

Journal of Nonlinear Science and Applications Print: ISSN 2008-1898 Online: ISSN 2008-1901

Common best proximity results for multivalued proximal contractions in metric space with applications

Nawab Hussain^{a,*}, Abdul Rahim Khan^b, Iram Iqbal^c

^aDepartment of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia. ^bDepartment of Mathematics and Statistics, King Fahd University of Petroleum and Minerals Dhahran, Saudi Arabia. ^cDepartment of Mathematics, University of Sargodha, Sargodha, Pakistan.

Communicated by Z. Kadelburg

Abstract

The study of the best proximity points is an interesting topic of optimization theory. We introduce the notion of α_* -proximal contractions for multivalued mappings on a complete metric space and establish the existence of common best proximity point for these mappings in the context of multivalued and single-valued mappings. As an application, we derive some best proximity point and fixed point results for multivalued and single-valued mappings on partially ordered metric spaces. Our results generalize and extend many known results in the literature. Some examples are provided to illustrate the results obtained herein. ©2016 All rights reserved.

Keywords: α_* -proximal admissible mapping, common best proximity point, multivalued mapping. 2010 MSC: 46N40, 47H10, 54H25, 46T99.

1. Introduction and preliminaries

Fixed point theory concerns with some techniques to find a solution of the pattern $\mathcal{T}x = x$, where \mathcal{T} is a self-mapping defined on a subset \mathcal{A} of a metric space (X, d). A well-known principle that guarantees a unique fixed point solution is the Banach contraction principle [9]. Over the years, this principle has been generalized

^{*}Corresponding author

Email addresses: nhusain@kau.edu.sa (Nawab Hussain), arahim@kfupm.edu.sa (Abdul Rahim Khan), irami@uos.edu.pk (Iram Iqbal)

in many ways (see [5, 7–15, 28, 29]). An interesting generalization of the Banach contraction principle is for multivalued mappings and is known as Nadler's fixed point theorem [24]. In 1982, Sessa [31] defined the concept of weakly commuting mappings to obtain common fixed point for pair of such mappings. Jungck generalized this idea, first to compatible mappings [18] and then to weakly compatible mappings [19]. A mapping $\mathcal{T}: \mathcal{A} \to \mathcal{B}$ does not necessarily have a fixed point, where \mathcal{A} and \mathcal{B} are nonempty subsets of a metric space \mathcal{X} . One can proceed to find an element $x \in \mathcal{A}$ in the sense that the distance $d(x, \mathcal{T}x)$ is minimum. Fan's best approximation theorem [13] asserts that if K is a nonempty, compact, and convex subset of a normed space X and $\mathcal{T}: K \to X$ is a continuous mapping, then there exists an element x satisfying the condition $d(x,\mathcal{T}x) = \inf ||y-\mathcal{T}x||, y \in K$. A best approximation theorem guarantees the existence of an approximate solution, while a best proximity point theorem provides an approximate solution which is optimal in the sense that there exists an element x such that $d(x, \mathcal{T}x) = dist(\mathcal{A}, \mathcal{B}) = \inf\{d(x, y) : x \in \mathcal{A} \text{ and } y \in \mathcal{B}\};\$ the element x is called a best proximity point of \mathcal{T} . Moreover, if the mapping under consideration is a self-mapping, then a best proximity point is reduced to a fixed point. The existence of best proximity points is an interesting aspect of optimization theory and it has attracted the attention of many authors (see [1, 6–8, 12, 15, 16, 20–22] and references therein). Moreover, the best proximity point theorems for several classes of multivalued mappings have been probed in [4, 14, 30].

For non-empty subsets \mathcal{A} and \mathcal{B} of the metric space \mathcal{X} , the following notions will be used:

$$dist(\mathcal{A}, \mathcal{B}) = \inf\{d(a, b) : a \in \mathcal{A}, b \in \mathcal{B}\}, \ D(x, \mathcal{B}) = \inf\{d(x, b) : b \in \mathcal{B}\}$$
$$\mathcal{A}_0 = \{a \in \mathcal{A} : d(a, b) = dist(\mathcal{A}, \mathcal{B}) \text{ for some } b \in \mathcal{B}\},$$
$$\mathcal{B}_0 = \{b \in \mathcal{B} : d(a, b) = dist(\mathcal{A}, \mathcal{B}) \text{ for some } a \in \mathcal{A}\},$$

 $2^{\mathcal{X}}$ is the set of all nonempty subsets of \mathcal{X} , $CL(\mathcal{X})$ is the set of all nonempty closed subsets of \mathcal{X} , $K(\mathcal{X})$ is the set of all compact subsets of \mathcal{X} for every $\mathcal{A}, \mathcal{B} \in CL(\mathcal{X}), H(\mathcal{A}, \mathcal{B}) = \max \{ \sup_{x \in \mathcal{A}} D(x, \mathcal{B}), \sup_{y \in \mathcal{B}} D(y, \mathcal{A}) \}$ if the maximum exists and $H(\mathcal{A}, \mathcal{B}) = 0$ otherwise, and let Ψ be the collection of all non-decreasing functions $\psi : [0, +\infty) \to [0, +\infty)$ such that $\sum_{n=1}^{+\infty} \psi^n(t) < +\infty$ for each t > 0, where ψ^n is the *n*th iterate of ψ .

We present now the necessary definitions and results which will be useful in the sequel.

Definition 1.1 ([23]). Let \mathcal{A} and \mathcal{B} be nonempty subsets of a metric space (X, d). A point x is called a common best proximity point of mappings $\mathcal{T}_i : \mathcal{A} \to \mathcal{B}, (i = 1, 2, ..., n)$ if

$$D(x, \mathcal{T}_i x) = \operatorname{dist}(A, B).$$

Lemma 1.2 ([5]). Let (X, d) be a metric space and $B \in CL(X)$. Then for each $x \in X$ with d(x, B) > 0and q > 1, there exists an element $b \in B$ such that

$$d(x,b) < qd(x,B).$$

Definition 1.3 ([6]). Let $(\mathcal{A}, \mathcal{B})$ be a pair of nonempty subsets of a metric space (X, d) with $\mathcal{A}_0 \neq \emptyset$. Then the pair $(\mathcal{A}, \mathcal{B})$ is said to have the weak *P*-property if and only if for any $x_1, x_2 \in \mathcal{A}$ and $y_1, y_2 \in \mathcal{B}$,

Definition 1.4 ([6]). Let \mathcal{A} and \mathcal{B} be two nonempty subsets of a metric space (\mathcal{X}, d) . A mapping $\mathcal{T} : \mathcal{A} \to 2^{\mathcal{B}} \setminus \emptyset$ is called α -proximal admissible if there exists a mapping $\alpha : \mathcal{A} \times \mathcal{A} \to [0, \infty)$ such that

$$\left. \begin{array}{l} \alpha(x_1, x_2) \ge 1\\ d(u_1, y_1) = \operatorname{dist}(A, B)\\ d(u_2, y_2) = \operatorname{dist}(A, B) \end{array} \right\} \qquad \Rightarrow \qquad \alpha(u_1, u_2) \ge 1,$$

where $x_1, x_2, u_1, u_2 \in A, y_1 \in Tx_1$ and $y_2 \in Tx_2$.

Definition 1.5 ([6]). Let \mathcal{A} and \mathcal{B} be two nonempty subsets of a metric space (\mathcal{X}, d) . A mapping $\mathcal{T} : \mathcal{A} \to CL(\mathcal{B})$ is said to be an α - ψ -proximal contraction, if there exist $\psi \in \Psi$ and $\alpha : \mathcal{A} \times \mathcal{A} \to [0, \infty)$ such that

$$\alpha(x, y)H(Tx, Ty) \le \psi(d(x, y)), \quad \forall x, y \in A.$$
(1.1)

In this paper, we generalize the above mentioned notions for a pair of multivalued and single-valued mappings and define α_* -proximal admissible with respect to $\eta : \mathcal{A} \times \mathcal{A} \to [0, \infty)$, α -proximal admissible with respect to $\eta : \mathcal{A} \times \mathcal{A} \to [0, \infty)$, α -proximal admissible with respect to $\eta : \mathcal{A} \times \mathcal{A} \to [0, \infty)$ and prove common best proximity point theorems as well as fixed point theorems for these mappings. Our results generalize and improve the results of Ali et al. [6], Jungck ([18], [19]), Samet et al. [29], and Hussain et al. [17].

2. Common best proximity points for multivalued mappings

We begin this section with a definition.

