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Abstract

A new hybrid Bregman projection method is considered for finding common solutions of the set of com-
mon fixed points of an infinite family of closed, uniformly asymptotic regular and uniformly Bregman totally
quasi-D-asymptotically nonexpansive mappings, the set of solutions to a variational inequality problem and
the set of common solutions to a system of generalized mixed equilibrium problems, strong convergence theo-
rems of common elements are proved by using new analysis techniques and Bregman mappings in the setting
of uniformly smooth and 2-uniformly convex real Banach spaces. Our results improve and generalize many
important known recent results in the current literature, because Bregman projection mapping generalizes
the generalized projection mapping and the metric projection mapping. c©2016 All rights reserved.
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1. Introduction

Let E be a real Banach space with the dual E∗, C be a nonempty closed convex subset of E, f be a
bifunction from C ×C to R, ϕ : C → R be a real-valued function and A : C → E∗ be a nonlinear mapping.
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The so-called generalized mixed equilibrium problem [33, 34] is to find z ∈ C such that

f(z, y) + 〈Az, y − z〉+ ϕ(y)− ϕ(z) ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by GMEP (f, ϕ), that is,

GMEP (f, ϕ) = {z ∈ C
∣∣f(z, y) + 〈Az, y − z〉+ ϕ(y)− ϕ(z) ≥ 0, ∀y ∈ C}.

Special cases:

(I) If A = 0, then the problem (1.1) reduces into the mixed equilibrium problem for f , denoted by
MEP (f, ϕ), which is to find z ∈ C such that

f(z, y) + ϕ(y)− ϕ(z) ≥ 0, ∀y ∈ C.

(II) If f = 0, then the problem (1.1) reduces into the mixed variational inequality of Browder-type, denoted
by V I(C,A, ϕ), which is to find z ∈ C such that

〈Az, y − z〉+ ϕ(y)− ϕ(z) ≥ 0, ∀y ∈ C.

In particular, V I(C,A, 0) is denoted by V I(C,A).

(III) If ϕ = 0, then the problem (1.1) reduces into the generalized equilibrium problem, denoted by GEP (f),
which is to find z ∈ C such that

f(z, y) + 〈Az, y − z〉 ≥ 0, ∀y ∈ C.

(IV) If A = 0, ϕ = 0, then the problem (1.1) reduces into the equilibrium problem, denoted by EP (f),
which is to find z ∈ C such that

f(z, y) ≥ 0, ∀y ∈ C. (1.2)

The generalized mixed equilibrium problems include fixed point problems, variational inequality problems,
optimization problems, equilibrium problems and Nash equilibrium problems as special cases (see for example
[33, 34]). Some methods have been proposed to solve the generalized mixed equilibrium problem (see for
example [3, 11–16, 18–20, 26, 27, 33, 34, 36, 38–43, 47]). Numerous problems in physics, economics and
optimization help to find a solution of problem (1.2).

An operator B : C → E∗ is called α-inverse-strongly monotone, if there exists a positive real number α
such that

〈x− y,Bx−By〉 ≥ α||Bx−By||2 ∀x, y ∈ C.

Obviously, if B is α-inverse-strongly monotone, then B is 1
α -continuous and V I(C,B) is both closed and

convex. In this paper, we shall assume that (B1)V I(C,B) 6= ∅; (B2)||By|| ≤ ||By − Bu|| for all y ∈ C and
u ∈ V I(C,B).

In the sequel, let F (T ) denote the set of fixed points of a mapping T : C → C, R+ and R denote the
set of all nonnegative real numbers and all real numbers, respectively. A mapping T : C → C is said to be
nonexpansive, if ||Tx− Ty|| ≤ ||x− y|| for all x, y ∈ C. T is said to be quasi-nonexpansive, if F (T ) 6= ∅ and
||Tx− p|| ≤ ||x− p|| for all x ∈ C, p ∈ F (T ).

It turns out that the fixed point theory of nonexpansive mappings can be applied to the solutions of
diverse problems such as finding zeros of monotone mappings and solutions to certain evolution equations and
solving convex feasibility, variational inequality and equilibrium problems. There are, in fact, many papers
that deal with methods for finding fixed points of nonexpansive and quasi-nonexpansive mappings in Hilbert,
uniformly convex and uniformly smooth Banach spaces (see for example [3, 11–16, 18–20, 26, 27, 36, 38–
43, 47]).
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The main purpose of introducing the concept of relatively nonexpansive mapping is to hope that the
results of iterative approximation of relevant nonexpansive mapping in a Hilbert space can be generalized
to general Banach space, because, in a Hilbert space H, nonexpansive mapping is equivalent to relatively
nonexpansive mapping.

Many problems in nonlinear analysis can be reformulated as a problem of finding a fixed point of a
nonexpansive mapping T of a closed and convex subset C of a Banach space E. In 1953, Mann [16]
introduced the following iterative method: a sequence {xn} defined by x1 ∈ C and

xn+1 = αnxn + (1− αn)Txn, n = 1, 2, 3, · · · ,

where {αn} is a sequence in [0,1]. It is known that under appropriate conditions the sequence {xn} converges
only weakly to a fixed point of T . However, even in a Hilbert space, Mann iteration may fail to converge
strongly.

Several attempts to construct the iteration method guaranteeing the strong convergence have been made.
For example, Halpern [12] proposed the following so-called Halpern iteration:

x1 = x ∈ C and xn+1 = αnx1 + (1− αn)Txn, n = 1, 2, 3, · · · ,

where {αn} is a sequence in (0,1) satisfying

(C1) limn→+∞ αn = 0;

(C2) Σ+∞
n=1αn = +∞;

(C3) limn→+∞
αn
αn+1

= 1 or Σ+∞
n=1

∣∣αn − αn+1

∣∣ < +∞.

