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Abstract

The study of the best proximity points is an interesting topic of optimization theory. We introduce the
notion of α∗-proximal contractions for multivalued mappings on a complete metric space and establish the
existence of common best proximity point for these mappings in the context of multivalued and single-valued
mappings. As an application, we derive some best proximity point and fixed point results for multivalued and
single-valued mappings on partially ordered metric spaces. Our results generalize and extend many known
results in the literature. Some examples are provided to illustrate the results obtained herein. c©2016 All
rights reserved.
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1. Introduction and preliminaries

Fixed point theory concerns with some techniques to find a solution of the pattern T x = x, where T is a
self-mapping defined on a subset A of a metric space (X, d). A well-known principle that guarantees a unique
fixed point solution is the Banach contraction principle [9]. Over the years, this principle has been generalized
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in many ways (see [5, 7–15, 28, 29]). An interesting generalization of the Banach contraction principle is
for multivalued mappings and is known as Nadler’s fixed point theorem [24]. In 1982, Sessa [31] defined the
concept of weakly commuting mappings to obtain common fixed point for pair of such mappings. Jungck
generalized this idea, first to compatible mappings [18] and then to weakly compatible mappings [19]. A
mapping T : A → B does not necessarily have a fixed point, where A and B are nonempty subsets of a metric
space X . One can proceed to find an element x ∈ A in the sense that the distance d(x, T x) is minimum. Fan’s
best approximation theorem [13] asserts that if K is a nonempty, compact, and convex subset of a normed
space X and T : K → X is a continuous mapping, then there exists an element x satisfying the condition
d(x, T x) = inf ||y−T x||, y ∈ K. A best approximation theorem guarantees the existence of an approximate
solution, while a best proximity point theorem provides an approximate solution which is optimal in the
sense that there exists an element x such that d(x, T x) = dist(A,B) = inf{d(x, y) : x ∈ A and y ∈ B};
the element x is called a best proximity point of T . Moreover, if the mapping under consideration is a
self-mapping, then a best proximity point is reduced to a fixed point. The existence of best proximity
points is an interesting aspect of optimization theory and it has attracted the attention of many authors
(see [1, 6–8, 12, 15, 16, 20–22] and references therein). Moreover, the best proximity point theorems for
several classes of multivalued mappings have been probed in [4, 14, 30].

For non-empty subsets A and B of the metric space X , the following notions will be used:

dist(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}, D(x,B) = inf{d(x, b) : b ∈ B},
A0 = {a ∈ A : d(a, b) = dist(A,B) for some b ∈ B},
B0 = {b ∈ B : d(a, b) = dist(A,B) for some a ∈ A},

2X is the set of all nonempty subsets of X , CL(X ) is the set of all nonempty closed subsets of X , K(X ) is
the set of all compact subsets of X for everyA,B ∈ CL(X ), H(A,B)=max

{
supx∈AD(x,B), supy∈BD(y,A)

}
if the maximum exists and H(A,B) = 0 otherwise, and let Ψ be the collection of all non-decreasing functions
ψ : [0,+∞)→ [0,+∞) such that

∑+∞
n=1 ψ

n(t) < +∞ for each t > 0, where ψn is the nth iterate of ψ.
We present now the necessary definitions and results which will be useful in the sequel.

Definition 1.1 ([23]). Let A and B be nonempty subsets of a metric space (X, d). A point x is called a
common best proximity point of mappings Ti : A → B, (i = 1, 2, ..., n) if

D(x, Tix) = dist(A,B).

Lemma 1.2 ([5]). Let (X, d) be a metric space and B ∈ CL(X). Then for each x ∈ X with d(x,B) > 0
and q > 1, there exists an element b ∈ B such that

d(x, b) < qd(x,B).

Definition 1.3 ([6]). Let (A,B) be a pair of nonempty subsets of a metric space (X, d) with A0 6= ∅. Then
the pair (A,B) is said to have the weak P -property if and only if for any x1, x2 ∈ A and y1, y2 ∈ B,

d(x1, y1) = dist(A,B)
d(x2, y2) = dist(A,B)

}
⇒ d(x1, x2) ≤ d(y1, y2).

Definition 1.4 ([6]). Let A and B be two nonempty subsets of a metric space (X , d). A mapping T : A →
2B \ ∅ is called α-proximal admissible if there exists a mapping α : A×A→ [0,∞) such that

α(x1, x2) ≥ 1
d(u1, y1) = dist(A,B)
d(u2, y2) = dist(A,B)

 ⇒ α(u1, u2) ≥ 1,

where x1, x2, u1, u2 ∈ A, y1 ∈ Tx1 and y2 ∈ Tx2.
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Definition 1.5 ([6]). Let A and B be two nonempty subsets of a metric space (X , d). A mapping T : A →
CL(B) is said to be an α-ψ-proximal contraction, if there exist ψ ∈ Ψ and α : A×A → [0,∞) such that

α(x, y)H(Tx, Ty) ≤ ψ(d(x, y)), ∀x, y ∈ A. (1.1)

In this paper, we generalize the above mentioned notions for a pair of multivalued and single-valued
mappings and define α∗-proximal admissible with respect to η : A × A → [0,∞), α-proximal admissible
with respect to η : A×A → [0,∞) and prove common best proximity point theorems as well as fixed point
theorems for these mappings. Our results generalize and improve the results of Ali et al. [6], Jungck ([18],
[19]), Samet et al. [29], and Hussain et al. [17].