Definition 2.1. Let \mathcal{A} and \mathcal{B} be nonempty subsets of a metric space (X, d) and $\mathcal{T}_1, \mathcal{T}_2 : \mathcal{A} \to 2^{\mathcal{B}} \setminus \emptyset$ be multivalued mappings. The pair $(\mathcal{T}_1, \mathcal{T}_2)$ is α_* -proximal admissible with respect to η if there exist $\alpha, \eta : \mathcal{A} \times \mathcal{A} \to [0, \infty)$ such that for $z_1, z_2, u_1, u_2 \in \mathcal{A}$,

$$\left. \begin{array}{l} \alpha(z_1, z_2) \ge \eta(z_1, z_2) \\ d(u_1, y_1) = \operatorname{dist}(\mathcal{A}, \mathcal{B}) \\ d(u_2, y_2) = \operatorname{dist}(\mathcal{A}, \mathcal{B}) \end{array} \right\} \quad \Rightarrow \quad \alpha(u_1, u_2) \ge \eta(u_1, u_2)$$

for all $y_1 \in \mathcal{T}_i z_1$ and $y_2 \in \mathcal{T}_j z_2$, $i, j \in \{1, 2\}$. When $\alpha(z_1, z_2) = 1$ for all $z_1, z_2 \in \mathcal{A}$, the pair $(\mathcal{T}_1, \mathcal{T}_2)$ is called η_* -proximal sub-admissible, and when $\eta(z_1, z_2) = 1$ for all $z_1, z_2 \in \mathcal{A}$, the pair $(\mathcal{T}_1, \mathcal{T}_2)$ is called α_* -proximal admissible.

Example 2.2. Consider $X = \mathbb{R}^2$ with the usual metric. Suppose $\mathcal{A} = \{(1, x) : 0 \le x \le 1\}$ and $\mathcal{B} = \{(0, x) : 0 \le x \le 1\}$. Define $\mathcal{T}_1, \mathcal{T}_2 : \mathcal{A} \to 2^{\mathcal{B}} \setminus \emptyset$ by

$$\mathcal{T}_{1}(1,x) = \begin{cases} \{(0,1)\} & x = 1, \\ \{(0,\frac{a}{2}): 0 \le a \le x\} & \text{otherwise,} \end{cases}$$
$$\mathcal{T}_{2}(1,x) = \begin{cases} \{(0,\frac{a}{2}): 0 \le a \le x\} & x \in [0,\frac{1}{2}], \\ \{(0,a^{2}): 0 \le a \le x\} & x \in (\frac{1}{2},1] \end{cases},$$

and $\alpha, \eta : \mathcal{A} \times \mathcal{A} \to [0, \infty)$ by

$$\begin{aligned} \alpha((1,x),(1,y)) &= \begin{cases} 4/5 & x, y \in \left[0,\frac{1}{2}\right], \\ 1/2 & \text{otherwise}, \end{cases} \\ \eta((1,x),(1,y)) &= \frac{3}{4} \end{aligned}$$

for all $(1, x), (1, y) \in \mathcal{A} \times \mathcal{A}$. If $z_1 = (1, x_1)$ and $z_2 = (1, x_2)$ in \mathcal{A} , then $\alpha(z_1, z_2) \ge \eta(z_1, z_2)$ if $x_1, x_2 \in [0, \frac{1}{2}]$. So, $\mathcal{T}_1 z_1 = \{(0, \frac{a}{2}) : 0 \le a \le x_1\}$ and $\mathcal{T}_2 z_2 = \{(0, \frac{a}{2}) : 0 \le a \le x_2\}$. This shows that $d(u_1, y_1) = 1 = \text{dist}(\mathcal{A}, \mathcal{B})$ and $d(u_2, y_2) = 1 = \text{dist}(\mathcal{A}, \mathcal{B})$ for all $y_1 \in \mathcal{T}_i x_1$ and $y_2 \in \mathcal{T}_j x_2$, $i, j \in \{1, 2\}$ if and only if $u_1, u_2 \in \{(1, \frac{x}{2}) : 0 \le x \le \frac{1}{2}\}$. Hence $\alpha(u_1, u_2) = \frac{4}{5} > \frac{3}{4} = \eta(u_1, u_2)$. Thus the pair $(\mathcal{T}_1, \mathcal{T}_2)$ is α_* -proximal admissible with respect to η .

Theorem 2.3. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a complete metric space (X, d) such that \mathcal{A}_0 is non-empty and $\mathcal{T}, S : \mathcal{A} \to CL(\mathcal{B})$ be continuous multivalued mappings satisfying the following assertions:

- 1. $\alpha(z_1, z_2) \ge \eta(z_1, z_2) \Rightarrow H(\mathcal{T}z_1, \mathcal{S}z_2) \le \psi(d(z_1, z_2));$
- 2. $\mathcal{T}z, \mathcal{S}z \subseteq \mathcal{B}_0$ for each $z \in \mathcal{A}_0$ and $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property;

- 3. $(\mathcal{T}, \mathcal{S})$ is α_* -proximal admissible with respect to η ;
- 4. there exists $z_0, z_1, z_2 \in \mathcal{A}_0$, $y_1 \in \mathcal{T}z_0$ and $y_2 \in \mathcal{S}z_0$ such that

$$d(z_1, y_1) = dist(\mathcal{A}, \mathcal{B}), \qquad \alpha(z_0, z_1) \ge \eta(z_0, z_1)$$

and

$$d(z_2, y_2) = dist(\mathcal{A}, \mathcal{B}), \qquad \alpha(z_0, z_2) \ge \eta(z_0, z_2).$$

Then the mappings \mathcal{T} and \mathcal{S} have a common best proximity point.

Proof. By the hypothesis, there exists $z_0, z_1 \in \mathcal{A}_0$ and $y_1 \in \mathcal{T}z_0$ such that

$$d(z_1, y_1) = \operatorname{dist}(\mathcal{A}, \mathcal{B}), \alpha(z_0, z_1) \ge \eta(z_0, z_1).$$

$$(2.1)$$

If $y_1 \in \mathcal{T}z_1 \cap \mathcal{S}z_1$, then z_1 is the common best proximity point of \mathcal{T} and \mathcal{S} . If $y_1 \notin \mathcal{S}z_1$, then from condition 1, we have

$$0 < d(y_1, \mathcal{S}z_1) \le H(\mathcal{T}z_0, \mathcal{S}z_1) \le \psi(d(z_0, z_1)).$$

For q > 1, it follows from Lemma 1.2 that there exists $y_2 \in Sz_1$ such that

$$0 < d(y_1, y_2) < qd(y_1, Sz_1) \leq qH(\mathcal{T}z_0, Sz_1) \leq q\psi((d(z_0, z_1))).$$
(2.2)

As $y_2 \in Sz_1 \subseteq B_0$, there exists $z_2 \neq z_1 \in A_0$ such that

$$d(z_2, y_2) = \operatorname{dist}(\mathcal{A}, \mathcal{B}), \tag{2.3}$$

otherwise, z_1 is the common best proximity point of \mathcal{T} and \mathcal{S} . As $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property, (2.1) and (2.3) imply that

$$0 < d(z_1, z_2) \le d(y_1, y_2). \tag{2.4}$$

From (2.2) and (2.4), we have

 $0 < d(z_1, z_2) \le q\psi(d(z_0, z_1)).$

Since ψ is non-decreasing, from the above inequality, we have

$$\psi(d(z_1, z_2)) \le \psi(q\psi(d(z_0, z_1))).$$

Put $q_1 = \frac{\psi(q\psi(d(z_0,z_1)))}{\psi(d(z_1,z_2))}$. As the pair $(\mathcal{T},\mathcal{S})$ is α_* -proximal admissible with respect to η , so, $\alpha(z_1,z_2) \ge \eta(z_1,z_2)$. Thus, we have

$$d(z_2, y_2) = \operatorname{dist}(\mathcal{A}, \mathcal{B}), \qquad \alpha(z_1, z_2) \ge \eta(z_1, z_2).$$

$$(2.5)$$

Now, if $y_2 \in \mathcal{T}z_2 \cap \mathcal{S}z_2$, then z_2 is the common best proximity point of \mathcal{T} and \mathcal{S} . If $y_2 \notin \mathcal{T}z_2$, then from condition 1, we have

$$0 < d(\mathcal{T}z_2, y_2) \le H(\mathcal{T}z_2, \mathcal{S}z_1) \le \psi(d(z_1, z_2)).$$

For $q_1 > 1$, it follows from Lemma 1.2 that there exists $y_3 \in \mathcal{T}z_2$ such that

$$0 < d(y_2, y_3) < q_1 d(y_2, \mathcal{T} z_2) \leq q_1 H(\mathcal{S} z_1, \mathcal{T} z_2) \leq q_1 \psi((d(z_1, z_2))) = \psi(q \psi((d(z_0, z_1))).$$
(2.6)

As $y_3 \in \mathcal{T}z_2 \subseteq \mathcal{B}_0$, so there exists $z_3 \neq z_2 \in \mathcal{A}_0$ such that

$$d(z_3, y_3) = \operatorname{dist}(\mathcal{A}, \mathcal{B}), \tag{2.7}$$

otherwise, z_2 is the common best proximity point of \mathcal{T} and \mathcal{S} . As $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property, (2.5) and (2.7) imply that

$$0 < d(z_2, z_3) \le d(y_2, y_3). \tag{2.8}$$

From (2.6) and (2.8), we have

$$0 < d(z_2, z_3) \le \psi(q\psi(d(z_0, z_1)))$$

Since ψ is strictly increasing, from the above inequality, we have

$$\psi(d(z_2, z_3)) < \psi^2(q\psi(d(z_0, z_1))).$$

Put $q_2 = \frac{\psi^2(q\psi(d(z_0,z_1)))}{\psi(d(z_2,z_3))}$. As the pair $(\mathcal{T},\mathcal{S})$ is α_* -proximal admissible with respect to η , so, $\alpha(z_2,z_3) \ge \eta(z_2,z_3)$. Thus, we have

$$d(z_3, y_3) = \operatorname{dist}(\mathcal{A}, \mathcal{B}), \qquad \alpha(z_2, z_3) \ge \eta(z_2, z_3).$$