In 2001, another approach which is the so-called CQ method for a nonexpansive mapping in a Hilbert
space H was proposed by Bauschke and Combettes [3]. More precisely, their algorithm is defined by

x1 ∈ C is arbitrary,

yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ||yn − z|| ≤ ||xn − z||},
Qn = {z ∈ C : 〈xn − z, x1 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx1, n = 1, 2, 3, · · · ,

where limn→+∞ supαn < 1, K is a closed and convex subset of H, and PK denotes the metric projection
from a Hilbert space H onto K.

Recently, Martinez-Yanes and Xu [18] has adapted Bauschke and Combettes [3] idea to modify above
process for a single nonexpansive mapping T in a Hilbert space H:

x1 ∈ C is arbitrary,

yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ||yn − z||2 ≤ ||xn − z||2 + αn(||x0||2 + 2〈xn − x0, z〉)},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0, n = 1, 2, 3, · · · .

They proved that the sequence {xn} generated by above iterative scheme converges strongly to PF (T )x0
provided the sequence {αn} ⊂ (0, 1) satisfies limn→+∞ αn = 0.

It should be noted here that the above iteration works only in Hilbert space setting. To extend this
iteration to a Banach space, a relatively nonexpansive mapping [3, 12, 18] was introduced. In a Hilbert
space H, the duality mapping J is the identity mapping and φ(x, y) = ||x− y||2 for all x, y ∈ H, hence the
nonexpansive mapping of H is equivalent to relatively nonexpansive mapping.
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There are many methods for approximating fixed points of relatively nonexpansive mappings (see, e.g.,
[19, 20, 27, 36]) in a Banach space. Iiduka and Takahashi [13] investigated the following iterative scheme
for finding a zero point of a monotone operator B in a uniformly smooth and 2-uniformly convex Banach
space E: 

x1 ∈ E chosen arbitrarily,

yn = J−1(Jxn − λnBxn),

Cn = {z ∈ E : φ(z, yn) ≤ φ(z, xn)},
Qn = {z ∈ E : 〈xn − z, Jx1 − Jxn〉 ≥ 0},
xn+1 = ΠCn

⋂
Qn
x1,

(1.3)

where ΠCn
⋂
Qn

is the generalized projection from E onto Cn
⋂
Qn and {λn} is a sequence of positive real

numbers. They proved that the sequence {xn} converges strongly to an element of B−1(0). Moreover,
under the additional suitable assumptions, they proved that the sequence {xn} generated by (1.3) converges
strongly to an element of V I(C,B). Some solution methods have been proposed to solve the variational
inequality problem, (see for instance, [11, 13–15, 26, 36, 38–43, 47]).

In 1967, Bregman [6] discovered a technique for using of the Bregman distance function D(·, ·) (see,
Section 2, Definition 2.1) in designing and analyzing optimization and feasibility algorithms. Bregman’s
technique has been applied in various ways. In 2005, Butnariu and Resmerita [7] introduced Bregman-type
iterative algorithms and investigated the convergence of the iterative algorithm of solving some nonlinear
operator equations.

In 2011, Reich and Sabach [31] introduced the concept of Bregman strongly nonexpansive mapping and
study the convergence of two iterative algorithms for finding common fixed points of finitely many Bregman
strongly nonexpansive mappings in reflexive Banach spaces. In 2012, Suantai et al. [35] also considered the
strong convergence for Bregman strongly nonexpansive mappings in reflexive Banach spaces.

In 2013, Zhu et al. [46] introduced the following hybrid projection algorithm:

x0 ∈ C chosen arbitrarily,

C1 = C, x1 = ProjgC1
x0,

yn = Og∗[αnOg(xn) + (1− αn)Og(Txn)],

f(un, y) + 〈y − un,Og(un)− Og(yn)〉 ≥ 0, ∀y ∈ C,
Cn+1 = {z ∈ Cn : D(z, un) ≤ D(z, xn)},
xn+1 = ProjgCn+1

x0

(1.4)

for every n ≥ 0, where T is Bregman strongly nonexpansive mapping. They proved under the appropriate
conditions on the parameters that the sequence {xn} generated by (1.4) converges strongly to a common
solution of the set of fixed points of Bregman strongly nonexpansive mappings T and the set of solutions of
an equilibrium problem EP (f) in a reflexive Banach space E, where ProjgF (x0) is the Bregman projection
of E onto F .

Recently, Naraghirad and Yao [22] presented the following Bregman projection proximal algorithm:

x0 ∈ C chosen arbitrarily,

C0 = C,

yn = ProjgC(Og∗[Og(xn)− λnBxn]),

zn = Og∗[αn,0Og(xn) +

∞∑
i=1

αn,iOg(Tiyn)],

un ∈ C such that f(un, y) +
1

rn
〈y − un,Og(un)− Og(yn)〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : D(z, un) ≤ D(z, xn)},
xn+1 = ProjgCn+1

x0.

(1.5)
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They proved under the appropriate conditions on the parameters that the sequence {xn} generated by (1.5)
converges strongly to a common solution of the set of solutions of an equilibrium problem EP (f), the set
of zero points of α-inverse strongly monotone mapping B : C → E∗ and the set of fixed points of an infinite
family of Bregman weak relatively nonexpansive mappings in a 2-uniformly convex Banach space E.

