + \frac{1}{2}\eta(f(x))$$

and

$$F(f(y)) + \eta(f(x)) = \ln\frac{7}{32} + \ln\frac{4}{3} = \ln\frac{7}{24} < \ln\frac{3}{4} < \ln\left(x - \frac{1}{4}\right) = F(d(x,y)).$$

That is, (a4) holds. It follows from Theorem 2.3 that T has a fixed point in X. However, the mappings T does not satisfy (1.1), (1.2) and (1.4) in Theorems 1.1-1.3, respectively. In fact, put $x_0 = 1$ and $y_0 = \frac{9}{8}$. It is clear that

$$H(Tx_0, Ty_0) = H\left(\left[0, \frac{1}{2}\right], \left[0, \frac{1}{4}\right]\right) = \frac{1}{4} \nleq \frac{1}{8}c = cd(x_0, y_0), \quad \forall c \in [0, 1),$$
$$H(Tx_0, Ty_0) = \frac{1}{4} \nleq \frac{1}{8}\varphi(d(x_0, y_0)) = \varphi(d(x_0, y_0))d(x_0, y_0)$$

for any mapping $\varphi: (0, +\infty) \to [0, 1)$ with each of (1.3) and (1.5).

Example 3.4. Let X = [0,1] be endowed with the Euclidean metric $d = |\cdot|$. Let $T : X \to CL(X)$, $F : (0, +\infty) \to \mathbb{R}, \eta : (0, +\infty) \to (0, +\infty)$ be defined by

$$Tx = \begin{cases} \left\{\frac{x^2}{3}\right\}, & x \in \left[0, \frac{17}{36}\right) \cup \left(\frac{17}{36}, 1\right], \\ \left[\frac{1}{8}, \frac{5}{48}\right], & x = \frac{17}{36}, \end{cases}$$
$$F(t) = \ln t, \quad \forall t \in (0, +\infty), \\ \eta(t) = \begin{cases} \ln 10, & t \in \left[0, \frac{1}{10}\right), \\ \ln \frac{1}{t}, & t \in \left[\frac{1}{10}, \frac{1}{5}\right), \\ \ln \frac{9}{4}, & t \in \left[\frac{1}{5}, +\infty\right). \end{cases}$$

It is easy to see that

$$f(x) = d(x, Tx) = \begin{cases} x - \frac{x^2}{3}, & x \in \left[0, \frac{17}{36}\right) \cup \left(\frac{17}{36}, 1\right], \\ \frac{25}{72}, & x = \frac{17}{36} \end{cases}$$

is lower semi-continuous in X and

$$\lim_{s \to 0^+} \eta(s) = \ln 10 > 0.$$

Put $x \in X - Tx$. In order to verify (a6), we consider the following two possible cases:

Case 1. Let $x \in (0, \frac{17}{36}) \cup (\frac{17}{36}, 1] - \{\frac{x^2}{3}\}$. Put $y = \frac{x^2}{3} \in \{\frac{x^2}{3}\} - \{\frac{x^4}{27}\} = Tx - Ty$. Note that $x - \frac{x^2}{3} \in (0, \frac{2}{3}]$. Assume that $x - \frac{x^2}{3} \in (0, \frac{1}{10})$. It follows that

$$\frac{1}{3}\left(x+\frac{x^2}{3}\right) < x-\frac{x^2}{3} < \frac{1}{10},$$

which yields that

$$\ln\frac{1}{3}\left(x+\frac{x^2}{3}\right) + \ln 10 < 0.$$

Consequently, we have

$$F(d(x,y)) = \ln\left(x - \frac{x^2}{3}\right) \le \ln\left(x - \frac{x^2}{3}\right) + \frac{1}{2}\ln 10 = F(f(x)) + \frac{1}{2}\eta(d(x,y)),$$

and

$$F(f(y)) + \eta(d(x,y)) = \ln\left(\frac{x^2}{3} - \frac{x^4}{27}\right) + \ln 10$$