Now proceeding in the manner described above, we get a sequence $\{z_n\}$ in \mathcal{A}_0 and $\{y_n\}$ in \mathcal{B}_0 such that for $n \in \mathbb{N}$

$$y_{2n+1} \in \mathcal{T}z_{2n} \quad \text{and} \quad y_{2n} \in \mathcal{T}z_{2n-1}, \tag{2.9}$$

where

$$d(z_{n+1}, y_{n+1}) = \operatorname{dist}(\mathcal{A}, \mathcal{B}), \qquad \alpha(z_n, z_{n+1}) \ge \eta(z_n, z_{n+1}), \quad \forall n \in \mathbb{N}$$
(2.10)

and

$$d(y_{n+1}, y_{n+2}) < \psi^n(q\psi(d(z_0, z_1))), \quad \forall n \in \mathbb{N}.$$
(2.11)

As $y_{n+2} \in \mathcal{T}z_{n+1} \cup \mathcal{S}z_{n+1}$ and $\mathcal{T}z_{n+1}, \mathcal{S}z_{n+1} \subseteq \mathcal{B}_0$ for all $n \in \mathbb{N}$, so there exists $z_{n+2} \neq z_{n+1} \in \mathcal{A}_0$ such that

$$d(z_{n+2}, y_{n+2}) = \operatorname{dist}(\mathcal{A}, \mathcal{B}), \qquad \forall n \in \mathbb{N}.$$
(2.12)

Since $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property, from (2.10) and (2.12), we have

$$d(z_{n+1}, z_{n+2}) \le d(y_{n+1}, y_{n+2}), \quad \forall n \in \mathbb{N}.$$
 (2.13)

From (2.11) and (2.13), we get

$$d(z_{n+1}, z_{n+2}) < \psi^n(q\psi(d(z_0, z_1))), \quad \forall n \in \mathbb{N}$$

Now for n > m, we have

$$d(z_n, z_m) \le \sum_{i=n}^{m-1} d(z_i, z_{i+1}) < \sum_{i=n}^{m-1} \psi^{i-1}(q\psi(d(z_0, z_1))).$$

Hence $\{z_n\}$ is a Cauchy sequence in \mathcal{A} . Similarly, $\{y_n\}$ is a Cauchy sequence in \mathcal{B} . Since \mathcal{A} and \mathcal{B} are closed subsets of a complete metric space (X, d), there exist $z^* \in \mathcal{A}$ and $y^* \in \mathcal{B}$ such that $z_n \to z^*$ and $y_n \to y^*$ as $n \to \infty$. By taking limit as $n \to \infty$ in equation (2.12), we get that

$$d(z^*, y^*) = \operatorname{dist}(\mathcal{A}, \mathcal{B}).$$

Since \mathcal{T} and \mathcal{S} are continuous, therefore from (2.9), we get that $y^* \in \mathcal{T}z^* \cap \mathcal{S}z^*$. Hence

$$\operatorname{dist}(\mathcal{A}, \mathcal{B}) \le D(z^*, \mathcal{T}z^*) \le d(z^*, y^*) = \operatorname{dist}(\mathcal{A}, \mathcal{B})$$

and

$$\operatorname{dist}(\mathcal{A}, \mathcal{B}) \le D(z^*, \mathcal{S}z^*) \le d(z^*, y^*) = \operatorname{dist}(\mathcal{A}, \mathcal{B}).$$

This implies that $D(z^*, \mathcal{T}z^*) = D(z^*, \mathcal{S}z^*) = \text{dist}(\mathcal{A}, \mathcal{B})$, that is, z^* is a common best proximity point of \mathcal{T} and \mathcal{S} .

Example 2.4. Consider $X, \mathcal{A}, \mathcal{B}, \mathcal{T}_1, \mathcal{T}_2 : \mathcal{A} \to 2^{\mathcal{B}} \setminus \emptyset$ and $\alpha, \eta : \mathcal{A} \times \mathcal{A} \to [0, \infty)$ as in Example 2.2. Then $\mathcal{A}_0 = \mathcal{A}, \mathcal{B}_0 = \mathcal{B}, \text{dist}(\mathcal{A}, \mathcal{B}) = 1$ and $\mathcal{T}_1 z, \mathcal{T}_2 z \subseteq \mathcal{B}_0$ for each $z \in \mathcal{A}_0$. As $\mathcal{A}_0 = \mathcal{A}$ and $\mathcal{B}_0 = \mathcal{B}$, so for $z_1 = (1, x_1), z_2 = (1, x_2) \in \mathcal{A}$, there exist $y_1 = (0, x_1), y_2 = (0, x_2) \in \mathcal{B}$ such that $d(z_1, y_1) = d(z_2, y_2) = dist(\mathcal{A}, \mathcal{B})$ and $d(z_1, z_2) = |x_1 - x_2| = d(y_1, y_2)$. Hence the pair $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property and the pair $(\mathcal{T}_1, \mathcal{T}_2)$ is α_* -proximal admissible map with respect to η (see Example 2.2). Let $\psi(t) = \frac{t}{2}$ for all $t \ge 0$. Note that $\alpha(z_1, z_2) \ge \eta(z_1, z_2)$ if $x_1, x_2 \in [0, \frac{1}{2}]$. Therefore,

$$H(\mathcal{T}_{1}z_{1}, \mathcal{T}_{2}z_{2}) = \left|\frac{x_{1}}{2} - \frac{x_{2}}{2}\right|$$
$$= \frac{1}{2}|x_{1} - x_{2}|$$
$$= \psi(d(z_{1}, z_{2}))$$

Also, for $z_0 = (1, \frac{1}{2}) \in \mathcal{A}_0$, $y_1 = (0, \frac{1}{4}) \in \mathcal{T}_1 x_0$ and $y_2 = (0, \frac{1}{8}) \in \mathcal{T}_2 x_0$, we have $z_1 = (1, \frac{1}{4})$, $z_2 = (1, \frac{1}{8}) \in \mathcal{A}_0$ such that $d(z_1, y_1) = d(z_2, y_2) = 1 = \text{dist}(\mathcal{A}, \mathcal{B})$, $\alpha(z_0, z_1) = \frac{4}{5} \geq \frac{3}{4} = \eta(z_0, z_1)$ and $\alpha(z_0, z_2) = \frac{4}{5} \geq \frac{3}{4} = \eta(z_0, z_2)$. Thus all the conditions of Theorem 2.3 are satisfied and (1, 1) is a common best proximity point of \mathcal{T}_1 and \mathcal{T}_2 .

The case $\eta(z_1, z_2) = 1$, reduces Theorem 2.3 to the following:

Corollary 2.5. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a complete metric space (X, d) such that \mathcal{A}_0 is non-empty and $\mathcal{T}, \mathcal{S} : \mathcal{A} \to CL(\mathcal{B})$ be continuous multivalued mappings satisfying the following assertions:

1. $\alpha(z_1, z_2) \ge 1 \Rightarrow H(\mathcal{T}z_1, \mathcal{S}z_2) \le \psi(d(z_1, z_2));$

- 2. $\mathcal{T}z, \mathcal{S}z \subseteq \mathcal{B}_0$ for each $z \in \mathcal{A}_0$ and $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property;
- 3. $(\mathcal{T}, \mathcal{S})$ is α_* -proximal admissible;
- 4. there exist $z_0, z_1, z_2 \in A_0$, $y_1 \in Tz_0$ and $y_2 \in Sz_0$ such that

$$d(z_1, y_1) = dist(\mathcal{A}, \mathcal{B}), \qquad \alpha(z_0, z_1) \ge 1$$

and

$$d(z_2, y_2) = dist(\mathcal{A}, \mathcal{B}), \qquad \alpha(z_0, z_2) \ge 1$$

Then the mappings \mathcal{T} and \mathcal{S} have a common best proximity point.

If we take $\alpha(z_1, z_2) = 1$ in Theorem 2.3, then we have the following:

Corollary 2.6. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a complete metric space (X, d) such that \mathcal{A}_0 is non-empty and $\mathcal{T}, \mathcal{S} : \mathcal{A} \to CL(\mathcal{B})$ be continuous multivalued mappings satisfying the following assertions:

1. $\eta(z_1, z_2) \leq 1 \Rightarrow H(\mathcal{T}z_1, \mathcal{S}z_2) \leq \psi(d(z_1, z_2));$

2. $\mathcal{T}z, \mathcal{S}z \subseteq \mathcal{B}_0$ for each $z \in \mathcal{A}_0$ and $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property;

- 3. $(\mathcal{T}, \mathcal{S})$ is η_* -proximal subadmissible;
- 4. there exist $z_0, z_1, z_2 \in \mathcal{A}_0$, $y_1 \in \mathcal{T}z_0$ and $y_2 \in \mathcal{S}z_0$ such that

$$d(z_1, y_1) = dist(\mathcal{A}, \mathcal{B}), \qquad \eta(z_0, z_1) < 1$$

and

$$d(z_2, y_2) = dist(\mathcal{A}, \mathcal{B}), \qquad \eta(z_0, z_2) < 1.$$

Then the mappings \mathcal{T} and \mathcal{S} have a common best proximity point.

