
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 4877–4887

Research Article

A computational method for converter analysis
using point symmetries

Richard O. Ocaya

Department of Physics, University of the Free-State, P. Bag X13 Phuthaditjhaba 9866, South Africa.

Communicated by A. Atangana

Abstract

The one-parameter point transformation method is applied to clarify the use of symmetries to describe
the effects of additive uncertainties on the state-space solutions of an affine control system. The trajectory
of the solution in the presence of general, bounded uncertainties gives an idea of system robustness. The
boost converter is used for illustration. A specific symmetry is computed under uncertainties and its effects
on a possible solution are investigated. A comparison of the method with other state-space methods shows
that it is an excellent approach if developed further. c©2016 All rights reserved.
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1. Introduction

Consider the affine control system

ẋ = a(x) +
m∑
i=1

bi(x)ui(t), (1.1)

where a, bi : R1 × Rn are smooth functions and u denotes the m controls. The current work, presents an
application of group theory in the form of Lie symmetries [5, 6] to investigate the effects of uncertainties,
perturbations, and neglected dynamics on solutions of Eq. (1.1), applied illustratively to the particular case
of the boost converter. There are currently state-space based methods that allow the behavior of a system
solution to be evaluated in the presence of uncertainties. The common starting point for these methods
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relies on a reasonable linear time-invariant (LTI) models of the system. The generally nonlinear closed
loop system is first linearized by some means and then placed into a state-space form, with the uncertainties
bundled together into a single bounded perturbation matrix of suitable dimension. The analysis then applies
worst-case variations of the matrix to determine the bounds of performance of the system, whereupon a
robustness measure is possible. In the present paper, rather than define a perturbation matrix, the worst-
case variations in the uncertainties are evaluated directly by their effects on the solution trajectory of the
LTI form. The behavior of a given solution under the modified trajectory then gives an idea of the robustness
of the system under the specified uncertainties. Generally, the computation of symmetries of a differential
equation is motivated by the need to find an integrating factor that reduces the problem to quadratures
[9]. The method expressed below, implies the extension of an averaged state-space solution under group
transformation. Finally, the results of a symmetries computation are compared with results using the other
computational methods. Here, the waveforms of the perturbation matrix are simulated in Matlab and then
compared with component level simulation in PSpice. The symmetries method is shown to be an alternative
approach.

2. Boost converter dynamical equations

Consider the boost converter in Fig. 1. The non-idealities rL, rC and ig, model both parametric and
load uncertainties.

(a) During ton. Switch is closed. (b) During toff . Switch is open.

Figure 1: Derivation of the boost converter circuit state-representation.

To arrive at a model, the system state equations are developed separately during each phase and then
state-space averaged to a continuous small-signal model [11]. If the switch phases are denoted by i = 1 and
i = 2 for switch closed and open, respectively, then during the two phases one can write

ẋ = Aix + Biu

y = Cix + Eiu,
(2.1)

where x = [x1 x2]
T = [iL vC ]T , y = vo, and u = [vs ig vD]T . The matrices Ai, Bi, Ci and Ei for

i = (1, 2) are available for averaging, and convey system behavior and contain parametric uncertainties
and other non-idealities as well. At steady state, quantities are x = [x1 x2]

T = [IL VC ]T , y = Vo, and
u = [Vs Ig VD]T , at duty cycle D.

2.1. The boost converter as a control affine system

Redefining the individual switch phase state equations in the form

ẋi = Aixi + Ri
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for i = 1, 2, allows Eq. (2.1) to be rewritten as:

ẋ = [(1− d)A1 + dA2]x + [(1− d)R1 + dR2]. (2.2)

Perturbing (2.2) around the equilibrium gives

〈ẋ〉 =
[
A1 + (A2 −A1)D

]
x̂︸ ︷︷ ︸

f(x̂)

+
[
(A2 −A1)X + (R2 −R1)

]
︸ ︷︷ ︸

g(x̂)

d̂

⇒ ˙̂x = f(x̂) + g(x̂)u,

where u = d̂ is the single control. It is easy to show that

f(x̂) =

[
− rL(R+rC)+rCRD

L(R+rC) − RD
L(R+rC)

RD
C(R+rC) − 1

C(R+rC)

][
x1
x2

]
and

g(x̂) =

[ −rCRIL−VCR+RrC ig−VD(R+rC)
L(R+rC)
RIL

C(R+rC)

]
.