Motivated by the above mentioned results and the on-going research, we introduce a new hybrid Breg-
man projection algorithm based on the shrinking projection method and prove strong convergence theorems
for approximation of a common element of the set of common fixed points of an infinite family of Breg-
man totally quasi-D-asymptotically nonexpansive mappings (which contains Bregman strongly nonexpan-
sive mapping, Bregman relatively nonexpansive mapping, Bregman quasi-D-asymptotically nonexpansive
mapping in the intermediate sense, Bregman quasi-D-nonexpansive mapping, and quasi-φ-asymptotically
nonexpansive mapping as its special case), the set of solutions to a variational inequality problem and the
set of solutions to a system of generalized mixed equilibrium problems in a 2-uniformly convex real Banach
space. The assumption F̂ (T ) = F (T ) or F̃ (T ) = F (T ) on the mapping T is removed. Our results extend
the results of Saewan and Kumam [33], Martinez-Yanes and Xu [18], Qin and Su [27], Iiduka and Takahashi
[14], Reich and Sabach [28], Naraghirad and Yao [22], Zhu et al. [46], Pang and Naraghirad [24], Chang et
al. [9], Agarwal et al. [1], Wu and Lv [37], and many other recent and important results in the literature.

2. Preliminaries

Throughout this paper, we denote by N the set of nonnegative integers. Let E be a real Banach
space with the dual E∗. For all x ∈ E and x∗ ∈ E∗, we denote the value of x∗ at x by 〈x, x∗〉. The
duality mapping J : E → 2E

∗
is defined by J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2}. Let g : E →

R
⋃
{+∞} be a proper, convex and lower semicontinuous function. Denote the domain of g by dom g i.e.,

dom g={x ∈ E : g(x) < +∞}. The Fenchel conjugate of g is the function g∗ : E∗ → (−∞,+∞] defined
by g∗(ζ) = supx∈E{〈ζ, x〉 − g(x)}. If E is reflexive, we know from [44] that (Og)−1 = Og∗, Og = (Og∗)−1,
ranOg=domOg∗=int(dom g∗) and ranOg∗=domOg=int(dom g).

Definition 2.1 ([6, 7]). Let g : E → R be a Gâteaux differentiable and convex function. The function
D(·, ·) : domg × int(domg) → [0,+∞) defined by D(y, x) = g(y) − g(x) − 〈y − x,Og(x)〉 is called the
Bregman distance with respect to g.

It follows from the strict convexity of g that D(x, y) ≥ 0 for all x, y in E. However, D(·, ·) might not be
symmetric and D(·, ·) might not satisfy the triangular inequality.

Remark 2.2 ([31]). The Bregman distance has the following properties:

(1) the three point identity, for any x ∈ domg and y, z ∈ int(domg),

D(x, z) = D(x, y) +D(y, z) + 〈Og(y)− Og(z), x− y〉;

(2) the four point identity, for any y, w ∈ domg and x, z ∈ int(domg),

D(y, x)−D(y, z)−D(w, x) +D(w, z) = 〈Og(z)− Og(x), y − w〉.

Definition 2.3 ([21]). Let g : E → R be a Gâteaux differentiable and convex function, C be the nonempty,
closed and convex subset of E. The Bregman projection of x ∈ int(domg) onto C(⊆ domg) is the necessarily
unique vector ProjgC(x) ∈ C satisfying the following:

D(ProjgC(x), x) = inf{D(y, x) : y ∈ C}.
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Remark 2.4.

(1) If E is a smooth Banach space and g(x) = ||x||2 for all x ∈ E, then we have that Og(x) = 2Jx for all
x in E. Hence, D(·, ·) is reduced to the usual map φ(·, ·) as D(x, y) = ||x||2−2〈x, Jy〉+ ||y||2 = φ(x, y)
for all x, y ∈ E. The Bregman projection ProjgC(x) is reduced to the generalized projection ΠC(x)
(see [6–16]), which is defined by

φ(ΠC(x), x) = inf{φ(y, x) : y ∈ C},

where φ : E ×E → R+ denotes the Lyapunov functional defined by φ(x, y) = ||x||2 − 2〈x, Jy〉+ ||y||2
for all x, y ∈ E. From the definition of φ , we have (||x|| − ||y||)2 ≤ φ(x, y) ≤ (||x||+ ||y||)2.

(2) If E is a Hilbert space and g(x) = ||x||2 for all x ∈ E, then D(x, y) = ||x−y||2, the Bregman projection
ProjgC(x) is reduced to the metric projection PC(x) of x onto C. For more details we refer the readers
to [5].

Definition 2.5 ([28]). Let B be the closed unit ball of a Banach space E. A function g : E → R is said to
be

(1) uniformly smooth on bounded subsets of E if the function σr : [0,+∞)→ [0,+∞], defined by

σr(t) = sup
x∈rB,y∈E,||y||=1,α∈(0,1)

[αg(x+ (1− α)ty) + (1− α)g(x− αty)− g(x)]× [α(1− α)]−1/2,

satisfies limt↓0
σr(t)
t = 0 for all r > 0;

(2) uniformly convex on bounded subsets of E if the gauge ρr : [0,+∞) → [0,+∞] of uniform convexity
of g, defined by

ρr(t) = inf
x,y∈rB,||x−y||=t,α∈(0,1)

[αg(x) + (1− α)g(y)− g(αx+ (1− α)y)]× [α(1− α)]−1/2,

satisfies ρr(t) > 0 for all r, t > 0.

Definition 2.6.