2. Common best proximity points for multivalued mappings

We begin this section with a definition.

Definition 2.1. Let A and B be nonempty subsets of a metric space (X, d) and T1, T2 : A → 2B \ ∅
be multivalued mappings. The pair (T1, T2) is α∗-proximal admissible with respect to η if there exist
α, η : A×A → [0,∞) such that for z1, z2, u1, u2 ∈ A,

α(z1, z2) ≥ η(z1, z2)
d(u1, y1) = dist(A,B)
d(u2, y2) = dist(A,B)

 ⇒ α(u1, u2) ≥ η(u1, u2)

for all y1 ∈ Tiz1 and y2 ∈ Tjz2, i, j ∈ {1, 2}. When α(z1, z2) = 1 for all z1, z2 ∈ A, the pair (T1, T2) is called
η∗-proximal sub-admissible, and when η(z1, z2) = 1 for all z1, z2 ∈ A, the pair (T1, T2) is called α∗-proximal
admissible.

Example 2.2. Consider X = R2 with the usual metric. Suppose A = {(1, x) : 0 ≤ x ≤ 1} and B = {(0, x) :
0 ≤ x ≤ 1}. Define T1, T2 : A → 2B \ ∅ by

T1(1, x) =

{
{(0, 1)} x = 1,{(

0, a2
)

: 0 ≤ a ≤ x
}

otherwise,

T2(1, x) =

{ {(
0, a2
)

: 0 ≤ a ≤ x
}

x ∈
[
0, 12
]
,{(

0, a2
)

: 0 ≤ a ≤ x
}

x ∈
(
1
2 , 1
]

and α, η : A×A → [0,∞) by

α((1, x), (1, y)) =

{
4/5 x, y ∈

[
0, 12
]
,

1/2 otherwise,

η((1, x), (1, y)) =
3

4

for all (1, x), (1, y) ∈ A×A. If z1 = (1, x1) and z2 = (1, x2) in A, then α(z1, z2) ≥ η(z1, z2) if x1, x2 ∈
[
0, 12
]
.

So, T1z1 = {
(
0, a2
)

: 0 ≤ a ≤ x1} and T2z2 = {
(
0, a2
)

: 0 ≤ a ≤ x2}. This shows that d(u1, y1) = 1 =
dist(A,B) and d(u2, y2) = 1 = dist(A,B) for all y1 ∈ Tix1 and y2 ∈ Tjx2, i, j ∈ {1, 2} if and only if
u1, u2 ∈ {

(
1, x2

)
: 0 ≤ x ≤ 1

2}. Hence α(u1, u2) = 4
5 >

3
4 = η(u1, u2). Thus the pair (T1, T2) is α∗-proximal

admissible with respect to η.

Theorem 2.3. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that A0

is non-empty and T , S : A → CL(B) be continuous multivalued mappings satisfying the following assertions:

1. α(z1, z2) ≥ η(z1, z2)⇒ H(T z1,Sz2) ≤ ψ(d(z1, z2));

2. T z,Sz ⊆ B0 for each z ∈ A0 and (A,B) satisfies the weak P-property;
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3. (T ,S) is α∗-proximal admissible with respect to η;

4. there exists z0, z1, z2 ∈ A0, y1 ∈ T z0 and y2 ∈ Sz0 such that

d(z1, y1) = dist(A,B), α(z0, z1) ≥ η(z0, z1)

and

d(z2, y2) = dist(A,B), α(z0, z2) ≥ η(z0, z2).

Then the mappings T and S have a common best proximity point.

Proof. By the hypothesis, there exists z0, z1 ∈ A0 and y1 ∈ T z0 such that

d(z1, y1) = dist(A,B), α(z0, z1) ≥ η(z0, z1). (2.1)

If y1 ∈ T z1 ∩Sz1, then z1 is the common best proximity point of T and S. If y1 /∈ Sz1, then from condition
1, we have

0 < d(y1,Sz1) ≤ H(T z0,Sz1) ≤ ψ(d(z0, z1)).

For q > 1, it follows from Lemma 1.2 that there exists y2 ∈ Sz1 such that

0 < d(y1, y2) < qd(y1,Sz1)
≤ qH(T z0,Sz1)
≤ qψ((d(z0, z1))).

(2.2)

As y2 ∈ Sz1 ⊆ B0, there exists z2 6= z1 ∈ A0 such that

d(z2, y2) = dist(A,B), (2.3)

otherwise, z1 is the common best proximity point of T and S. As (A,B) satisfies the weak P-property, (2.1)
and (2.3) imply that

0 < d(z1, z2) ≤ d(y1, y2). (2.4)

From (2.2) and (2.4), we have

0 < d(z1, z2) ≤ qψ(d(z0, z1)).

Since ψ is non-decreasing, from the above inequality, we have

ψ(d(z1, z2)) ≤ ψ(qψ(d(z0, z1))).

Put q1 = ψ(qψ(d(z0,z1)))
ψ(d(z1,z2))

. As the pair (T ,S) is α∗-proximal admissible with respect to η, so, α(z1, z2) ≥
η(z1, z2). Thus, we have

d(z2, y2) = dist(A,B), α(z1, z2) ≥ η(z1, z2). (2.5)

Now, if y2 ∈ T z2 ∩ Sz2, then z2 is the common best proximity point of T and S. If y2 /∈ T z2, then from
condition 1, we have

0 < d(T z2, y2) ≤ H(T z2,Sz1) ≤ ψ(d(z1, z2)).
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For q1 > 1, it follows from Lemma 1.2 that there exists y3 ∈ T z2 such that

0 < d(y2, y3) < q1d(y2, T z2)
≤ q1H(Sz1, T z2)
≤ q1ψ((d(z1, z2)))

= ψ(qψ((d(z0, z1))).