In the absence of parametric uncertainty,

f(x̂) =

[
−D
L x2

D
C x1 −

1
RCx2

]
and g(x̂) =

[
−VC+VD

R
IL
C

]
, (2.3)

where

IL =
1

D

(VC
R

+ Ig

)
, VC =

Vs

D
and Vo = VC .

Example 2.1. An idealized boost converter having Vo=48.0V, Vs=12.0V requires that D=0.75; for a 50
watts rated output with a constant load current Ig=0, then R=46.08 Ω.

2.2. Existence of boost converter symmetries

The behaviour of solutions under the one-parameter transformation can then be used to highlight the
effects of parametric and other uncertainties on the system solution through its symmetries. The illustration
of a symmetry method here is based on the observation that a reversible one-parameter transformation maps
the generally nonlinear system to a linear and equivalent one (see [2]).

2.2.1. Symmetries of the generalized control system

Consider the generalized dynamic system

ẋ = f(t, x, u) (2.4)

with state x and arbitrary control u.

The three-tangent vector fields (ξ, η, ϕ) of Eq. (2.4) lead to the symmetry generator

X = ξ(t, x, u)∂t +

n∑
i=1

ηi(t, x, u)∂xi +

m∑
i=1

ϕj(t, x, u)∂uj (2.5a)

with respect to independent variable t. The first-order prolongation is

X(1) = X +
n∑
i=1

ζi(t, x, u, x
′, u′)∂x′i +

m∑
j=1

ψj(t, x, u, x
′, u′)∂u′j (2.5b)
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with the total derivative operator

Dt = ∂t +
n∑
i=1

x′∂x′i +
m∑
j=1

u′∂u′j .

The functions ζ and ψ are calculated from

ζ = Dtη − x′Dtξ and ψ = Dtϕ− u′Dtξ.

Infinitesimal symmetries [3, 4] are also generated by the admission of f̂ = f̂(t, x, x′, u, u′), provided that

X(1)(f̂) = 0.

Consequently, a necessary and sufficient condition for the new coordinate system (in a form linear in u′) is

ξft + fxη + fuϕ− ηt − ηxf − ηuu′ + f(ξt + ξxf + ξuu
′) = 0. (2.6)

Eq. (2.6) is reduced to the defining equations

ξft + fxη + fuϕ− ηt − ηxf + fξt + fξxf = 0, (2.7a)

ηu − fξu = 0. (2.7b)

Eqs. (2.7) can be written in Lie bracket notation by noting firstly that Eq. (2.4) is a vector field with the
form

F =
∂

∂t
+

n∑
i=1

fi
∂

∂xi
(2.8a)

for i = (1, 2, . . . , n). Secondly, the most general infinitesimal generator H can be defined by

H = ξ
∂

∂t
+

n∑
i=1

ηi
∂

∂xi
.

Both F and H are independent of the controls, i.e., ∂uF=∂uH=0. Eq. (2.5a) then becomes

X = H +
m∑
j=1

ϕj∂uj .

Similarly, defining a Lie bracket Fj such that

Fj = [∂uj , F ] =
[ ∂

∂uj
, F
]
, for j = 1, 2, . . . ,m,

allows Eq. (2.7a) to be written as

[F,H]− F (ξ)F =
m∑
j=1

ϕjFj . (2.8b)

Similarly, Eq. (2.7b) becomes [ ∂

∂uj
, H
]
− ∂ξ

∂uj
F = 0. (2.8c)

2.2.2. Symmetries of the affine control system

Consider the control affine system

ẋ = a(t, x) +

m∑
j=1

b(t, x)uj ≡ f(t, x, u), x ∈ Rn (2.9)

with state x, control u, independent variable t and continuously differentiable functions a and b. Then
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provided that fi = Ai + Biui, it is possible to define two control-independent vector fields A and B
(∂uA=∂uBj=0) for Eq. (2.9) such that

A =
∂

∂t
+

n∑
i=1

ai
∂

∂xi
, and Bj =

n∑
i=1

bij
∂

∂xi

for j = 1, 2, . . . ,m. Eq. (2.8a) becomes

F = A+
m∑
j=1

ujBj .