(1) A mapping T : C → C is said to be Bregman totally quasi-D-asymptotically nonexpansive [9], if
F (T ) 6= ∅ and there exist nonnegative real sequences {νn},{µn} satisfying νn, µn → 0 (as n → +∞)
and a strictly increasing continuous function ζ : R+ → R+ with ζ(0) = 0 such that

D(p, Tnx) ≤ D(p, x) + νn · ζ[D(p, x)] + µn ∀n ≥ 1, x ∈ C, p ∈ F (T ). (2.1)

(2) A mapping T : C → C is said to be Bregman quasi-D-asymptotically nonexpansive [9], if F (T ) 6= ∅
and there exists a sequence {kn} ⊂ [1,+∞) satisfying limn→+∞ kn = 1 such that

D(p, Tnx) ≤ knD(p, x) for all x ∈ C, p ∈ F (T ) and n ≥ 1. (2.2)

(3) A mapping T : C → C is said to be Bregman quasi-D-asymptotically nonexpansive in the intermediate
sense with sequence {νn} [23], if F (T ) 6= ∅ and there exists a sequence {νn} in [0,+∞) satisfying
limn→+∞ νn = 0 such that

lim sup
n→+∞

sup
x∈C,p∈F (T )

[D(p, Tnx)− (1 + νn)D(p, x)] ≤ 0. (2.3)

(4) A mapping T : C → C is said to be totally quasi-φ-asymptotically nonexpansive [38], if F (T ) 6= ∅ and
there exist nonnegative real sequences {νn},{µn} satisfying νn, µn → 0 (as n → +∞) and a strictly
increasing continuous function ζ : R+ → R+ with ζ(0) = 0 such that

φ(p, Tnx) ≤ φ(p, x) + νn · ζ[φ(p, x)] + µn ∀n ≥ 1, x ∈ C, p ∈ F (T ).
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(5) A mapping T : C → C is said to be quasi-φ-asymptotically nonexpansive [38, 47], if F (T ) 6= ∅ and
there exists a sequence {kn} ⊂ [1,+∞) satisfying limn→+∞ kn = 1 such that φ(p, Tnx) ≤ knφ(p, x) for
all x ∈ C, p ∈ F (T ) and n ≥ 1.

(6) A mapping T : C → C is said to be quasi-φ-asymptotically nonexpansive in the intermediate sense
with sequence {νn}, if F (T ) 6= ∅ and there exists a sequence {νn} in [0,+∞) satisfying limn→+∞ νn = 0
such that

lim sup
n→+∞

sup
x∈C,p∈F (T )

[φ(p, Tnx)− (1 + νn)φ(p, x)] ≤ 0.

Obviously, Bregman (totally D-asymptotically, D-asymptotically, respectively) nonexpansive mapping
contains Bregman quasi-D-nonexpansive mapping, and (totally φ-asymptotically, φ-asymptotically, respec-
tively) nonexpansive mapping as its special case. Indeed, if E is a smooth Banach space and g(x) = ||x||2
for all x ∈ E, then we have that D(x, y) = φ(x, y) for all x, y ∈ E and (totally φ-asymptotically, φ-
asymptotically, respectively) nonexpansive mapping is reduced to the Bregman (totally D-asymptotically,
D-asymptotically, respectively) nonexpansive mapping, but the converse is not true in general, in fact, let
g(x) = ||x||p for all x ∈ E and p ∈ (2,+∞), then D(x, y) 6= φ(x, y) in general for some x, y ∈ E. Thus, a
Bregman (totally D-asymptotically, D-asymptotically, respectively) nonexpansive mapping is not always a
(totally φ-asymptotically, φ-asymptotically, respectively) nonexpansive mapping.

Let C be a nonempty closed convex subset of E and T be a mapping from C to itself. A point p ∈ C
is said to be an asymptotic fixed point of T [6] if C contains a sequence {xn} which converges weakly to p
such that limn→∞ ||xn−Txn|| = 0. A point p ∈ C is said to be a strong asymptotic fixed point of T [28, 31]
if C has a sequence {xn} which converges strongly to p such that limn→∞ ||xn − Txn|| = 0. We denote the
sets of asymptotic fixed points and strong asymptotic fixed points of T by F̂ (T ) and F̃ (T ), respectively.

Definition 2.7.

(1) A mapping T from C into itself is said to be Bregman relatively nonexpansive [2, 25], if F̂ (T ) =
F (T ) 6= ∅ and D(p, Tx) ≤ D(p, x) for all x ∈ C and p ∈ F (T );

(2) T is said to be Bregman weak relatively nonexpansive [1, 22, 24], if F̃ (T ) = F (T ) 6= ∅ and D(p, Tx) ≤
D(p, x) for all x ∈ C and p ∈ F (T );

(3) T is said to be Bregman quasi-D-nonexpansive [29], if F (T ) 6= ∅ and D(p, Tx) ≤ D(p, x) for all x ∈ C
and p ∈ F (T );

(4) T is said to be Bregman firmly nonexpansive [21, 31], if

〈Og(Tx)− Og(Ty), Tx− Ty〉 ≤ 〈Og(x)− Og(y), Tx− Ty〉∀x, y ∈ C,

or, equivalently,

D(Tx, Ty) +D(Ty, Tx) +D(Tx, x) +D(Ty, y) ≤ D(Tx, y) +D(Ty, x)∀x, y ∈ C;

(5) T is said to be Bregman strongly nonexpansive [28, 45, 46], if F̂ (T ) 6= ∅ and D(p, Tx) ≤ D(p, x) for
all x ∈ C and p ∈ F̂ (T ) and if whenever {xn} ⊂ E is bounded, p ∈ F̂ (T ) and limn→+∞[D(p, xn) −
D(p, Txn)] = 0, it follows that limn→+∞D(Txn, xn) = 0;

(6) T is said to be relatively quasi-nonexpansive [33, 36], if F̂ (T ) = F (T ) 6= ∅ and φ(p, Tx) ≤ φ(p, x) for
all x ∈ C and p ∈ F (T );

(7) T is said to be weak relatively nonexpansive [33, 45], if F̃ (T ) = F (T ) 6= ∅ and φ(p, Tx) ≤ φ(p, x) for
all x ∈ C and p ∈ F (T );
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(8) T is said to be quasi-φ-nonexpansive [33, 47], if F (T ) 6= ∅ and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and
p ∈ F (T ).

Remark 2.8.