(2.6)

As y3 ∈ T z2 ⊆ B0, so there exists z3 6= z2 ∈ A0 such that

d(z3, y3) = dist(A,B), (2.7)

otherwise, z2 is the common best proximity point of T and S. As (A,B) satisfies the weak P-property, (2.5)
and (2.7) imply that

0 < d(z2, z3) ≤ d(y2, y3). (2.8)

From (2.6) and (2.8), we have
0 < d(z2, z3) ≤ ψ(qψ(d(z0, z1))).

Since ψ is strictly increasing, from the above inequality, we have

ψ(d(z2, z3)) < ψ2(qψ(d(z0, z1))).

Put q2 = ψ2(qψ(d(z0,z1)))
ψ(d(z2,z3))

. As the pair (T ,S) is α∗-proximal admissible with respect to η, so, α(z2, z3) ≥
η(z2, z3). Thus, we have

d(z3, y3) = dist(A,B), α(z2, z3) ≥ η(z2, z3).

Now proceeding in the manner described above, we get a sequence {zn} in A0 and {yn} in B0 such that
for n ∈ N

y2n+1 ∈ T z2n and y2n ∈ T z2n−1, (2.9)

where
d(zn+1, yn+1) = dist(A,B), α(zn, zn+1) ≥ η(zn, zn+1), ∀n ∈ N (2.10)

and
d(yn+1, yn+2) < ψn(qψ(d(z0, z1))), ∀n ∈ N. (2.11)

As yn+2 ∈ T zn+1 ∪ Szn+1 and T zn+1,Szn+1 ⊆ B0 for all n ∈ N, so there exists zn+2 6= zn+1 ∈ A0 such that

d(zn+2, yn+2) = dist(A,B), ∀n ∈ N. (2.12)

Since (A,B) satisfies the weak P-property, from (2.10) and (2.12), we have

d(zn+1, zn+2) ≤ d(yn+1, yn+2), ∀n ∈ N. (2.13)

From (2.11) and (2.13), we get

d(zn+1, zn+2) < ψn(qψ(d(z0, z1))), ∀n ∈ N.

Now for n > m, we have

d(zn, zm) ≤
m−1∑
i=n

d(zi, zi+1) <
m−1∑
i=n

ψi−1(qψ(d(z0, z1))).

Hence {zn} is a Cauchy sequence in A. Similarly, {yn} is a Cauchy sequence in B. Since A and B are closed
subsets of a complete metric space (X, d), there exist z∗ ∈ A and y∗ ∈ B such that zn → z∗ and yn → y∗ as
n→∞. By taking limit as n→∞ in equation (2.12), we get that

d(z∗, y∗) = dist(A,B).
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Since T and S are continuous, therefore from (2.9), we get that y∗ ∈ T z∗ ∩ Sz∗. Hence

dist(A,B) ≤ D(z∗, T z∗) ≤ d(z∗, y∗) = dist(A,B)

and
dist(A,B) ≤ D(z∗,Sz∗) ≤ d(z∗, y∗) = dist(A,B).

This implies that D(z∗, T z∗) = D(z∗,Sz∗) = dist(A,B), that is, z∗ is a common best proximity point of T
and S.

Example 2.4. Consider X, A, B, T1, T2 : A → 2B \ ∅ and α, η : A×A → [0,∞) as in Example 2.2. Then
A0 = A, B0 = B, dist(A,B) = 1 and T1z, T2z ⊆ B0 for each z ∈ A0. As A0 = A and B0 = B, so for
z1 = (1, x1), z2 = (1, x2) ∈ A, there exist y1 = (0, x1), y2 = (0, x2) ∈ B such that d(z1, y1) = d(z2, y2) =
dist(A,B) and d(z1, z2) = |x1− x2| = d(y1, y2). Hence the pair (A,B) satisfies the weak P-property and the
pair (T1, T2) is α∗-proximal admissible map with respect to η (see Example 2.2). Let ψ(t) = t

2 for all t ≥ 0.
Note that α(z1, z2) ≥ η(z1, z2) if x1, x2 ∈

[
0, 12
]
. Therefore,

H(T1z1, T2z2) =
∣∣∣x1

2
− x2

2

∣∣∣
=

1

2
|x1 − x2|

= ψ(d(z1, z2)).

Also, for z0 =
(
1, 12
)
∈ A0, y1 =

(
0, 14
)
∈ T1x0 and y2 =

(
0, 18
)
∈ T2x0, we have z1 =

(
1, 14
)
, z2 =

(
1, 18
)
∈ A0

such that d(z1, y1) = d(z2, y2) = 1 = dist(A,B), α(z0, z1) = 4
5 ≥

3
4 = η(z0, z1) and α(z0, z2) = 4

5 ≥
3
4 =

η(z0, z2). Thus all the conditions of Theorem 2.3 are satisfied and (1, 1) is a common best proximity point
of T1 and T2.