In case, $\mathcal{T}_1 = \mathcal{T}_2$, Definition 2.1 and Theorem 2.3 is reduced to the following:

Definition 2.7. Let \mathcal{A} and \mathcal{B} be two nonempty subsets of a metric space (X, d) and $\mathcal{T} : \mathcal{A} \to 2^{\mathcal{B}} \setminus \emptyset$ be a multivalued mapping. We say that \mathcal{T} is α_* -proximal admissible with respect to η if there exist two functions $\alpha, \eta : \mathcal{A} \times \mathcal{A} \to [0, \infty)$ such that for $z_1, z_2, u_1, u_2 \in \mathcal{A}$,

$$\begin{array}{c} \alpha(z_1, z_2) \ge \eta(z_1, z_2) \\ d(u_1, y_1) = \operatorname{dist}(\mathcal{A}, \mathcal{B}) \\ d(u_2, y_2) = \operatorname{dist}(\mathcal{A}, \mathcal{B}) \end{array} \right\} \quad \Rightarrow \quad \alpha(u_1, u_2) \ge \eta(u_1, u_2)$$

for all $y_1 \in \mathcal{T}z_1$ and $y_2 \in \mathcal{T}z_2$. When $\alpha(z_1, z_2) = 1$ for all $z_1, z_2 \in \mathcal{A}, \mathcal{T}$ is called η -proximal sub-admissible.

Theorem 2.8. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a complete metric space (X,d) such that \mathcal{A}_0 is nonempty and $\mathcal{T} : A \to CL(\mathcal{B})$ be a continuous multivalued mapping satisfying the following assertions:

- 1. $\alpha(z_1, z_2) \ge \eta(z_1, z_2) \Rightarrow H(\mathcal{T}z_1, \mathcal{T}z_2) \le \psi(d(z_1, z_2));$
- 2. $\mathcal{T}z \subseteq \mathcal{B}_0$ for each $z \in \mathcal{A}_0$ and $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property;
- 3. \mathcal{T} is α_* -proximal admissible with respect to η ;
- 4. there exist $z_0, z_1 \in \mathcal{A}_0, y_1 \in \mathcal{T}z_0$ such that

$$d(z_1, y_1) = dist(\mathcal{A}, \mathcal{B}), \qquad \alpha(z_0, z_1) \ge \eta(z_0, z_1).$$

Then the mapping \mathcal{T} has a best proximity point.

If we take $\eta(z_1, z_2) = 1$ in Theorem 2.8, then we have the following:

Corollary 2.9. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a complete metric space (X, d) such that \mathcal{A}_0 is nonempty and $\mathcal{T} : A \to CL(\mathcal{B})$ be a continuous multivalued mapping satisfying the following assertions:

- 1. $\alpha(z_1, z_2) \ge 1 \Rightarrow H(\mathcal{T}z_1, \mathcal{T}z_2) \le \psi(d(z_1, z_2));$
- 2. $\mathcal{T}z \subseteq \mathcal{B}_0$ for each $z \in \mathcal{A}_0$ and $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property;
- 3. T is α -proximal admissible;
- 4. there exist $z_0, z_1 \in \mathcal{A}_0, y_1 \in \mathcal{T}z_0$ such that

$$d(z_1, y_1) = dist(\mathcal{A}, \mathcal{B}), \qquad \alpha(z_0, z_1) \ge 1.$$

Then the mapping \mathcal{T} has a best proximity point.

Remark 2.10. The special case of Theorem 2.8 for $\alpha(z_1, z_2) = 1$ can be obtained as in Corollary 2.6.

Remark 2.11. When $\eta(z_1, z_2) = 1$ for all $z_1, z_2 \in \mathcal{A}$, Definition 2.7 reduces to Definition 10 in [6]. As the condition 1 is more general than the inequality (1.1) (see Remark 3.5 in [5]), so Corollary 2.9 extends Theorem 13 in [6].

Remark 2.12. When $\mathcal{A} = \mathcal{B}$, Theorem 2.8 is reduced to the Theorem 3.3 in [5].

Remark 2.13. Note that the uniqueness of the common best proximity points of multivalued mappings \mathcal{T} and \mathcal{S} is not given in Theorem 2.3. Thus, we can present the following problem: Let (\mathcal{X}, d) be a complete metric space and $\mathcal{T}, \mathcal{S} : \mathcal{A} \to CL(\mathcal{B})$ be continuous multivalued mappings satisfying all the assertions of Theorem 2.3. Does \mathcal{T} and \mathcal{S} have a unique common best proximity point? By adding a condition and taking mappings $\mathcal{T}, \mathcal{S} : \mathcal{A} \to K(\mathcal{B})$, we can give a partial answer of this problem as follows:

Theorem 2.14. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a complete metric space (X, d) such that \mathcal{A}_0 is non-empty and $\mathcal{T}, \mathcal{S} : \mathcal{A} \to K(\mathcal{B})$ be continuous multivalued mappings satisfying all the assertions of Theorem 2.3 and also satisfy

H. $\alpha(z_1, z_2) \geq \eta(z_1, z_2)$ for all common best proximity points of \mathcal{T} and \mathcal{S} .

Then the mappings \mathcal{T} and \mathcal{S} have a unique common best proximity point.

Proof. We will only prove the part of uniqueness. Let z_1, z_2 be two common best proximity points of \mathcal{T} and \mathcal{S} such that $z_1 \neq z_2$, then by hypothesis H we have $\alpha(z_1, z_2) \geq \eta(z_1, z_2)$ and $D(z_1, \mathcal{T}z_1) = \text{dist}(\mathcal{A}, \mathcal{B}) = D(z_1, \mathcal{S}z_1) = D(z_2, \mathcal{T}z_2) = D(z_2, \mathcal{S}z_2)$. Since $\mathcal{T}z_1$ and $\mathcal{S}z_2$ are compact, so there exist an element $u_1 \in \mathcal{T}z_1$ and $u_2 \in \mathcal{S}z_2$ such that

$$d(z_1, u_1) = D(z_1, \mathcal{T}z_1)$$

and

$$d(z_2, u_2) = D(z_2, \mathcal{S}z_2).$$

Since the pair $(\mathcal{T}, \mathcal{S})$ satisfies the weak *P*-property, so we have

$$d(z_1, z_2) = d(u_1, u_2).$$

So by using condition 1 and Lemma 1.2 there exists q > 1 such that

$$d(z_1, z_2) = d(u_1, u_2) < qD(u_1, Sz_2) < qH(\mathcal{T}z_1, Sz_2) < q\psi(d(z_1, z_2)) < qd(z_1, z_2),$$

which is a contradiction. This implies that $d(z_1, z_2) = 0$, consequently, \mathcal{T} and \mathcal{S} have a unique common best proximity point.

By similar arguments as in Theorem 2.14, we state the following:

Theorem 2.15. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a complete metric space (X, d) such that \mathcal{A}_0 is nonempty and $\mathcal{T} : \mathcal{A} \to K(\mathcal{B})$ be a continuous multivalued mapping satisfying all the assertions of Theorem 2.8 with condition H, then \mathcal{T} has a unique common best proximity point.

3. Common best proximity points for single-valued mappings

We start with the following definition:

Definition 3.1. Let \mathcal{A} and \mathcal{B} be two nonempty subsets of a metric space (X, d) and $\mathcal{T}_1, \mathcal{T}_2 : \mathcal{A} \to \mathcal{B}$ be mappings. The pair $(\mathcal{T}_1, \mathcal{T}_2)$ is α -proximal admissible with respect to η if there exist two functions $\alpha, \eta : \mathcal{A} \times \mathcal{A} \to [0, \infty)$ such that for $z_1, z_2, u_1, u_2 \in \mathcal{A}$,

$$\left. \begin{array}{l} \alpha(z_1, z_2) \ge \eta(z_1, z_2) \\ d(u_1, \mathcal{T}_1 z_1) = \operatorname{dist}(\mathcal{A}, \mathcal{B}) \\ d(u_2, \mathcal{T}_2 z_2) = \operatorname{dist}(\mathcal{A}, \mathcal{B}) \end{array} \right\} \quad \Rightarrow \quad \alpha(u_1, u_2) \ge \eta(u_1, u_2).$$

When $\alpha(z_1, z_2) = 1$ for all $z_1, z_2 \in \mathcal{A}$, the pair $(\mathcal{T}_1, \mathcal{T}_2)$ is called η -proximal subadmissible and when $\eta(z_1, z_2) = 1$ for all $z_1, z_2 \in \mathcal{A}$, the pair $(\mathcal{T}_1, \mathcal{T}_2)$ is called α -proximal admissible.