(1) If ζ(t) = t, t ≥ 0, then (2.1) is reduced to

D(p, Tnx) ≤ (1 + νn) ·D(p, x) + µn ∀n ≥ 1, x ∈ C, p ∈ F (T ). (2.4)

In addition, if µn ≡ 0 for all n ≥ 1, then Bregman totally quai-D-asymptotically nonexpansive
mappings coincide with Bregman quai-D-asymptotically nonexpansive mappings. If µn ≡ 0 and
νn ≡ 0 for all n ≥ 1, we obtain from (2.4) the class of mappings that includes the class of Bregman
quai-nonexpansive mappings. If νn ≡ 0 and µn = σn = max{0, supx∈E,p∈F (T )(D(p, Tnx) −D(p, x))}
for all n ≥ 1, then (2.4) is reduced to (2.3), which has been studied as Bregman quai-D-asymptotically
nonexpansive mappings in the intermediate sense.

(2) From the definitions, it is obvious that if F̂ (T ) = F (T ) 6= ∅, then a Bregman strongly nonexpansive
mapping is a Bregman relatively nonexpansive mapping; A Bregman relatively nonexpansive map-
ping is a Bregman quasi-D-nonexpansive mapping. A Bregman quasi-D-nonexpansive mapping is a
Bregman quasi-D-asymptotically nonexpansive mapping with kn ≡ 1, but the converse is not true.

If one takes ζ(t) = t, t ≥ 0, νn = kn−1, µn = 0, limn→+∞ kn = 1, then (2.1) can be rewritten as (2.2).
This implies that each Bregman quasi-D-asymptotically nonexpansive mapping must be a Bregman
total quasi-D-asymptotically nonexpansive mapping, but the converse is not true. In [9], S. S. Chang
et al. gave an example of Bregman total quasi-D-asymptotically nonexpansive mapping. A Bregman
relatively nonexpansive mapping is a Bregman weak relatively nonexpansive mapping, but the converse
is not true in general. Indeed, for any mapping T : C → C, we have F (T ) ⊂ F̃ (T ) ⊂ F̂ (T ). If T
is Bregman relatively nonexpansive, then F (T ) = F̃ (T ) = F̂ (T ). In [22], Naraghirad and Yao have
given two examples of a Bregman weak relatively nonexpansive mapping which is not a Bregman
relatively nonexpansive mapping, and a Bregman quasi-nonexpansive mapping which is neither a
Bregman relatively nonexpansive mapping nor a Bregman weak relatively nonexpansive mapping.

(3) The class of quasi-φ-(asymptotically) nonexpansive mappings is more general than that of relatively
nonexpansive mappings which requires the restriction F̂ (T ) = F (T ). A quasi-φ-nonexpansive mapping
with a nonempty fixed point set F (T ) is a quasi-φ-asymptotically nonexpansive mapping, but the
converse may not be true. In Hilbert spaces, quasi-φ-(asymptotically) nonexpansive mappings is
reduced to quasi-(asymptotically) nonexpansive mappings.

The theory of fixed points with respect to Bregman distances has been studied in the last ten years
and much intensively in the last six years. In [4], Bauschke and Combettes introduced an iterative method
to construct the Bregman projection of a point onto a countable intersection of closed and convex sets in
reflexive Banach spaces, they proved strong convergence theorem of the sequence produced by their method.
For more details, see [[2], Theorem 4.6]. For some recent articles on the existence of fixed points for Bregman
nonexpansive type mappings, we refer the readers to [1, 2, 4, 5, 7, 9, 10, 17, 21–25, 29–32, 35, 45, 46].

We need the following eight lemmas for our main results.

Lemma 2.9 ([46]). Let E be a Banach space and g : E → R a Gâteaux differentiable function which is
locally uniformly convex on E. Let {yn} and {zn} be sequences in E such that either {yn} or {zn} is bounded.
Then the following assertions are equivalent: (1) limn→+∞D(yn, zn) = 0; (2) limn→+∞ ||yn − zn|| = 0.

Lemma 2.10 ([22, 28]). Let C be a nonempty closed convex subset of a reflexive Banach space E, Let
g : E → R be a Gâteaux differentiable and totally convex function, and let x ∈ E. Then

(1) z = ProjgC(x) if and only if 〈y − z,Og(x)− Og(z)〉 ≤ 0, for all y ∈ C;
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(2) D(y, ProjgC(x)) +D(ProjgC(x), x) ≤ D(y, x), for all x ∈ E, y ∈ C;

(3) when the sequence {D(xn, x)}n∈N is bounded, we have that the sequence {xn}n∈N is bounded too.

Lemma 2.11 ([23]). Let C be a nonempty closed convex subset of Banach space E and g : E → (−∞,+∞]
be a Gâteaux differentiable function which is locally uniformly convex on E. Let T : C → C be a closed and
Bregman totally quasi-D-asymptotically nonexpansive mapping with nonnegative real sequences {νn}, {µn}
and a strictly increasing and continuous function ζ : R+ → R+ satisfying ζ(0) = 0. If νn, µn → 0 (as n →
+∞), then F (T ) is a closed convex subset of C.

Lemma 2.12 ([22]). Let E be a Banach space, r > 0 be a positive number and g : E → R be a continuous
and convex function which is uniformly convex on bounded subsets of E. Then

g
( +∞∑
n=1

λnxn

)
≤

+∞∑
n=1

λng(xn)− λiλjρr(||xi − xj ||)

for any given infinite subset {xn} ⊂ Br(0) = {x ∈ E : ||x|| ≤ r} and for any given sequence {λn} of positive
numbers with

∑+∞
n=1 λn = 1, for any i, j ∈ N with i < j, where ρr is the gauge of uniformly convexity of g.