The case η(z1, z2) = 1, reduces Theorem 2.3 to the following:

Corollary 2.5. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that A0

is non-empty and T ,S : A → CL(B) be continuous multivalued mappings satisfying the following assertions:

1. α(z1, z2) ≥ 1⇒ H(T z1,Sz2) ≤ ψ(d(z1, z2));
2. T z,Sz ⊆ B0 for each z ∈ A0 and (A,B) satisfies the weak P-property;
3. (T ,S) is α∗-proximal admissible;
4. there exist z0, z1, z2 ∈ A0, y1 ∈ T z0 and y2 ∈ Sz0 such that

d(z1, y1) = dist(A,B), α(z0, z1) ≥ 1

and
d(z2, y2) = dist(A,B), α(z0, z2) ≥ 1.

Then the mappings T and S have a common best proximity point.

If we take α(z1, z2) = 1 in Theorem 2.3, then we have the following:

Corollary 2.6. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that A0

is non-empty and T ,S : A → CL(B) be continuous multivalued mappings satisfying the following assertions:

1. η(z1, z2) ≤ 1⇒ H(T z1,Sz2) ≤ ψ(d(z1, z2));
2. T z,Sz ⊆ B0 for each z ∈ A0 and (A,B) satisfies the weak P-property;
3. (T ,S) is η∗-proximal subadmissible;
4. there exist z0, z1, z2 ∈ A0, y1 ∈ T z0 and y2 ∈ Sz0 such that

d(z1, y1) = dist(A,B), η(z0, z1) < 1

and

d(z2, y2) = dist(A,B), η(z0, z2) < 1.

Then the mappings T and S have a common best proximity point.
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In case, T1 = T2, Definition 2.1 and Theorem 2.3 is reduced to the following:

Definition 2.7. Let A and B be two nonempty subsets of a metric space (X, d) and T : A → 2B \ ∅ be a
multivalued mapping. We say that T is α∗-proximal admissible with respect to η if there exist two functions
α, η : A×A → [0,∞) such that for z1, z2, u1, u2 ∈ A,

α(z1, z2) ≥ η(z1, z2)
d(u1, y1) = dist(A,B)
d(u2, y2) = dist(A,B)

 ⇒ α(u1, u2) ≥ η(u1, u2)

for all y1 ∈ T z1 and y2 ∈ T z2. When α(z1, z2) = 1 for all z1, z2 ∈ A, T is called η-proximal sub-admissible.

Theorem 2.8. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that A0

is nonempty and T : A→ CL(B) be a continuous multivalued mapping satisfying the following assertions:

1. α(z1, z2) ≥ η(z1, z2)⇒ H(T z1, T z2) ≤ ψ(d(z1, z2));

2. T z ⊆ B0 for each z ∈ A0 and (A,B) satisfies the weak P-property;

3. T is α∗-proximal admissible with respect to η;

4. there exist z0, z1 ∈ A0, y1 ∈ T z0 such that

d(z1, y1) = dist(A,B), α(z0, z1) ≥ η(z0, z1).

Then the mapping T has a best proximity point.

If we take η(z1, z2) = 1 in Theorem 2.8, then we have the following:

Corollary 2.9. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that A0

is nonempty and T : A→ CL(B) be a continuous multivalued mapping satisfying the following assertions:

1. α(z1, z2) ≥ 1⇒ H(T z1, T z2) ≤ ψ(d(z1, z2));

2. T z ⊆ B0 for each z ∈ A0 and (A,B) satisfies the weak P-property;

3. T is α-proximal admissible;

4. there exist z0, z1 ∈ A0, y1 ∈ T z0 such that

d(z1, y1) = dist(A,B), α(z0, z1) ≥ 1.

Then the mapping T has a best proximity point.

Remark 2.10. The special case of Theorem 2.8 for α(z1, z2) = 1 can be obtained as in Corollary 2.6.

Remark 2.11. When η(z1, z2) = 1 for all z1, z2 ∈ A, Definition 2.7 reduces to Definition 10 in [6]. As
the condition 1 is more general than the inequality (1.1) (see Remark 3.5 in [5]), so Corollary 2.9 extends
Theorem 13 in [6].

Remark 2.12. When A = B, Theorem 2.8 is reduced to the Theorem 3.3 in [5].

Remark 2.13. Note that the uniqueness of the common best proximity points of multivalued mappings T
and S is not given in Theorem 2.3. Thus, we can present the following problem: Let (X , d) be a complete
metric space and T ,S : A → CL(B) be continuous multivalued mappings satisfying all the assertions of
Theorem 2.3. Does T and S have a unique common best proximity point? By adding a condition and taking
mappings T ,S : A → K(B), we can give a partial answer of this problem as follows:

Theorem 2.14. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that
A0 is non-empty and T ,S : A → K(B) be continuous multivalued mappings satisfying all the assertions of
Theorem 2.3 and also satisfy

H. α(z1, z2) ≥ η(z1, z2) for all common best proximity points of T and S.
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Then the mappings T and S have a unique common best proximity point.

Proof. We will only prove the part of uniqueness. Let z1, z2 be two common best proximity points of T
and S such that z1 6= z2, then by hypothesis H we have α(z1, z2) ≥ η(z1, z2) and D(z1, T z1) = dist(A,B) =
D(z1,Sz1) = D(z2, T z2) = D(z2,Sz2). Since T z1 and Sz2 are compact, so there exist an element u1 ∈ T z1
and u2 ∈ Sz2 such that

d(z1, u1) = D(z1, T z1)
and

d(z2, u2) = D(z2,Sz2).
Since the pair (T , S) satisfies the weak P -property, so we have

d(z1, z2) = d(u1, u2).