Example 3.2. Consider $\mathcal{X} = \mathbb{R}^2$ with the usual metric. Let $\mathcal{A} = \{(-6,0), (0,-6), (0,5)\}$ and $\mathcal{B} = \{(-1,0), (0,-1), (0,0), (-1,1), (1,1)\}$ be closed subsets of (X,d). Then $d(\mathcal{A},\mathcal{B}) = 5$, $\mathcal{A}_0 = \mathcal{A}$ and $\mathcal{B}_0 = \mathcal{B}$. Define $\mathcal{T}_1, \mathcal{T}_2 : \mathcal{A} \to \mathcal{B}$ by

$$\begin{array}{rcl} \mathcal{T}_1(-6,0) &=& (-1,0), \\ \mathcal{T}_1(0,-6) &=& (0,-1), \\ \mathcal{T}_1(0,5) &=& (1,1), \end{array} \qquad \begin{array}{rcl} \mathcal{T}_2(-6,0) &=& (0,0), \\ \mathcal{T}_2(0,-6) &=& (-1,1), \\ \mathcal{T}_1(0,5) &=& (1,1), \end{array}$$

and $\alpha, \eta : \mathcal{A} \times \mathcal{A} \to [0, \infty)$ by

$$\alpha(z_1, z_2) = \begin{cases} 1 & \text{if } y_1, y_2 \neq 0, \\ 0 & \text{otherwise,} \end{cases} \qquad \qquad \eta(z_1, z_2) = \frac{1}{2},$$

for all $z_1 = (x_1, y_1), z_2 = (x_2, y_2) \in \mathcal{A}$.

By Theorem 2.3, we immediately obtain the following result.

Theorem 3.3. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a complete metric space (X,d) such that \mathcal{A}_0 is nonempty and let $\mathcal{T}, \mathcal{S} : \mathcal{A} \to \mathcal{B}$ be continuous mappings satisfying the following assertions for all $z_1, z_2 \in \mathcal{A}$:

1. $\alpha(z_1, z_2) \ge \eta(z_1, z_2) \Rightarrow d(\mathcal{T}z_1, \mathcal{S}z_2) \le \psi(d(z_1, z_2));$

- 2. $\mathcal{T}(\mathcal{A}_0), \mathcal{S}(\mathcal{A}_0) \subseteq \mathcal{B}_0$ and $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property;
- 3. $(\mathcal{T}, \mathcal{S})$ is α -proximal admissible with respect to η ;
- 4. there exist $z_0, z_1, z_2 \in \mathcal{A}_0$ such that

$$d(z_1, \mathcal{T}z_0) = dist(\mathcal{A}, \mathcal{B}), \qquad \alpha(z_0, z_1) \ge \eta(z_0, z_1)$$

and

$$d(z_2, \mathcal{S}z_0) = dist(\mathcal{A}, \mathcal{B}), \qquad \alpha(z_0, z_2) \ge \eta(z_0, z_2).$$

Then the mappings \mathcal{T} and \mathcal{S} have a common best proximity point.

The case $\mathcal{A} = \mathcal{B} = X$ reduces Definition 3.1 and Theorem 3.3 into the following:

Definition 3.4. Let (X, d) be a metric space and $\mathcal{T}_1, \mathcal{T}_2 : X \to X$ be mappings. The pair $(\mathcal{T}_1, \mathcal{T}_2)$ is α -admissible with respect to η if there exist functions $\alpha, \eta : X \times X \to [0, \infty)$ such that for $z_1, z_2 \in X$,

$$\alpha(z_1, z_2) \ge \eta(z_1, z_2) \Rightarrow \alpha(\mathcal{T}_1 z_1, \mathcal{T}_2 z_2) \ge \eta(\mathcal{T}_1 z_1, \mathcal{T}_2 z_2).$$

When $\alpha(z_1, z_2) = 1$ for all $z_1, z_2 \in X$, the pair $(\mathcal{T}_1, \mathcal{T}_2)$ is called η -subadmissible and when $\eta(z_1, z_2) = 1$ for all $z_1, z_2 \in X$, the pair $(\mathcal{T}_1, \mathcal{T}_2)$ is called α -admissible.

Remark 3.5. Definition 3.4 generalizes the concepts of compatibility and weak compatibility by Jungck ([18] and [19]). Every weakly compatible pair is α - admissible with respect to η . Indeed, let $(\mathcal{T}_1, \mathcal{T}_2)$ be weakly compatible pair. Then $\mathcal{T}_1(\mathcal{T}_2 z) = \mathcal{T}_2(\mathcal{T}_1 z)$ for all z belonging to $C(\mathcal{T}_1, \mathcal{T}_2)$ as the set of all coincidence points of mappings \mathcal{T}_1 and \mathcal{T}_2 . Define

$$\alpha(z_1, z_2) = \begin{cases} 1 & \text{if } z_1, z_2 \in C(\mathcal{T}_1, \mathcal{T}_2), \\ 0 & \text{otherwise,} \end{cases} \quad \text{and} \quad \eta(z_1, z_2) = \frac{1}{2} \text{ for all } z_1, z_2 \in X.$$

Then $\alpha(z_1, z_2) > \eta(z_1, z_2)$ if $z_1, z_2 \in C(\mathcal{T}_1, \mathcal{T}_2)$. Since $(\mathcal{T}_1, \mathcal{T}_2)$ is weakly compatible pair, so for all $z_1, z_2 \in C(\mathcal{T}_1, \mathcal{T}_2)$, we have $\mathcal{T}_1(\mathcal{T}_1 z_1) = \mathcal{T}_1(\mathcal{T}_2 z_1) = \mathcal{T}_2(\mathcal{T}_1 z_1)$ and $\mathcal{T}_1(\mathcal{T}_2 z_2) = \mathcal{T}_2(\mathcal{T}_1 z_2) = \mathcal{T}_2(\mathcal{T}_2 z_2)$. This implies that $\mathcal{T}_1 z_1, \mathcal{T}_2 z_2 \in C(\mathcal{T}_1, \mathcal{T}_2)$. Hence $\alpha(\mathcal{T}_1 z_1, \mathcal{T}_2 z_2) = 1 > \frac{1}{2} = \eta(\mathcal{T}_1 z_1, \mathcal{T}_2 z_2)$, that is, the pair $(\mathcal{T}_1, \mathcal{T}_2)$ is α - admissible with respect to η . But the converse is not true which is clear from the following:

Example 3.6. Consider $X = \mathbb{R}$ with the usual metric. Define $\mathcal{T}_1, \mathcal{T}_2 : X \to X$ by

$$\mathcal{T}_1(z) = z^3, \qquad \qquad \mathcal{T}_2(z) = \frac{z^2}{4}$$

and $\alpha, \eta: X \times X \to [0, \infty)$ by

$$\alpha(z_1, z_2) = \begin{cases} 2 & \text{if } z_1, z_2 \ge 0, \\ 0 & \text{if } z_1, z_2 < 0, \end{cases} \qquad \eta(z_1, z_1) = \frac{1}{4}$$

for all $z_1, z_2 \in X$. Note that $\alpha(z_1, z_2) \geq \eta(z_1, z_2)$ when $z_1, z_2 \geq 0$. This implies that $\alpha(\mathcal{T}_1 z_1, \mathcal{T}_2 z_2) = 2 > \frac{1}{4} = \eta(\mathcal{T}_1 z_1, \mathcal{T}_2 z_2)$. Hence the pair $(\mathcal{T}_1, \mathcal{T}_2)$ is α - admissible with respect to η . On the other hand, the coincidence points of \mathcal{T}_1 and \mathcal{T}_2 are 0 and $\frac{1}{4}$ such that $\mathcal{T}_1(\mathcal{T}_2(\frac{1}{4})) = \frac{1}{(64)^3} \neq \mathcal{T}_2(\mathcal{T}_1(\frac{1}{4})) = \frac{1}{4}(\frac{1}{64})^2$. Thus, the pair $(\mathcal{T}_1, \mathcal{T}_2)$ is not weakly compatible.

Theorem 3.7. Let (X,d) be a complete metric space and $\mathcal{T}, \mathcal{S} : X \to X$ be continuous mappings satisfying the following assertions for all $z_1, z_2 \in X$:

- 1. $\alpha(z_1, z_2) \ge \eta(z_1, z_2) \Rightarrow d(\mathcal{T}z_1, \mathcal{S}z_2) \le \psi(d(z_1, z_2));$
- 2. $(\mathcal{T}, \mathcal{S})$ is α -admissible with respect to η ;
- 3. there exist $z_0, z_1 \in X$ such that $\alpha(z_0, \mathcal{T}z_0) \ge \eta(z_0, \mathcal{T}z_0)$ and $\alpha(z_1, \mathcal{S}z_1) \ge \eta(z_1, \mathcal{S}z_1)$.

Then the mappings \mathcal{T} and \mathcal{S} have a common fixed point.