For solving the equilibrium problem, let us assume that bifunction f : C ×C → R satisfies the following
conditions:

(C1) f(x, x) = 0, for all x ∈ C;

(C2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0, for all x, y ∈ C;

(C3) for each y ∈ C, the function x 7→ f(x, y) is upper semicontinuous;

(C4) for all x ∈ C, y 7→ f(x, y) is a convex and lower semicontinuous.

Lemma 2.13 ([1]). Let E be a reflexive Banach space and g : E → R a convex, continuous and strongly
coercive function which is bounded on bounded subsets and uniformly convex on bounded subset of E. Let
C be a nonempty, closed and convex subset of E and f : C × C → R a bifunction satisfying conditions
(C1)-(C4) and EP (G) 6= ∅, ϕ : C → R be a lower semicontinuous and convex functional, A : C → E∗ be a
continuous and monotone mapping. For r > 0 and x ∈ E, define a mapping TGr : E → C as follows:

TGr x = {z ∈ C : G(z, y) +
1

r
〈y − z,Og(z)− Og(x)〉 ≥ 0, ∀y ∈ C},

where G(x, y) = f(x, y) + ϕ(y)− ϕ(x) + 〈Ax, y − x〉 for all x, y ∈ E. Then, the following statements hold:

(1) dom(TGr ) = E;

(2) TGr is a Bregman firmly nonexpansive mapping, i.e., for all x, y ∈ E,

〈TGr x− TGr y,Og(TGr x)− Og(TGr y)〉 ≤ 〈TGr x− TGr y,Og(x)− Og(y)〉;

(3) TGr is single-valued;

(4) F (TGr ) = GMEP (f, ϕ);

(5) D(q, TGr x) +D(TGr x, x) ≤ D(q, x) ∀q ∈ F (TGr );

(6) GMEP (f, ϕ) is closed and convex subset of C.

Lemma 2.14 ([7, 25]). Let E be a reflexive Banach space, g : E → R a strongly coercive Bregman function
and the function V defined by V (x, x∗) = g(x)− 〈x, x∗〉+ g∗(x∗) for all x ∈ E, x∗ ∈ E∗. Then the following
assertions hold:
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(1) D(x,Og∗(x∗)) = V (x, x∗) for all x ∈ E, x∗ ∈ E∗;

(2) V (x, x∗) + 〈Og∗(x∗)− x, y∗〉 ≤ V (x, x∗ + y∗) for all x ∈ E andx∗, y∗ ∈ E∗.

Lemma 2.15 ([44]). Let E be a Banach space, let g : E → (−∞,+∞] be a proper, lower semicontinuous
and convex function. Then the following statements are equivalent:

(1) There exists a constant c1 > 0 such that g is ρr-convex with ρr(t) := c1
2 t

2 for all t ≥ 0.

(2) There exists a constant c > 0 such that for all x, y ∈ E and x∗ ∈ ∂g(x), y∗ ∈ ∂g(y), we have
||x∗ − y∗|| ≥ c||x− y||, where 1

c is the 2-uniformly convexity constant.

Lemma 2.16 ([44]). Let E be a reflexive Banach space and let g : E → R be a convex, continuous and
strongly coercive function. Then the following assertions are equivalent:

(1) g is bounded on bounded subsets and uniformly smooth on bounded subsets of E;

(2) g∗ is Fréchet differentiable and Og∗ is uniformly norm-to-norm continuous on bounded subsets of E∗;

(3) domg∗ = E∗, g∗ is strongly coercive and uniformly convex on bounded subsets of E∗.

3. Main results

Theorem 3.1. Let E be a 2-uniformly convex Banach space and g : E → R be a strongly coercive Bregman
function which is bounded on bounded subsets and uniformly smooth and 2-uniformly convex on bounded
subsets of E. Let C be a nonempty, closed and convex subset of E. Suppose B : C → E∗ is an α-
inverse-strongly monotone operator satisfying (B1)-(B2). For each k = 1, 2, · · · ,m, let Ak : C → E∗ be
a continuous and monotone mapping, ϕk : C → R be a lower semicontinuous and convex functional, let
fk : C × C → R be a bifunction satisfying (C1)-(C4) and Ti : C → C for all i ∈ N be an infinite family
of closed and uniformly Bregman totally quasi-D-asymptotically nonexpansive mappings with nonnegative

real sequences {ν(i)n }, {µ(i)n } and a strictly increasing and continuous function ζ : R+ → R+ with ζ(0) = 0.

limn→+∞ supi≥0{ν
(i)
n } = 0 and limn→+∞ supi≥0{µ

(i)
n } = 0, T0 = I and I is the identity mapping on C.

Assume that F :=
[⋂+∞

i=0 F (Ti)
]
∩
[⋂m

k=1GMEP (fk, ϕk)
]
∩ V I(C,B) 6= ∅ and Ti is uniformly asymptotic

regular on C for all i ≥ 0, i.e., limn→+∞ supx∈K ||Tn+1
i x− Tni x|| = 0 holds for any bounded subset K of C.

For each k = 1, 2, · · · ,m, {rk,n}+∞n=1 ⊂ (0,+∞) satisfying lim infn→+∞ rk,n > 0 for all z, y ∈ C,

Gk(z, y) = fk(z, y) + ϕk(y)− ϕk(z) + 〈Akz, y − z〉,

TGk
rk,n

(x) = {z ∈ C : Gk(z, y) +
1

rk,n
〈y − z,Og(z)− Og(x)〉 ≥ 0, ∀y ∈ C}.