So by using condition 1 and Lemma 1.2 there exists q > 1 such that

d(z1, z2) = d(u1, u2) < qD(u1,Sz2)
< qH(T z1,Sz2)
< qψ(d(z1, z2))

< qd(z1, z2),

which is a contradiction. This implies that d(z1, z2) = 0, consequently, T and S have a unique common best
proximity point.

By similar arguments as in Theorem 2.14, we state the following:

Theorem 2.15. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that
A0 is nonempty and T : A → K(B) be a continuous multivalued mapping satisfying all the assertions of
Theorem 2.8 with condition H, then T has a unique common best proximity point.

3. Common best proximity points for single-valued mappings

We start with the following definition:

Definition 3.1. Let A and B be two nonempty subsets of a metric space (X, d) and T1, T2 : A → B
be mappings. The pair (T1, T2) is α-proximal admissible with respect to η if there exist two functions
α, η : A×A → [0,∞) such that for z1, z2, u1, u2 ∈ A,

α(z1, z2) ≥ η(z1, z2)
d(u1, T1z1) = dist(A,B)
d(u2, T2z2) = dist(A,B)

 ⇒ α(u1, u2) ≥ η(u1, u2).

When α(z1, z2) = 1 for all z1, z2 ∈ A, the pair (T1, T2) is called η-proximal subadmissible and when η(z1, z2) =
1 for all z1, z2 ∈ A, the pair (T1, T2) is called α-proximal admissible.

Example 3.2. Consider X = R2 with the usual metric. Let A = {(−6, 0), (0,−6), (0, 5)} and B =
{(−1, 0), (0,−1), (0, 0), (−1, 1), (1, 1)} be closed subsets of (X, d). Then d(A,B) = 5, A0 = A and B0 = B.
Define T1, T2 : A → B by

T1(−6, 0) = (−1, 0),
T1(0,−6) = (0,−1),
T1(0, 5) = (1, 1),

T2(−6, 0) = (0, 0),
T2(0,−6) = (−1, 1),
T1(0, 5) = (1, 1),

and α, η : A×A → [0,∞) by

α(z1, z2) =

{
1 if y1, y2 6= 0,
0 otherwise,

η(z1, z2) =
1

2
,

for all z1 = (x1, y1), z2 = (x2, y2) ∈ A.
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Note that α(z1, z2) ≥ η(z1, z2) if z1, z2 ∈ {(0,−6), (0, 5)}. For z1 = (0,−6), d(u1, T1z1) = dist(A,B) if
u1 ∈ {(0,−6)} and d(u2, T2z1) = dist(A,B) if u2 ∈ {(0, 5)}. This implies that α(u1, u2) = 1 > 1

2 = η(u1, u2).
For z2 = (0, 5), d(u1, T1z1) = dist(A,B) = d(u2, T2z1) if u1, u2 ∈ {(0, 5)}. This shows that α(u1, u2) = 1 >
1
2 = η(u1, u2). Thus the pair (T1, T2) is α-proximal admissible with respect to η.

By Theorem 2.3, we immediately obtain the following result.

Theorem 3.3. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that
A0 is nonempty and let T ,S : A → B be continuous mappings satisfying the following assertions for all
z1, z2 ∈ A:

1. α(z1, z2) ≥ η(z1, z2)⇒ d(T z1,Sz2) ≤ ψ(d(z1, z2));

2. T (A0),S(A0) ⊆ B0 and (A,B) satisfies the weak P-property;

3. (T ,S) is α-proximal admissible with respect to η;

4. there exist z0, z1, z2 ∈ A0 such that

d(z1, T z0) = dist(A,B), α(z0, z1) ≥ η(z0, z1)

and
d(z2,Sz0) = dist(A,B), α(z0, z2) ≥ η(z0, z2).

Then the mappings T and S have a common best proximity point.

The case A = B = X reduces Definition 3.1 and Theorem 3.3 into the following:

Definition 3.4. Let (X, d) be a metric space and T1, T2 : X → X be mappings. The pair (T1, T2) is α-
admissible with respect to η if there exist functions α, η : X ×X → [0,∞) such that for z1, z2 ∈ X,

α(z1, z2) ≥ η(z1, z2)⇒ α(T1z1, T2z2) ≥ η(T1z1, T2z2).

When α(z1, z2) = 1 for all z1, z2 ∈ X, the pair (T1, T2) is called η-subadmissible and when η(z1, z2) = 1 for
all z1, z2 ∈ X, the pair (T1, T2) is called α-admissible.

Remark 3.5. Definition 3.4 generalizes the concepts of compatibility and weak compatibility by Jungck ([18]
and [19]). Every weakly compatible pair is α- admissible with respect to η. Indeed, let (T1, T2) be weakly
compatible pair. Then T1(T2z) = T2(T1z) for all z belonging to C(T1, T2) as the set of all coincidence points
of mappings T1 and T2. Define

α(z1, z2) =

{
1 if z1, z2 ∈ C(T1, T2),
0 otherwise,

and η(z1, z2) =
1

2
for all z1, z2 ∈ X.