Taking $\eta(z_1, z_2) = 1$ in Theorem 3.7, we get the following:

Corollary 3.8. Let (X,d) be a complete metric space and $\mathcal{T}, \mathcal{S} : X \to X$ be continuous mappings satisfying the following assertions for all $z_1, z_2 \in X$:

- 1. $\alpha(z_1, z_2) \ge 1 \Rightarrow d(\mathcal{T}z_1, \mathcal{S}z_2) \le \psi(d(z_1, z_2));$
- 2. $(\mathcal{T}, \mathcal{S})$ is α -admissible;
- 3. there exist $z_0, z_1 \in X$ such that $\alpha(z_0, \mathcal{T}z_0) \geq 1$ and $\alpha(z_1, \mathcal{S}z_1) \geq 1$.

Then the mappings \mathcal{T} and \mathcal{S} have a common fixed point.

Remark 3.9. When $\mathcal{T}_1 = \mathcal{T}_2 = \mathcal{T}$ in Definition 3.4, we get Definition 2.1 in [28] and in case $\mathcal{T} = \mathcal{S}$, (with the help of Remark 3.5 in [5]), Corollary 3.8 generalizes Theorem 2.1 in [29].

When $\mathcal{T}_1 = \mathcal{T}_2 = \mathcal{T}$, Definition 3.1 and Theorem 3.3 are reduced to Definition 8 in [15] and the following result, respectively.

Theorem 3.10. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a complete metric space (X, d) such that \mathcal{A}_0 is nonempty and $\mathcal{T} : \mathcal{A} \to \mathcal{B}$ be a continuous mapping satisfying the following assertions for all $z_1, z_2 \in \mathcal{A}$:

- 1. $\alpha(z_1, z_2) \ge \eta(z_1, z_2) \Rightarrow d(\mathcal{T}z_1, \mathcal{T}z_2) \le \psi(d(z_1, z_2));$
- 2. $\mathcal{T}(\mathcal{A}_0) \subseteq \mathcal{B}_0$ and $(\mathcal{A}, \mathcal{B})$ satisfies the weak *P*-property;
- 3. \mathcal{T} is α -proximal admissible with respect to η ;
- 4. there exist $z_0, z_1 \in \mathcal{A}_0$ such that

$$d(z_1, \mathcal{T}z_0) = dist(\mathcal{A}, \mathcal{B}), \qquad \alpha(z_0, z_1) \ge \eta(z_0, z_1).$$

Then \mathcal{T} has a best proximity point.

Remark 3.11. The special cases of Theorems 3.3 and 3.10 for $\eta(z_1, z_2) = 1$ and $\alpha(z_1, z_2) = 1$ can be obtained as in Corollaries 2.5 and 2.6.

4. Generalization

In this section we generalize the results of Sections 2 and 3 for a sequence of mappings.

Definition 4.1. Let \mathcal{A} and \mathcal{B} be two nonempty subsets of a metric space (X, d) and $\{\mathcal{T}_i : \mathcal{A} \to 2^{\mathcal{B}} \setminus \emptyset\}_{i=1}^{\infty}$ be a sequence of multivalued mappings. The sequence $\{\mathcal{T}_i\}$ is α_* -proximal admissible with respect to η if there exist functions $\alpha, \eta : \mathcal{A} \times \mathcal{A} \to [0, \infty)$ such that for $z_1, z_2, u_1, u_2 \in \mathcal{A}$,

$$\left. \begin{array}{l} \alpha(z_1, z_2) \ge \eta(z_1, z_2) \\ d(u_1, y_1) = \operatorname{dist}(\mathcal{A}, \mathcal{B}) \\ d(u_2, y_2) = \operatorname{dist}(\mathcal{A}, \mathcal{B}) \end{array} \right\} \quad \Rightarrow \quad \alpha(u_1, u_2) \ge \eta(u_1, u_2)$$

for all $y_1 \in \mathcal{T}_i z_1$ and $y_2 \mathcal{T}_j z_2$, and for all $i, j \in \mathbb{N}$. When $\alpha(z_1, z_2) = 1$ for all $z_1, z_2 \in \mathcal{A}$, the sequence $\{\mathcal{T}_i\}$ is called η_* -proximal sub-admissible and when $\eta(z_1, z_2) = 1$ for all $z_1, z_2 \in \mathcal{A}$, the sequence $\{\mathcal{T}_i\}$ is called α_* -proximal admissible.

Theorem 4.2. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a complete metric space (X, d) such that \mathcal{A}_0 is nonempty and $\{\mathcal{T}_i : \mathcal{A} \to CL(\mathcal{B})\}_{i=1}^{\infty}$ be a sequence of continuous multivalued mappings satisfying the following assertions:

- 1. $\alpha(z_1, z_2) \ge \eta(z_1, z_2) \Rightarrow H(\mathcal{T}_i z_1, \mathcal{T}_j z_2) \le \psi(d(z_1, z_2))$ for each $i, j \in \mathbb{N}$;
- 2. $\mathcal{T}_i z \subseteq \mathcal{B}_0$ for each $z \in \mathcal{A}_0$, $i \in \mathbb{N}$ and $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property;
- 3. $\{\mathcal{T}_i\}$ is α_* -proximal admissible with respect to η ;
- 4. there exist $z_0, z_i \in \mathcal{A}_l$ and $y_i \in \mathcal{T}_i z_0$ for each $i \in \mathbb{N}$ such that

 $d(z_i, y_i) = dist(\mathcal{A}, \mathcal{B}), \qquad \alpha(z_0, z_i) \ge \eta(z_0, z_i).$

Then the mappings \mathcal{T}_i have a common best proximity point.

Proof. It is similar to the proof of Theorem 2.3 and is omitted.

Taking $\eta(z_1, z_2) = 1$ in Theorem 4.2, we get the following:

Corollary 4.3. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a complete metric space (X, d) such that \mathcal{A}_0 is nonempty and $\{\mathcal{T}_i : \mathcal{A} \to CL(\mathcal{B})\}_{i=1}^{\infty}$ be a sequence of continuous multivalued mappings satisfying the following assertions:

- 1. $\alpha(z_1, z_2) \geq 1 \Rightarrow H(\mathcal{T}_i z_1, \mathcal{T}_j z_2) \leq \psi(d(z_1, z_2))$ for each $i, j \in \mathbb{N}$;
- 2. $\mathcal{T}_i z \subseteq \mathcal{B}_0$, for each $z \in \mathcal{A}_0$, $i \in \mathbb{N}$ and $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property;
- 3. $\{\mathcal{T}_i\}$ is α_* -proximal admissible;
- 4. there exists $z_0, z_i \in \mathcal{A}$, and $y_i \in \mathcal{T}_i z_0$ for each $i \in \mathbb{N}$ such that

 $d(z_i, y_i) = dist(\mathcal{A}, \mathcal{B}), \qquad \alpha(z_0, z_i) \ge 1.$

Then the mappings \mathcal{T}_i have a common best proximity point.

Taking $\alpha(z_1, z_2) = 1$ in Theorem 4.2, we get the following:

Corollary 4.4. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a complete metric space (X, d) such that \mathcal{A}_0 is nonempty and $\{\mathcal{T}_i : \mathcal{A} \to CL(\mathcal{B})\}_{i=1}^{\infty}$ be a sequence of continuous multivalued mappings satisfying the following assertions:

- 1. $\eta(z_1, z_2) \leq 1 \Rightarrow H(\mathcal{T}_i z_1, \mathcal{T}_j z_2) \leq \psi(d(z_1, z_2))$ for each $i, j \in \mathbb{N}$;
- 2. $\mathcal{T}_i z \subseteq \mathcal{B}_0$ for each $z \in \mathcal{A}_0$, $i \in \mathbb{N}$ and $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property;
- 3. $\{\mathcal{T}_i\}$ is η_* -proximal subadmissible;
- 4. there exist $z_0, z_i \in \mathcal{A}_l$ and $y_i \in \mathcal{T}_i z_0$ for each $i \in \mathbb{N}$ such that

$$d(z_i, y_i) = dist(\mathcal{A}, \mathcal{B}), \qquad \eta(z_0, z_i) \le 1.$$

Then the mappings \mathcal{T}_i have a common best proximity point.

Remark 4.5. The choice $\mathcal{A} = \mathcal{B} = X$ reduces Definition 4.1 and Theorem 4.2 into the Definition 3.1 and Theorem 3.2 in [5], respectively, and generalizes Theorem 4.1 in [17]. When $\mathcal{A} = \mathcal{B} = X$, Corollaries 4.3 and 4.4 generalize Corollaries 4.1 and 4.2 in [17], respectively.

Theorem 4.6. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a complete metric space (X, d) such that \mathcal{A}_0 is nonempty and $\{\mathcal{T}_i : \mathcal{A} \to K(\mathcal{B})\}_{i=1}^{\infty}$ be a sequence of continuous multivalued mappings satisfying all assertions of Theorem 4.2 with condition H. Then the mappings \mathcal{T}_i have a unique common best proximity.