Let {xn} be a sequence generated by

x0 ∈ C chosen arbitrarily,

C0 = C,

yn = Og∗{αnOg(ProjgC [Og∗(Og(xn)− λnBxn)]) + (1− αn)Og(zn)},

zn = Og∗
[ +∞∑
i=0

β(i)n Og(Tni xn)
]
,

un = TGm
rm,n

TGm−1
rm−1,n

· · ·TG2
r2,nT

G1
r1,nyn,

Cn+1 = {z ∈ Cn : D(z, un) ≤ αnD(z, xn) + (1− αn)D(z, zn) ≤ D(z, xn) + ωn},
xn+1 = ProjgCn+1

(x0),

(3.1)
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where ωn = supi≥0{ν
(i)
n } · supp∈F {ζ[D(p, xn)]}+ supi≥0{µ

(i)
n } < +∞ for each n ≥ 0, {λn} ⊂ [a, b] for some

a, b with 0 < a < b < cα, where 1
c is 2-uniformly convexity constant of E satisfying Lemma 2.15 (2), {αn},

{β(i)n }(i ∈ N) are real sequences in [0, 1] satisfy the conditions:

∀n ≥ 0,
∞∑
i=0

β(i)n = 1, lim inf
n→∞

(1− αn)β(0)n β(i)n > 0 ∀i ∈ N.

Then the sequence {xn} converges strongly to ProjgFx0.

Proof. We define a bifunction Gk : C × C → R by

Gk(x, y) = fk(x, y) + ϕk(y)− ϕk(x) + 〈Akx, y − x〉 ∀x, y ∈ C.

Then, we may prove from Lemma 2.13 that the bifunction Gk satisfies conditions (C1)-(C4) for each
k = 1, 2, · · · ,m. Therefore, the generalized mixed equilibrium problem (1.1) is equivalent to the following
equilibrium problem: find x ∈ C such that Gk(x, y) ≥ 0, for all y ∈ C. Hence, GMEP (fk, ϕk) = EP (Gk).

By taking θkn = TGk
rk,n

T
Gk−1
rk−1,n · · ·TG2

r2,nT
G1
r1,n , k = 1, 2, · · · ,m and θ0n = I for all n ≥ 0, we obtain un = θmn yn.

Let tn = Og∗[Og(xn) − λnBxn]. In view of Lemma 2.12, Lemma 2.13, and the closeness and convexity of
V I(C,B), we find that F is closed and convex subset of C, so that ProjgFx0 is well-defined for any x0 ∈ C.
We divide the proof of Theorem 3.1 into six steps:

Step 1. We first show that Cn is both closed and convex for each n ≥ 1.

In fact, for z ∈ Cm, we see that

D(z, um) ≤ αmD(z, xm) + (1− αm)D(z, zm) ≤ D(z, xm) + ωm

is equivalent to

〈z − um, αmOg(xm) + (1− αm)Og(zm)− Og(um)〉 ≤ αmD(um, xm) + (1− αm)D(um, zm)− g(um)

and
(1− αm)〈z − xm,Og(xm)− Og(zm)〉 ≤ −(1− αm)D(xm, zm) + ωm.

The last two inequalities are affine with respect to z, so Cn is closed and convex.

Step 2. Assume that F ⊂ Cn for all n ≥ 0. Then the sequence {xn} is bounded. In fact, by the construction
of Cn, we have that xn = ProjgCn

(x0), then it follows from Lemma 2.10 that

D(xn, x0) = D(ProjgCn
(x0), x0) ≤ D(p, x0)−D(p, xn) ≤ D(p, x0)

for each p ∈ F ⊂ Cn for all n ≥ 0. Hence, the sequence {D(xn, x0)} is bounded. Thus, by Lemma 2.10,
{xn} is bounded and so are {Tixn}, {yn}, {zn}, {un}.

Step 3. Next, we show that F ⊂ Cn for all n ≥ 0.
In fact, it is obvious that F ⊂ C0 = C. Assume now that F ⊂ Cn for some n ∈ N . It follows from the

definition of D(·, ·) and Ti, Lemma 2.12, and (3.1) that, for each p ∈ F ⊂ Cn, we have

D(p, zn) = D
(
p,Og∗

[ +∞∑
i=0

β(i)n Og(Tni xn)
])

≤
+∞∑
i=0

β(i)n D(p, Tni xn)

≤
+∞∑
i=0

β(i)n {D(p, xn) + ν(i)n ζ[D(p, xn)] + µ(i)n }

≤
+∞∑
i=0

β(i)n [D(p, xn) + ωn]

= D(p, xn) + ωn.

(3.2)
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Observe that p ∈ F implies p ∈ C, by Lemma 2.10, Lemma 2.14, and (3.1), for all p ∈ C, we have

D(p, ProjgC(tn)) ≤ D(p, tn)−D(ProjgC(tn), tn)

≤ D(p, tn)

= V (p,Og(xn)− λnBxn)

≤ V (p, [Og(xn)− λnBxn] + λnBxn)− 〈Og∗[Og(xn)− λnBxn]− p, λnBxn〉
= V (p,Og(xn))− λn〈tn − p,Bxn〉
= D(p, xn)− λn〈xn − p,Bxn〉+ 〈tn − xn,−λnBxn〉.

(3.3)

From p ∈ V I(C,B) and the fact that B is an α-inverse-strongly monotone operator, we obtain

−λn〈xn − p,Bxn〉 = −λn〈xn − p,Bxn −Bp〉 − λn〈xn − p,Bp〉 ≤ −λnα||Bxn −Bp||2. (3.4)

By Lemma 2.15 and condition (B2), we also obtain

〈tn − xn,−λnBxn〉 ≤ ||tn − xn|| · λn||Bxn||

≤ 1

c
||Og(tn)− Og(xn)|| · λn||Bxn||

=
1

c
λ2n · ||Bxn||2

≤ 1

c
λ2n||Bxn −Bp||2.