Then α(z1, z2) > η(z1, z2) if z1, z2 ∈ C(T1, T2). Since (T1, T2) is weakly compatible pair, so for all z1, z2 ∈
C(T1, T2), we have T1(T1z1) = T1(T2z1) = T2(T1z1) and T1(T2z2) = T2(T1z2) = T2(T2z2). This implies that
T1z1, T2z2 ∈ C(T1, T2). Hence α(T1z1, T2z2) = 1 > 1

2 = η(T1z1, T2z2), that is, the pair (T1, T2) is α- admissible
with respect to η. But the converse is not true which is clear from the following:

Example 3.6. Consider X = R with the usual metric. Define T1, T2 : X → X by

T1(z) = z3, T2(z) =
z2

4

and α, η : X ×X → [0,∞) by

α(z1, z2) =

{
2 if z1, z2 ≥ 0,
0 if z1, z2 < 0,

η(z1, z1) =
1

4

for all z1, z2 ∈ X. Note that α(z1, z2) ≥ η(z1, z2) when z1, z2 ≥ 0. This implies that α(T1z1, T2z2) = 2 > 1
4 =

η(T1z1, T2z2). Hence the pair (T1, T2) is α- admissible with respect to η. On the other hand, the coincidence
points of T1 and T2 are 0 and 1

4 such that T1
(
T2
(
1
4

))
= 1

(64)3
6= T2

(
T1
(
1
4

))
= 1

4( 1
64)2. Thus, the pair (T1, T2)

is not weakly compatible.
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Theorem 3.7. Let (X, d) be a complete metric space and T ,S : X → X be continuous mappings satisfying
the following assertions for all z1, z2 ∈ X:

1. α(z1, z2) ≥ η(z1, z2)⇒ d(T z1,Sz2) ≤ ψ(d(z1, z2));

2. (T ,S) is α-admissible with respect to η;

3. there exist z0, z1 ∈ X such that α(z0, T z0) ≥ η(z0, T z0) and α(z1,Sz1) ≥ η(z1,Sz1).

Then the mappings T and S have a common fixed point.

Taking η(z1, z2) = 1 in Theorem 3.7, we get the following:

Corollary 3.8. Let (X, d) be a complete metric space and T ,S : X → X be continuous mappings satisfying
the following assertions for all z1, z2 ∈ X:

1. α(z1, z2) ≥ 1⇒ d(T z1,Sz2) ≤ ψ(d(z1, z2));

2. (T ,S) is α-admissible;

3. there exist z0, z1 ∈ X such that α(z0, T z0) ≥ 1 and α(z1,Sz1) ≥ 1.

Then the mappings T and S have a common fixed point.

Remark 3.9. When T1 = T2 = T in Definition 3.4, we get Definition 2.1 in [28] and in case T = S, (with
the help of Remark 3.5 in [5]), Corollary 3.8 generalizes Theorem 2.1 in [29].

When T1 = T2 = T , Definition 3.1 and Theorem 3.3 are reduced to Definition 8 in [15] and the following
result, respectively.

Theorem 3.10. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that A0

is nonempty and T : A → B be a continuous mapping satisfying the following assertions for all z1, z2 ∈ A:

1. α(z1, z2) ≥ η(z1, z2)⇒ d(T z1, T z2) ≤ ψ(d(z1, z2));

2. T (A0) ⊆ B0 and (A,B) satisfies the weak P-property;

3. T is α-proximal admissible with respect to η;

4. there exist z0, z1 ∈ A0 such that

d(z1, T z0) = dist(A,B), α(z0, z1) ≥ η(z0, z1).

Then T has a best proximity point.

Remark 3.11. The special cases of Theorems 3.3 and 3.10 for η(z1, z2) = 1 and α(z1, z2) = 1 can be obtained
as in Corollaries 2.5 and 2.6.

4. Generalization

In this section we generalize the results of Sections 2 and 3 for a sequence of mappings.

Definition 4.1. Let A and B be two nonempty subsets of a metric space (X, d) and {Ti : A → 2B \ ∅}∞i=1

be a sequence of multivalued mappings. The sequence {Ti} is α∗-proximal admissible with respect to η if
there exist functions α, η : A×A → [0,∞) such that for z1, z2, u1, u2 ∈ A,

α(z1, z2) ≥ η(z1, z2)
d(u1, y1) = dist(A,B)
d(u2, y2) = dist(A,B)

 ⇒ α(u1, u2) ≥ η(u1, u2)

for all y1 ∈ Tiz1 and y2Tjz2, and for all i, j ∈ N. When α(z1, z2) = 1 for all z1, z2 ∈ A, the sequence {Ti}
is called η∗-proximal sub-admissible and when η(z1, z2) = 1 for all z1, z2 ∈ A, the sequence {Ti} is called
α∗-proximal admissible.
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Theorem 4.2. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that
A0 is nonempty and {Ti : A → CL(B)}∞i=1 be a sequence of continuous multivalued mappings satisfying the
following assertions:

1. α(z1, z2) ≥ η(z1, z2)⇒ H(Tiz1, Tjz2) ≤ ψ(d(z1, z2)) for each i, j ∈ N;

2. Tiz ⊆ B0 for each z ∈ A0, i ∈ N and (A,B) satisfies the weak P-property;

3. {Ti} is α∗-proximal admissible with respect to η;

4. there exist z0, zi ∈ A′ and yi ∈ Tiz0 for each i ∈ N such that

d(zi, yi) = dist(A,B), α(z0, zi) ≥ η(z0, zi).

Then the mappings Ti have a common best proximity point.