This allows Eqs. (2.8b) and (2.8c) to be written as:

[F,H]− F (ξ)F =
m∑
j=1

ϕjBj ,

[ ∂

∂uk
, H
]
− ∂ξ

∂uk

(
A+

m∑
j=1

ujBj

)
= 0

for k = 1, 2, . . . ,m (see [7]). Let B define the set of all vector fields with basis Bj . Then the commutators
are such that

[F,H] = [A,H] +
m∑

[ujBj , H] ∈ B.

Similarly,

F (ξ)F = A(ξ)A+
m∑
ujA(ξ)Bj︸ ︷︷ ︸

explicitly in B

+
m∑
ujBj(ξ)A+

m∑
j,k=1

ujukBj(ξ)Bk︸ ︷︷ ︸
explicitly in B

∈ B.

Combining these equations gives

[F,H]− F (ξ)F = [A,H] +
m∑

[ujBj , H]−A(ξ)A−
m∑
ujA(ξ)Bj −

m∑
ujBj(ξ)A

−
m∑

j,k=1

ujukBj(ξ)Bk ∈ B.

This leads to a form that is linear in the controls uj , i.e.,

[A,H]−A(ξ)A−
m∑
j=1

uj

{
Bj(ξ)A− [Bj , H]

}
︸ ︷︷ ︸

Aj

=
m∑
j=1

ujAj ∈ B.

In addition, it can be seen that

[A,H]−A(ξ)A ∈ B, and

m∑
j=1

uj

{
Bj(ξ)A− [Bj , H]

}
∈ B.

2.2.3. Symmetries of the affine system with scalar control

The following examples are presented for scalar control, i.e., m=1.

Example 2.2. If the vector field H is a true symmetry of the affine dynamic control system:

ẋ = a(t, x) + b(t, x)u,
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then it satisfies the conditions

[A,H]−A(ξ) ∈ B, [B,H]−B(ξ) ∈ B,
[ ∂
∂u
,H
]
− ∂ξ

∂u
(A+ uB) = 0

for each A and B, where

A =
∂

∂t
+

n∑
i=1

ai(t, x)
∂

∂xi
, and B =

n∑
i=1

bi(t, x)
∂

∂xi
.

According to [10], if the vector fields A and B possess the iterated Lie brackets ad0
AB, adr+1

A B for r > 1
with dimension n, then the system satisfies the condition of rank controllability. In other words, the series

ad0
AB, ad1

AB, . . . , adn−1A B

have rank n.

Example 2.3. Suppose that the n-dimensional affine system with the symmetry generator

X = ξ(t, x, u)∂t +
n∑
i=1

ηi(t, x, u)∂xi +
m∑
i=1

ϕj(t, x, u)∂uj

satisfies the rank controllability condition at the point (t, x). Then the vector field H is a symmetry of X
in the neighborhood of (t, x) iff

H = ξA+
n−1∑
i=0

hiad
i
AB

under the necessary and sufficient conditions that

A(hj) = −hj−1 − hn−1αj , j = 1, 2, . . . , n− 1,

B(hj) +
n−1∑
k=1

βjkhk = 0, j = 2, 3, . . . , n− 1,

ξ = B(h1) +

n−1∑
k=1

β1khk.

The coefficients αj and βjk are functions of (t, x) and are calculated from the iterated Lie series:

adnAB =

n−1∑
i=0

αiad
i
AB, and [B, adkAB] =

n−1∑
j=0

βjkad
j
AB

for k = 1, 2, . . . , n− 1.

Example 2.4. Consider a two-state affine system that is rank-controllable and has scalar control. Thus
n = 2 and m = 1. It follows that

H = ξA+
1∑
i=0

hiad
i
AB = ξA+ h0B + h1[A,B],

where

A =
∂

∂t
+

2∑
i=1

ai(t, x)
∂

∂xi
and B =

2∑
i=1

bi(t, x)
∂

∂xi
.

In A(hi) and B(hj), j = 1, hence A(h1) = −h0 − h1α1, or h0 = −A(h1)− h1α. Also ξ = B(h1) + β11h1.
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2.2.4. Symmetries of a two-dimensional affine system with scalar control

Example 2.5. If n = 2 and m = 1 then the affine system in Eq. (2.9) has the most general infinitesimal
generator

H = ξA+ hB (2.10)

for an arbitrary function h=h(u).