Definition 4.7. Let \mathcal{A} and \mathcal{B} be two nonempty subsets of a metric space (X, d) and $\{\mathcal{T}_i : \mathcal{A} \to \mathcal{B}\}_{i=1}^{\infty}$ be a sequence of mappings. The sequence $\{\mathcal{T}_i\}$ is α_* -proximal admissible with respect to η if there exists two functions $\alpha, \eta : \mathcal{A} \times \mathcal{A} \to [0, \infty)$ such that for $z_1, z_2, u_1, u_2 \in \mathcal{A}$,

$$\begin{array}{c} \alpha(z_1, z_2) \ge \eta(z_1, z_2) \\ d(u_1, \mathcal{T}_i z_1) = \operatorname{dist}(\mathcal{A}, \mathcal{B}) \\ d(u_2, \mathcal{T}_j z_2) = \operatorname{dist}(\mathcal{A}, \mathcal{B}) \end{array} \right\} \quad \Rightarrow \quad \alpha(u_1, u_2) \ge \eta(u_1, u_2)$$

for each $i, j \in \mathbb{N}$. When $\alpha(z_1, z_2) = 1$ for all $z_1, z_2 \in \mathcal{A}$, the sequence $\{\mathcal{T}_i\}$ is called η_* -proximal subadmissible and when $\eta(z_1, z_2) = 1$ for all $z_1, z_2 \in \mathcal{A}$, the sequence $\{\mathcal{T}_i\}$ is called α_* -proximal admissible.

From Definition 4.1 and Theorem 4.2, we obtain the following result for a sequence of single-valued mappings.

Theorem 4.8. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a complete metric space (X, d) such that \mathcal{A}_0 is nonempty and $\{\mathcal{T}_i : \mathcal{A} \to \mathcal{B}\}_{i=1}^{\infty}$ be a sequence of continuous mappings satisfying the following assertions:

- 1. $\alpha(z_1, z_2) \ge \eta(z_1, z_2) \Rightarrow d(\mathcal{T}_i z_1, \mathcal{T}_j z_2) \le \psi(d(z_1, z_2))$ for each $i, j \in \mathbb{N}$;
- 2. $\mathcal{T}_i z \subseteq \mathcal{B}_0$ for each $z \in \mathcal{A}_0$, $i \in \mathbb{N}$ and $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property;
- 3. $\{\mathcal{T}_i\}$ is α_* -proximal admissible with respect to η ;
- 4. there exist $z_0, z_i \in \mathcal{A}_0$ such that for each $i \in \mathbb{N}$

$$d(z_i, \mathcal{T}_i z_0) = dist(\mathcal{A}, \mathcal{B}), \qquad \alpha(z_0, z_i) \ge \eta(z_0, z_i).$$

Then the mappings \mathcal{T}_i have a common best proximity point.

5. Common best proximity point results in partially ordered metric space

Let $(\mathcal{X}, d, \preceq)$ be a partially ordered metric space and \mathcal{A} and \mathcal{B} be two nonempty subsets of \mathcal{X} . The existence of best proximity point in the setting of a partially order metric space has been established in [2, 3, 10, 11, 25–27]. In this section, we derive new results in partially order metric spaces as an application of our results in Sections 2, and 3. Recall that a mapping $\mathcal{T} : \mathcal{A} \to \mathcal{B}$ is said to be proximally increasing if it satisfies the condition

$$\begin{cases} z_1 \leq z_2 \\ d(u_1, \mathcal{T}z_1) = \operatorname{dist}(\mathcal{A}, \mathcal{B}) \\ d(u_2, \mathcal{T}z_2) = \operatorname{dist}(\mathcal{A}, \mathcal{B}) \end{cases} \Rightarrow u_1 \leq u_2.$$

where $z_1, z_2, u_1, u_2 \in \mathcal{A}$ (see [10]). Very recently, Pragadeeswarar et al. [27] defined the notion of proximal relation between two subsets of \mathcal{X} as follows:

Definition 5.1 ([27]). Let \mathcal{A} and \mathcal{B} be two nonempty subsets of a partially ordered metric space $(\mathcal{X}, d, \preceq)$ such that $\mathcal{A}_0 \neq \emptyset$. Let \mathcal{B}_1 and \mathcal{B}_2 be two nonempty subsets of \mathcal{B}_0 . The proximal relation between \mathcal{B}_1 and \mathcal{B}_2 is denoted and defined by $\mathcal{B}_1 \preceq_{(1)} \mathcal{B}_2$, if for every $b_1 \in \mathcal{B}_1$ with $d(a_1, b_1) = d(\mathcal{A}, \mathcal{B})$, there exists $b_2 \in \mathcal{B}_2$ with $d(a_2, b_2) = d(\mathcal{A}, \mathcal{B})$ such that $a_1 \preceq a_2$.

Now we present our main results of this section.

Theorem 5.2. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a partially ordered complete metric space $(\mathcal{X}, d, \preceq)$ such that \mathcal{A}_0 is nonempty and $\mathcal{T}, \mathcal{S} : \mathcal{A} \to CL(\mathcal{B})$ be continuous mappings satisfying the following assertions for all $z_1, z_2 \in \mathcal{A}$ with $z_1 \preceq z_2$:

- 1. $H(\mathcal{T}z_1, \mathcal{S}z_2) \le \psi(d(z_1, z_2));$
- 2. $\mathcal{T}z, \mathcal{S}z \subseteq \mathcal{B}_0$ for each $z \in \mathcal{A}_0$ and $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property;
- 3. $z_1, z_2 \in \mathcal{A}_0, z_1 \leq z_2 \text{ implies } \mathcal{T}z_1 \leq_{(1)} \mathcal{S}z_2;$

4. there exist $z_0, z_1, z_2 \in \mathcal{A}_0, y_1 \in \mathcal{T} z_0$ and $y_2 \in \mathcal{S} z_0$ such that

$$d(z_1, y_1) = dist(\mathcal{A}, \mathcal{B}), \qquad z_0 \leq z_1$$

and

$$d(z_2, y_2) = dist(\mathcal{A}, \mathcal{B}), \qquad z_0 \preceq z_2.$$

Then \mathcal{T} and \mathcal{S} have a common best proximity point.

Proof. Define $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to [0, \infty)$ by

$$\alpha(z_1, z_2) = \begin{cases} 1 & z_1 \leq z_2, \\ 0 & \text{otherwise,} \end{cases} \qquad \eta(z_1, z_2) = \begin{cases} \frac{1}{2} & z_1 \leq z_2, \\ 0 & \text{otherwise.} \end{cases}$$

Since $\mathcal{T}z_1 \leq_{(1)} \mathcal{S}z_2$, therefore for $z_1, z_2, u_1, u_2 \in \mathcal{X}, y_1 \in \mathcal{T}z_1, y_2 \in \mathcal{S}z_2$ with

$$\left.\begin{array}{l}\alpha(z_1, z_2) \geq \eta(z_1, z_2)\\d(u_1, y_1) = \operatorname{dist}(\mathcal{A}, \mathcal{B})\\d(u_2, y_2) = \operatorname{dist}(\mathcal{A}, \mathcal{B})\end{array}\right\},\$$

we have $u_1 \leq u_2$. This implies that $\alpha(u_1, u_2) = 1 > \frac{1}{2} = \eta(u_1, u_2)$ for $z_1 \leq z_2$ and $\alpha(u_1, u_2) = 0 = \eta(u_1, u_2)$ otherwise. Thus, all the conditions of Theorem 2.3 are satisfied and hence mappings \mathcal{T} and \mathcal{S} have a common best proximity point.

By considering $\mathcal{T} = \mathcal{S}$, Theorem 5.2 is reduced to the following:

Theorem 5.3. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a partially ordered complete metric space $(\mathcal{X}, d, \preceq)$ such that \mathcal{A}_0 is non-empty and $\mathcal{T} : \mathcal{A} \to CL(\mathcal{B})$ be a continuous mapping satisfying the following assertions for all $z_1, z_2 \in \mathcal{A}$ with $z_1 \preceq z_2$:

- 1. $H(\mathcal{T}z_1, \mathcal{T}z_2) \le \psi(d(z_1, z_2));$
- 2. $\mathcal{T}z \subseteq \mathcal{B}_0$ for each $z \in \mathcal{A}_0$ and $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property;
- 3. $z_1, z_2 \in \mathcal{A}_0, z_1 \leq z_2 \text{ implies } \mathcal{T}z_1 \leq_{(1)} \mathcal{T}z_2;$
- 4. there exist $z_0, z_1 \in \mathcal{A}_0, y_1 \in \mathcal{T}z_0$ such that

$$d(z_1, y_1) = dist(\mathcal{A}, \mathcal{B}), \qquad z_0 \leq z_1.$$

Then the mapping \mathcal{T} has a best proximity point.

Following the arguments in the proof of Theorem 5.2, we obtain the following result.