Proof. It is similar to the proof of Theorem 2.3 and is omitted.

Taking η(z1, z2) = 1 in Theorem 4.2, we get the following:

Corollary 4.3. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that
A0 is nonempty and {Ti : A → CL(B)}∞i=1 be a sequence of continuous multivalued mappings satisfying the
following assertions:

1. α(z1, z2) ≥ 1⇒ H(Tiz1, Tjz2) ≤ ψ(d(z1, z2)) for each i, j ∈ N;

2. Tiz ⊆ B0, for each z ∈ A0, i ∈ N and (A,B) satisfies the weak P-property;

3. {Ti} is α∗-proximal admissible;

4. there exists z0, zi ∈ A′ and yi ∈ Tiz0 for each i ∈ N such that

d(zi, yi) = dist(A,B), α(z0, zi) ≥ 1.

Then the mappings Ti have a common best proximity point.

Taking α(z1, z2) = 1 in Theorem 4.2, we get the following:

Corollary 4.4. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that
A0 is nonempty and {Ti : A → CL(B)}∞i=1 be a sequence of continuous multivalued mappings satisfying the
following assertions:

1. η(z1, z2) ≤ 1⇒ H(Tiz1, Tjz2) ≤ ψ(d(z1, z2)) for each i, j ∈ N;

2. Tiz ⊆ B0 for each z ∈ A0, i ∈ N and (A,B) satisfies the weak P-property;

3. {Ti} is η∗-proximal subadmissible;

4. there exist z0, zi ∈ A′ and yi ∈ Tiz0 for each i ∈ N such that

d(zi, yi) = dist(A,B), η(z0, zi) ≤ 1.

Then the mappings Ti have a common best proximity point.

Remark 4.5. The choice A = B = X reduces Definition 4.1 and Theorem 4.2 into the Definition 3.1 and
Theorem 3.2 in [5], respectively, and generalizes Theorem 4.1 in [17]. When A = B = X, Corollaries 4.3
and 4.4 generalize Corollaries 4.1 and 4.2 in [17], respectively.

Theorem 4.6. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that
A0 is nonempty and {Ti : A → K(B)}∞i=1 be a sequence of continuous multivalued mappings satisfying all
assertions of Theorem 4.2 with condition H. Then the mappings Ti have a unique common best proximity.
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Definition 4.7. Let A and B be two nonempty subsets of a metric space (X, d) and {Ti : A → B}∞i=1 be
a sequence of mappings. The sequence {Ti} is α∗-proximal admissible with respect to η if there exists two
functions α, η : A×A → [0,∞) such that for z1, z2, u1, u2 ∈ A,

α(z1, z2) ≥ η(z1, z2)
d(u1, Tiz1) = dist(A,B)
d(u2, Tjz2) = dist(A,B)

 ⇒ α(u1, u2) ≥ η(u1, u2)

for each i, j ∈ N. When α(z1, z2) = 1 for all z1, z2 ∈ A, the sequence {Ti} is called η∗-proximal subadmissible
and when η(z1, z2) = 1 for all z1, z2 ∈ A, the sequence {Ti} is called α∗-proximal admissible.

From Definition 4.1 and Theorem 4.2, we obtain the following result for a sequence of single-valued
mappings.

Theorem 4.8. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that A0

is nonempty and {Ti : A → B}∞i=1 be a sequence of continuous mappings satisfying the following assertions:

1. α(z1, z2) ≥ η(z1, z2)⇒ d(Tiz1, Tjz2) ≤ ψ(d(z1, z2)) for each i, j ∈ N;

2. Tiz ⊆ B0 for each z ∈ A0, i ∈ N and (A,B) satisfies the weak P-property;

3. {Ti} is α∗-proximal admissible with respect to η;

4. there exist z0, zi ∈ A0 such that for each i ∈ N

d(zi, Tiz0) = dist(A,B), α(z0, zi) ≥ η(z0, zi).

Then the mappings Ti have a common best proximity point.

5. Common best proximity point results in partially ordered metric space

Let (X , d,�) be a partially ordered metric space and A and B be two nonempty subsets of X . The
existence of best proximity point in the setting of a partially order metric space has been established in
[2, 3, 10, 11, 25–27]. In this section, we derive new results in partially order metric spaces as an application
of our results in Sections 2, and 3. Recall that a mapping T : A → B is said to be proximally increasing if
it satisfies the condition

z1 � z2
d(u1, T z1) = dist(A,B)
d(u2, T z2) = dist(A,B)

 ⇒ u1 � u2,

where z1, z2, u1, u2 ∈ A (see [10]). Very recently, Pragadeeswarar et al. [27] defined the notion of proximal
relation between two subsets of X as follows:

Definition 5.1 ([27]). Let A and B be two nonempty subsets of a partially ordered metric space (X , d,�)
such that A0 6= ∅. Let B1 and B2 be two nonempty subsets of B0. The proximal relation between B1 and
B2 is denoted and defined by B1 �(1) B2, if for every b1 ∈ B1 with d(a1, b1) = d(A,B), there exists b2 ∈ B2
with d(a2, b2) = d(A,B) such that a1 � a2.

Now we present our main results of this section.