Proof. ad0AB=[A,B]=0; also, ad2AB=α0ad
0
AB+α1ad

1
AB; ad1AB=0. Since B 6= 0, it follows that α0 vanishes

but not necessarily α1. Thus H = ξA+ h0B. Putting h0=h completes the proof.

Example 2.5 implies that by equation (2.8c) one can conclude that

[∂u, ξA+ hB]− ξu(A+ uB) = 0,

which is reduced to the selection condition,

hu − uξu = 0. (2.11)

Example 2.6. Consider a nominal 50 watt boost converter with L=250µH, C=100µF, R=46.08Ω and
D=0.75; the nominal output and input voltages are 48.0V and 12.0V, respectively. Then, Eq. (2.3) gives

f(x) = 103
[
−0.00 −3.00
+7.50 −0.22

]
x, and g(x) = 104

[
−0.00
+4.17

]
.

2.3. Application of the generated symmetries

The condition expressed by Eq. (2.11) is met by infinitely many symmetry-determining functions h and
ξ. Some possible (h, ξ) combinations are (2u, u2), (u2/2, u), (u, lnu). Even the simple boost converter has
infinitely many possible symmetries.

Example 2.7. For the system in Example 2.6, the functions h=2u and ξ=u2 produce a valid symmetry of
the form (2.10). The coefficients ai and bi for i=1,2 are determined from f(x) and g(x) in Example 2.6, i.e.,

a1 = −3000x2, a2 = 7500x1 − 220x2,

and
b1 = 0, b2 = 41700.

The most general infinitesimal generator is then

H = u2∂t − 3000x2u
2∂x1 + (7500x1 − 220x2)u

2∂x2 + 83400u∂x2 .

In [12], it is shown that if y = f(ϕ) is an arbitrary solution of the ODE, then invariance in the group
implies that new solutions ŷ(ϕ̂) can be found under the one-parameter ε, such that

(ŷ, ϕ̂) = eεH(y, ϕ). (2.12)

In the case of the affine system we have, ϕ = (t,x, u).

Example 2.8. As an illustration, suppose that the output voltage x2 is given by

x2(t) = VC(1− e−αt)

for α=100 and VC=48.0V, as shown in Fig. 2(b). Suppose that the trajectory of x2 under the action of the
symmetry H in equation (2.12) can be found.
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(a) Nominal Simulink output for Fig.4. (b) Possible nominal solution, Eq.(2.13).

Figure 2: Estimated output voltage (the state variable x2) in the closed-loop solution trajectory.

New solutions can be computed using Eq. (2.12), i.e.,

x̂2 = eεHx2.

The action of H can be investigated termwise, i.e., firstly terms of ∂tx2, then ∂x1x2 and finally ∂x2x2. Eq.
(2.13) is explicitly independent of x1 so that ∂x1x2 vanishes. Therefore, the action of H can be resolved into
two independent actions, namely that on the time axis and that on the x2 axis. For action along the time
axis, H ≡ u2∂t, so that

eεHx2 =
[
1 + εH +

(εH)2

2!
+

(εH)3

3!
+ . . .

]
x2

= x2 + εHx2 +
ε2H(Hx2)

2!
+
ε3H(H(Hx2))

3!
+ . . . .

(2.13)

But Hx2=αu
2VCe

−αt, so that
Hnx2 = (−1)n+1(αu2)nVCe

−αt.

Hence

x̂2 = eεHx2 = VC − VCe−αt
[
1− (εαu2) +

(εαu2)2

2!
− (εαu2)3

3!
+ . . .

]
= VC − VCe−αte−εαu

2

⇒ x̂2 = VC

[
1− e−α(t+εu2)

]
.

(2.14)

Eq. (2.14) is a symmetry of Eq. (2.9) that achieves a scaling translation of the time axis since x̂2=x2 when
ε=0. The transformation does not affect the magnitude of x2.

For action along the x2 axis, H ≡ [(7500x1 − 220x2)u
2 + 83400u]∂x2 , so that

eεHx2 =
[
1 + εH +

(εH)2

2!
+

(εH)3

3!
+ . . .