= $\ln\frac{1}{3}\left(x + \frac{x^2}{3}\right) + \ln\left(x - \frac{x^2}{3}\right) + \ln 10$
< $\ln\left(x - \frac{x^2}{3}\right)$
= $F(d(x,y)).$

Assume that $x - \frac{x^2}{3} \in \left[\frac{1}{10}, \frac{1}{5}\right)$. It follows that

$$F(d(x,y)) = \ln\left(x - \frac{x^2}{3}\right) \le \ln\left(x - \frac{x^2}{3}\right) + \frac{1}{2}\ln\frac{1}{\left(x - \frac{x^2}{3}\right)} = F(f(x)) + \frac{1}{2}\eta(d(x,y)),$$

and

$$\begin{aligned} F(f(y)) + \eta(d(x,y)) &= \ln\left(\frac{x^2}{3} - \frac{x^4}{27}\right) + \ln\frac{1}{\left(x - \frac{x^2}{3}\right)} \\ &= \ln\frac{1}{3}\left(x + \frac{x^2}{3}\right) + \ln\left(x - \frac{x^2}{3}\right) + \ln\frac{1}{\left(x - \frac{x^2}{3}\right)} \\ &= \ln\frac{1}{3}\left(x + \frac{x^2}{3}\right) < \ln\left(x - \frac{x^2}{3}\right) \\ &= F(d(x,y)). \end{aligned}$$

Assume that $x - \frac{x^2}{3} \in \left[\frac{1}{5}, +\infty\right)$. It follows that

$$F(d(x,y)) = \ln\left(x - \frac{x^2}{3}\right) \le \ln\left(x - \frac{x^2}{3}\right) + \frac{1}{2}\ln\frac{9}{4} = F(f(x)) + \frac{1}{2}\eta(d(x,y)),$$

and

$$F(f(y)) + \eta(d(x,y)) = \ln\left(\frac{x^2}{3} - \frac{x^4}{27}\right) + \ln\frac{9}{4}$$

= $\ln\frac{1}{3}\left(x + \frac{x^2}{3}\right) + \ln\left(x - \frac{x^2}{3}\right) + \ln\frac{9}{4}$
 $\leq \ln\frac{4}{9} + \ln\left(x - \frac{x^2}{3}\right) + \ln\frac{9}{4} = \ln\left(x - \frac{x^2}{3}\right)$
= $F(d(x,y)).$

Case 2. Let $x = \frac{17}{36}$. Put $y = \frac{1}{8} \in \left\{\frac{1}{8}, \frac{5}{48}\right\} - \left\{\frac{1}{192}\right\} = Tx - Ty$. It follows that

$$F(d(x,y)) = \ln \frac{25}{72} \le \ln \frac{25}{72} + \frac{1}{2} \ln \frac{9}{4} = F(f(x)) + \frac{1}{2} \eta(d(x,y)),$$

and

$$F(f(y)) + \eta(d(x,y)) = \ln \frac{23}{192} + \ln \frac{9}{4} < -1.31 < -1.06 < \ln \frac{25}{72} = F(d(x,y)) + \frac{1}{100} + \frac{1}{100}$$

That is, (a6) holds. It follows from Theorem 2.4 that T has a fixed point in X. However, the mappings T does not satisfy (1.1), (1.2) and (1.4) in Theorems 1.1-1.3, respectively. In fact, put $x_0 = \frac{1}{2}$ and $y_0 = \frac{17}{36}$. It is clear that

$$H(Tx_0, Ty_0) = H\left(\frac{1}{12}, \left\{\frac{1}{8}, \frac{5}{48}\right\}\right) = \frac{1}{24} = \frac{1}{36} \cdot \frac{3}{2} \nleq \frac{1}{36}c = cd(x_0, y_0), \quad \forall c \in [0, 1),$$
$$H(Tx_0, Ty_0) = \frac{1}{24} \nleq \frac{1}{36}\varphi(d(x_0, y_0)) = \varphi(d(x_0, y_0))d(x_0, y_0)$$

for any mapping $\varphi: (0, +\infty) \to [0, 1)$ with each of (1.3) and (1.5).