Theorem 5.2. Let A and B be two nonempty closed subsets of a partially ordered complete metric space
(X , d,�) such that A0 is nonempty and T ,S : A → CL(B) be continuous mappings satisfying the following
assertions for all z1, z2 ∈ A with z1 � z2:

1. H(T z1,Sz2) ≤ ψ(d(z1, z2));

2. T z,Sz ⊆ B0 for each z ∈ A0 and (A,B) satisfies the weak P-property;

3. z1, z2 ∈ A0, z1 � z2 implies T z1 �(1) Sz2;
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4. there exist z0, z1, z2 ∈ A0, y1 ∈ T z0 and y2 ∈ Sz0 such that

d(z1, y1) = dist(A,B), z0 � z1

and
d(z2, y2) = dist(A,B), z0 � z2.

Then T and S have a common best proximity point.

Proof. Define α, η : X × X → [0,∞) by

α(z1, z2) =

{
1 z1 � z2,
0 otherwise,

η(z1, z2) =

{
1
2 z1 � z2,
0 otherwise.

Since T z1 �(1) Sz2, therefore for z1, z2, u1, u2 ∈ X , y1 ∈ T z1, y2 ∈ Sz2 with

α(z1, z2) ≥ η(z1, z2)
d(u1, y1) = dist(A,B)
d(u2, y2) = dist(A,B)

 ,

we have u1 � u2. This implies that α(u1, u2) = 1 > 1
2 = η(u1, u2) for z1 � z2 and α(u1, u2) = 0 = η(u1, u2)

otherwise. Thus, all the conditions of Theorem 2.3 are satisfied and hence mappings T and S have a common
best proximity point.

By considering T = S, Theorem 5.2 is reduced to the following:

Theorem 5.3. Let A and B be two nonempty closed subsets of a partially ordered complete metric space
(X , d,�) such that A0 is non-empty and T : A → CL(B) be a continuous mapping satisfying the following
assertions for all z1, z2 ∈ A with z1 � z2:

1. H(T z1, T z2) ≤ ψ(d(z1, z2));

2. T z ⊆ B0 for each z ∈ A0 and (A,B) satisfies the weak P-property;

3. z1, z2 ∈ A0, z1 � z2 implies T z1 �(1) T z2;

4. there exist z0, z1 ∈ A0, y1 ∈ T z0 such that

d(z1, y1) = dist(A,B), z0 � z1.

Then the mapping T has a best proximity point.

Following the arguments in the proof of Theorem 5.2, we obtain the following result.

Theorem 5.4. Let A and B be two nonempty closed subsets of a partially ordered complete metric space
(X , d,�) such that A0 is nonempty and {Ti : A → CL(B)}∞1 be sequence of continuous mappings satisfying
the following assertions for all z1, z2 ∈ A with z1 � z2:

1. H(Tiz1, Tjz2) ≤ ψ(d(z1, z2)) for each i, j ∈ N;

2. Tiz ⊆ B0 for each z ∈ A0, i ∈ N and (A,B) satisfies the weak P-property;

3. z1, z2 ∈ A0, z1 � z2 implies Tiz1 �(1) Tjz2 for each i, j ∈ N;

4. there exist z0, zi ∈ A0 and yi ∈ Tiz0 for each i ∈ N such that

d(zi, yi) = dist(A,B), z0 � zi.

Then the mappings Ti have a common best proximity point.

For single valued mappings, from Theorems 5.2-5.4 we obtain the following results.
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Theorem 5.5. Let A and B be two nonempty closed subsets of a partially ordered complete metric space
(X , d,�) such that A0 is nonempty and T ,S : A → B be continuous mappings satisfying the following
assertions for all z1, z2 ∈ A with z1 � z2:

1. d(T z1,Sz2) ≤ ψ(d(z1, z2));

2. T z,Sz ⊆ B0 for each z ∈ A0 and (A,B) satisfies the weak P-property;

3. z1, z2 ∈ A0 z1 � z2 implies T z1 � Sz2;

4. there exist z0, z1, z2 ∈ A0 such that

d(z1, T z0) = dist(A,B), z0 � z1

and
d(z2, T z0) = dist(A,B), z0 � z2.

Then T and S have a common best proximity point.

Theorem 5.6. Let A and B be two nonempty closed subsets of a partially ordered complete metric space
(X , d,�) such that A0 is non-empty and T : A → B be a continuous mapping satisfying the following
assertions for all z1, z2 ∈ A with z1 � z2:

1. d(T z1, T z2) ≤ ψ(d(z1, z2));

2. T z ⊆ B0 for each z ∈ A0 and (A,B) satisfies the weak P-property;

3. z1, z2 ∈ A0, z1 � z2 implies T z1 � T z2;

4. there exist z0, z1 ∈ A0 such that

d(z1, T z0) = dist(A,B), z0 � z1.

Then T has a best proximity point.

Theorem 5.7. Let A and B be two nonempty closed subsets of a partially ordered complete metric space
(X , d,�) such that A0 is nonempty and {Ti : A → B}∞1 be sequence of continuous mappings satisfying the
following assertions for all z1, z2 ∈ A with z1 � z2:

1. d(Tiz1, Tjz2) ≤ ψ(d(z1, z2)) for each i, j ∈ N;

2. Tiz ⊆ B0 for each z ∈ A0, i ∈ N and (A,B) satisfies the weak P-property;

3. z1, z2 ∈ A0, z1 � z2 implies Tiz1 � Tjz2 for each i, j ∈ N;

4. there exist z0, zi ∈ A0 for each i ∈ N such that

d(zi, Tiz0) = dist(A,B), z0 � zi.

Then the mappings Ti have a common best proximity point.
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