Theorem 5.4. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a partially ordered complete metric space $(\mathcal{X}, d, \preceq)$ such that \mathcal{A}_0 is nonempty and $\{\mathcal{T}_i : \mathcal{A} \to CL(\mathcal{B})\}_1^\infty$ be sequence of continuous mappings satisfying the following assertions for all $z_1, z_2 \in \mathcal{A}$ with $z_1 \preceq z_2$:

- 1. $H(\mathcal{T}_i z_1, \mathcal{T}_j z_2) \leq \psi(d(z_1, z_2))$ for each $i, j \in \mathbb{N}$;
- 2. $\mathcal{T}_i z \subseteq \mathcal{B}_0$ for each $z \in \mathcal{A}_0$, $i \in \mathbb{N}$ and $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property;
- 3. $z_1, z_2 \in \mathcal{A}_0, z_1 \leq z_2 \text{ implies } \mathcal{T}_i z_1 \leq_{(1)} \mathcal{T}_j z_2 \text{ for each } i, j \in \mathbb{N};$
- 4. there exist $z_0, z_i \in \mathcal{A}_0$ and $y_i \in \mathcal{T}_i z_0$ for each $i \in \mathbb{N}$ such that

$$d(z_i, y_i) = dist(\mathcal{A}, \mathcal{B}), \qquad z_0 \leq z_i.$$

Then the mappings \mathcal{T}_i have a common best proximity point.

For single valued mappings, from Theorems 5.2-5.4 we obtain the following results.

- 1. $d(\mathcal{T}z_1, \mathcal{S}z_2) \le \psi(d(z_1, z_2));$
- 2. $\mathcal{T}z, \mathcal{S}z \subseteq \mathcal{B}_0$ for each $z \in \mathcal{A}_0$ and $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property;
- 3. $z_1, z_2 \in \mathcal{A}_0 \ z_1 \preceq z_2 \text{ implies } \mathcal{T}z_1 \preceq \mathcal{S}z_2;$
- 4. there exist $z_0, z_1, z_2 \in \mathcal{A}_0$ such that

$$d(z_1, \mathcal{T}z_0) = dist(\mathcal{A}, \mathcal{B}), \qquad z_0 \leq z_2$$

and

$$d(z_2, \mathcal{T}z_0) = dist(\mathcal{A}, \mathcal{B}), \qquad z_0 \leq z_2$$

Then \mathcal{T} and \mathcal{S} have a common best proximity point.

Theorem 5.6. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a partially ordered complete metric space $(\mathcal{X}, d, \preceq)$ such that \mathcal{A}_0 is non-empty and $\mathcal{T} : \mathcal{A} \to \mathcal{B}$ be a continuous mapping satisfying the following assertions for all $z_1, z_2 \in \mathcal{A}$ with $z_1 \preceq z_2$:

- 1. $d(\mathcal{T}z_1, \mathcal{T}z_2) \le \psi(d(z_1, z_2));$
- 2. $\mathcal{T}z \subseteq \mathcal{B}_0$ for each $z \in \mathcal{A}_0$ and $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property;
- 3. $z_1, z_2 \in \mathcal{A}_0, z_1 \leq z_2 \text{ implies } \mathcal{T}z_1 \leq \mathcal{T}z_2;$
- 4. there exist $z_0, z_1 \in \mathcal{A}_0$ such that

$$d(z_1, \mathcal{T}z_0) = dist(\mathcal{A}, \mathcal{B}), \qquad z_0 \leq z_1.$$

Then \mathcal{T} has a best proximity point.

Theorem 5.7. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a partially ordered complete metric space $(\mathcal{X}, d, \preceq)$ such that \mathcal{A}_0 is nonempty and $\{\mathcal{T}_i : \mathcal{A} \to \mathcal{B}\}_1^\infty$ be sequence of continuous mappings satisfying the following assertions for all $z_1, z_2 \in \mathcal{A}$ with $z_1 \preceq z_2$:

- 1. $d(\mathcal{T}_i z_1, \mathcal{T}_j z_2) \leq \psi(d(z_1, z_2))$ for each $i, j \in \mathbb{N}$;
- 2. $\mathcal{T}_i z \subseteq \mathcal{B}_0$ for each $z \in \mathcal{A}_0$, $i \in \mathbb{N}$ and $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property;
- 3. $z_1, z_2 \in \mathcal{A}_0, z_1 \leq z_2$ implies $\mathcal{T}_i z_1 \leq \mathcal{T}_j z_2$ for each $i, j \in \mathbb{N}$;
- 4. there exist $z_0, z_i \in \mathcal{A}_0$ for each $i \in \mathbb{N}$ such that

$$d(z_i, \mathcal{T}_i z_0) = dist(\mathcal{A}, \mathcal{B}), \qquad z_0 \leq z_i$$

Then the mappings \mathcal{T}_i have a common best proximity point.

Acknowledgment

The author A. R. Khan is grateful to King Fahd University of Petroleum & Minerals for supporting research project IN141047.

References

- M. Abbas, A. Hussain, P. Kumam, A coincidence best proximity point problem in G-metric spaces, Abstr. Appl. Anal., 2015 (2015), 12 pages.1
- [2] A. Abkar, M. Gabeleh, Best proximity points for cyclic mappings in ordered metric spaces, J. Optim. Theory Appl., 150 (2011), 188–193.5
- [3] A. Abkar, M. Gabeleh, Generalized cyclic contractions in partially ordered metric spaces, Optim. Lett., 6 (2012), 1819–1830.5
- [4] A. Abkar, M. Gabeleh, The existence of best proximity points for multivalued non-self-mappings, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 107 (2013), 319–325.1

- [5] M. U. Ali, T. Kamram, E. Karapinar, Further discussion on modified multivalued α_* - ψ -contractive type mapping, Filomat, **29** (2015), 1893–1900.1, 1.2, 2.11, 2.12, 3.9, 4.5
- [6] M. U. Ali, T. Kamram, N. Shahzad, Best proximity point for α-ψ-proximal contractive multimaps, Abstr. Appl. Anal., 2014 (2014), 6 pages 1, 1.3, 1.4, 1.5, 1, 2.11
- [7] A. Amini-Harandi, Best proximity points for proximal generalized contractions in metric spaces, Optim. Lett., 7 (2013), 913–921.1
- [8] A. Amini-Harandi, M. Fakhar, H. R. Hajisharifi, N. Hussain, Some new results on fixed and best proximity points in preordered metric spaces, Fixed Point Theory Appl., 2013 (2013), 15 pages. 1
- [9] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.1
- [10] S. S. Basha, Discrete optimization in partially ordered sets, J. Global Optim., 54 (2012), 511–517.5
- [11] S. S. Basha, Best proximity point theorems on partially ordered sets, Optim. Lett., 7 (2013), 1035–1043.5
- [12] A. A. Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006), 1001–1006.1
- [13] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z., 122 (1969), 234–240.1
- [14] M. Gabeleh, Best proximity points: global minimization of multivalued non-self mappings, Optim. Lett., 8 (2014), 1101–1112.1
- [15] N. Hussain, M. A. Kutbi, P. Salimi, Best proximity point results for modified α - ψ -proximal rational contractions, Abstr. Appl. Anal., **2013** (2013), 14 pages 1, 3
- [16] N. Hussain, A. Latif, P. Salimi, Best proximity point results for modified Suzuki α - ψ -proximal contractions, Fixed Point Theory Appl., **2014** (2014), 16 pages.1
- [17] N. Hussain, P. Salimi, A. Latif, Fixed point results for single and set-valued α - η - ψ -contractive mappings, Fixed Point Theory Appl., **2013** (2013), 23 pages 1, 4.5
- [18] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9 (1986), 771–779.1, 1, 3.5
- [19] G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci., 4 (1996), 199–215.1, 1, 3.5
- [20] E. Karapınar, Best proximity points of cyclic mappings, Appl. Math. Lett., 25 (2007), 79–92.1
- [21] A. R. Khan, S. A. Shukri, Best proximity points in the Hilbert ball, J. Nonlinear Convex Anal., (Accepted).
- [22] A. Latif, M. Hezarjaribi, P. Salimi, N. Hussain, Best proximity point theorems for α-ψ-proximal contractions in intuitionistic fuzzy metric spaces, J. Inequal. Appl., 2014 (2014), 19 pages. 1
- [23] P. Lo'lo', S. M. Vaezpour, J. Esmaily, Common best proximity points theorem for four mappings in metric-type spaces, Fixed Point Theory Appl., 2015 (2015), 7 pages.1.1
- [24] S. B. Nadler Jr, Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475–488.1
- [25] V. Pragadeeswarar, M. Marudai, Best proximity points: approximation and optimization in partially ordered metric spaces, Optim. Lett., 7 (2013), 1883–1892.5
- [26] V. Pragadeeswarar, M. Marudai, Best proximity points for generalized proximal weak contractions in partially ordered metric spaces, Optim. Lett., 9 (2015), 105–118.
- [27] V. Pragadeeswarar, M. Marudai, P. Kumam, Best proximity point theorems for multivalued mappings on partially ordered metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 1911–1921.5, 5.1
- [28] P. Salimi, A. Latif, N. Hussain, Modified α - ψ -contractive mappings with applications, Fixed Point Theory Appl., **2013** (2013), 19 pages 1, 3.9
- [29] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha\psi$ -contractive type mappings, Nonlinear Anal., **75** (2012), 2154–2165.1, 1, 3.9
- [30] V. M. Sehgal, S. P. Singh, A generalization to multifunctions of Fan's best approximation theorem, Proc. Amer. Math. Soc., 102 (1988), 534–537.1
- [31] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd), 32 (1982), 149–153.1