Acknowledgment

The authors would like to thank the editor and referees for useful comments and suggestions.

References

- [1] Ö. Acar, I. Altun, A fixed point theorem for multivalued mappings with δ -distance, Abstr. Appl. Anal., **2014** (2014), 5 pages. 1, 1
- [2] Ö. Acar, G. Durmaz, G. Minak, Generalized multivalued F-contractions on complete metric spaces, Bull. Iranian Math. Soc., 40 (2014), 1469–1478. 1, 1
- [3] A. Amini-Harandi, Fixed point theory for set-valued quasi-contraction maps in metric spaces, Appl. Math. Comput., 24 (2011), 1791–1794. 1
- [4] H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topology Appl., 159 (2012), 3234–3242.
- [5] L. B. Čirić, Fixed point theorems for multi-valued contractions in complete metric spaces, J. Math. Anal. Appl., 348 (2008), 499–507. 1
- [6] L. B. Ćirić, Multi-valued nonlinear contraction mappings, Nonlinear Anal., 71 (2009), 2716–2723. 1, 1, 1
- [7] L. B. Cirić, Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces, Nonlinear Anal., 72 (2010), 2009–2018.
- [8] M. Cosentino, P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat, 28 (2014), 715–722. 1
- [9] A. A. Eldred, J. Anuradha, P. Veeramani, On the equivalence of the Mizoguchi-Takahashi fixed point theorem to Nadler's theorem, Appl. Math. Lett., 22 (2009), 1539–1542. 1, 1
- [10] Y. Feng, S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl., 317 (2006), 103–112. 1, 1, 1
- [11] N. Hussain, P. Salimi, Suzuki-Wardowski type fixed point theorems for α -GF-contractions, Taiwanese J. Math., **18** (2014), 1879–1895. 1
- [12] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 8 pages. 1
- [13] T. Kamran, Q. Kiran, Fixed point theorems for multi-valued mappings obtained by altering distances, Math. Comput. Modelling, 54 (2011), 2772–2777. 1
- [14] D. Klim, D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl., 334 (2007), 132–139. 1, 1
- [15] P. S. Kumari, K. Zoto, D. Panthi, d-neighborhood system and generalized F-contraction in dislocated metric space, SpringerPlus, 4 (2015), 10 pages. 1
- [16] P. S. Macansantos, A generalized Nadler-type theorem in partial metric spaces, Int. J. Math. Anal., 7 (2013), 343–348. 1
- [17] G. Minak, A. Helvaci, I. Altun, Cirić type generalized F-contractions on complete metric spaces and fixed point results, Filomat, 28 (2014), 1143–1151. 1, 1
- [18] N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued contractions in complete metric spaces, J. Math. Anal. Appl., 141 (1989), 177–188. 1, 1, 1.3
- [19] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488. 1, 1.1
- [20] D. Paesano, C. Vetro, Multi-valued F-contractions in 0-complete partial metric spaces with application to volterra
- type integral equation, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 108 (2014), 1005–1020. 1
 [21] H. K. Pathak, N. Shahzad, Fixed point results for set-valued contractions by altering distances in complete metric spaces, Nonlinear Anal., 70 (2009), 2634–2641. 1
- [22] S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital., 5 (1972), 26–42. 1, 1.2, 1
- [23] M. Sgroi, C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat, 27 (2013), 1259–1268. 1

- [24] T. Suzuki, Mizoguchi-Takahashi's fixed point theorem is a real generalization of Nadler's, J. Math. Anal. Appl., 340 (2008), 752–755. 1
- [25] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 6 pages. 1, 1, 1.4, 1.5, 1