]
x2

⇒ x̂2 = x2 + ε[(7500x1 − 220x2)u
2 + 83400u].

(2.15)

Eq. (2.15) is another symmetry of Eq. (2.9) that also scales and translates the output amplitude since x̂2=x2
when ε=0. Fig. 3 shows the effect that the symmetry H has on the time axis and on the output voltage.
This example shows that the effects of parametric uncertainty are absent from the time-axis calculation,
but are present in the x2 transformation.
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(a) The effect of timing element uncertainties on out-
put rise-time.

(b) The effect of input voltage disturbance on output
amplitude.

Figure 3: The transformation of the symmetries in Eqs. (2.14) and (2.15) on a solution x2. The nominal voltage magnitude of
x2 is 48.0V.

3. The effect of perturbations on affine symmetries

The use of symmetries to investigate the effects of general perturbations could enhance the understanding
of these effects on a system. The task of developing analytical tools using symmetries is clearly not trivial.
However, the generality of symmetries enables a large class of uncertainty to be factored into the analysis,
where the treatment of generalized perturbations is reduced to a differential inclusion [1].

Example 3.1. Suppose that Eq. (2.9) has norm-bounded additive uncertainties α, β and γ that represent
matched uncertainties in a, b and u, respectively. Then the idealized system

ẋ = f(t, x) +
m∑
bi(t, x)ui(t, x)

can be written in a form with uncertainties

ẋ = (a+ αa) +
m∑

(bi + βibi)(ui + γiui)

=
(
a+

m∑
biui

)
︸ ︷︷ ︸
idealized system

+
(
αa+

m∑
δibiui

)
︸ ︷︷ ︸

perturbation

= f(t, x, u) + h(α, δ, t, x, u)

= h(t, x, u, α, δ),

(3.1)

where δi = (γi, βi). Hence the affine system with additive uncertainties becomes a differential inclusion with
the uncertainties lumped together into the inclusion function.

In summary, the differential inclusion function h(α, δ, t, x, u) lumps all the generalized uncertainties
together, outside of the idealized system while retaining the additive perturbative character.

4. Comparison with a Simulink result

A brief comparison of the results obtained using the symmetries method with Simulink is achieved using
the Simulink model shown in Fig. 4. The block labeled P CL denotes the optimal closed loop system with a
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minimized H∞ controller. For the sake of simplicity, the model is grouped into the subsystem in Fig. 4 with
bounded additive perturbations applied singly or simultaneously. In addition, all the inherent optimized
weights and pre-filters have been included [8]. In the interest of illustration of the principle, only the effect
of supply-line uncertainty (labeled “noise” in Fig. 4) is considered.

Figure 4: Closed loop weighted disturbance model subsystem for Simulink simulation.

Fig. 5 illustrates the upper and lower boundaries of the output in the presence of a sufficiently strong
disturbance applied on the input source, Vs. It compares well with the symmetries result shown in Fig. 3(b).
One apparent importance of the symmetries method then is the establishment of the bounds of trajectory
variation in the presence of bounded perturbations.

Figure 5: Uncertainty rejection using band-limited white noise of sample time = 0.001s and noise power 0.001 applied on Vs.

5. An alternative symmetries approach for uncertain systems

Eq. (3.1) has two additional independent variables (namely α and δ) over Eq. (2.9). Therefore, the
uncertain system will have two additional tangent vectors in addition to (ξ,η,ϕ). Thus the control system

ẋ = f(t, x, u, α, δ)

with infinitesimal generators X(n) (in the form of Eq. (2.5b)), expresses matched uncertainties in the
arguments of function f .
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6. Conclusions

This paper has outlined a computational method using the symmetries to evaluate the effects of un-
certainties on generalized dynamical systems. It outlines the approach for the affine control system with
scalar control and additively applied uncertainties. Illustrations are done using the particular case of the
boost converter. The symmetries are shown to transform the state and independent variables as expected,
thereby providing a means to quantify these effects. An apparent drawback of the method is the amount of
computation required as a price of its generality. This fact above all else, has meant that symmetry methods
are generally avoided. The examples provided in the paper highlight that the method can be very useful if
the complexity is acceptable.
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