(3.5)

Combining (3.3)-(3.5), λn ∈ [a, b] and 0 < b < cα, we obtain

D(p, ProjgC(tn)) ≤ D(p, tn) ≤ D(p, xn) + λn
(b
c
− α

)
· ||Bxn −Bp||2 ≤ D(p, xn). (3.6)

Thus, by (3.1)-(3.3), Lemma 2.12, Lemma 2.13, and the fact that TGk
rk,n

(k = 1, 2, · · · ,m) is a Bregman
quasi-D-nonexpansive mapping, for each p ∈ F , we obtain

D(p, un) = D(p, θmn yn)

≤ D(p, yn)

= D
(
p,Og∗[αnOg(ProjgC(tn)) + (1− αn)Og(zn)]

)
≤ αnD(p, ProjgC(tn)) + (1− αn)D(p, zn)

≤ αnD(p, xn) + (1− αn)D(p, zn)

≤ αnD(p, xn) + (1− αn)[D(p, xn) + ωn]

≤ D(p, xn) + ωn.

(3.7)

This proves that p ∈ Cn+1. Consequently, we see that F ⊂ Cn for any n ∈ N .

Step 4. Now, we show that {xn} is Cauchy sequence.
In fact, combining xn+1 = ProjgCn+1

(x0) ∈ Cn+1 ⊂ Cn and Lemma 2.10, we obtain

0 ≤ D(xn, xn+1) ≤ D(xn, x0)−D(xn+1, x0)

for all n ≥ 0. Thus, the sequence {D(xn, x0)} is nondecreasing. It follows from the boundedness of
{D(xn, x0)} that the limit of {D(xn, x0)} exists.

For any positive integer m, it then follows from Lemma 2.10 and existence of the limit of {D(xn, x0)}
that

D(xn+m, xn) = D(xn+m, P roj
g
Cn

(x0))

≤ D(xn+m, x0)−D(ProjgCn
(x0), x0)

= D(xn+m, x0)−D(xn, x0).

(3.8)
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It follows from (3.8) that D(xn+m, xn)→ 0 as n→∞. We have from the boundedness of {D(xn, x0)} that
{xn} is bounded and combining Lemma 2.9, we obtain

xn+m − xn → 0, n→∞.

Hence, the sequence {xn} is Cauchy in C. Since E is a Banach space and C is closed, then there exists
p ∈ C such that xn → p as n → ∞. Now, since D(xn+m, xn) → 0 as n → ∞ for any positive integer
m, we have in particular that limn→∞D(xn+1, xn) = 0 and this further implies from Lemma 2.9 that
limn→∞ ||xn+1 − xn|| = 0. Since xn+1 = ProjgCn+1

(x0) ∈ Cn+1 ⊂ Cn and limn→∞ ωn = 0, we have

D(xn+1, un) ≤ D(xn+1, xn) + ωn → 0, n→∞.

From Lemma 2.9, we obtain that limn→∞ ||xn+1 − un|| = 0. Therefore

||xn − un|| ≤ ||xn − xn+1||+ ||xn+1 − un|| → 0. (3.9)

It follows from limn→+∞ ||xn − p|| = 0 and (3.9) that

un → p, n→∞. (3.10)

Step 5. Now we prove that p ∈
[⋂+∞

i=0 F (Ti)
]
∩
[⋂m

k=1GMEP (fk, ϕk)
]
∩ V I(C,B).

(a) First we prove that p ∈
⋂+∞
i=0 F (Ti).

Since g is bounded on bounded subsets and uniformly smooth on bounded subsets of E, we have from
Lemma 2.16 that Og(·) is uniformly norm-to-norm continuous on any bounded sets and combining (3.9), we
obtain

lim
n→∞

||Og(xn)− Og(un)|| = 0. (3.11)

It follows from the boundedness of the sequences {xn} and {ζn}, D(p, Tni xn) ≤ D(p, xn) + ζn for each
p ∈ F , i ∈ N that the sequences {Og(Tni xn)} are bounded. In view of Lemma 2.16, we know that
domg∗ = E∗ and g∗ is strongly coercive and uniformly convex on bounded subsets of E∗. Let r =
sup{||Og(xn)||, ||Og(Tni xn)|| : i ∈ N,n ∈ N} and ρ∗r : E∗ → R be the gauge of uniformly convexity of
the conjugate function g∗. For each p ∈ F , we have from Lemma 2.12, Lemma 2.13 and (3.6) that

D(p, un) = D(p, θmn yn)

≤ D(p, yn)

= D
(
p,Og∗[αnOg(ProjgC(tn)) + (1− αn)Og(zn)]

)
≤ αnD(p, ProjgC(tn)) + (1− αn)D(p, zn)

≤ αnD(p, ProjgC(tn)) + (1− αn) ·
( +∞∑
i=0

β(i)n D(p, Tni xn)− β(0)n β(i)n ρ∗r
(
||Og(Tn0 xn)− Og(Tni xn)||

))
≤ αnD(p, xn) + (1− αn) ·

( +∞∑
i=0

β(i)n [D(p, xn) + ωn]− β(0)n β(i)n ρ∗r
(
||Og(Tn0 xn)− Og(Tni xn)||

))
≤ αnD(p, xn) + (1− αn)D(p, xn) + ωn − (1− αn)β(0)n β(i)n ρ∗r

(
||Og(Tn0 xn)− Og(Tni xn)||

)
= D(p, xn) + ωn − (1− αn)β(0)n β(i)n ρ∗r(||Og(Tn0 xn)− Og(Tni xn)||).

This implies that

0 ≤ (1− αn)β(0)n β(i)n ρ∗r(||Og(Tn0 xn)− Og(Tni xn)||) ≤ D(p, xn)−D(p, un) + ωn. (3.12)

On the other hand, it follows from the three point identity (see Remark 2.8 (1)) that

|D(p, xn)−D(p, un)| = | −D(xn, un) + 〈xn − p,Og(un)− Og(xn)〉|
≤ D(xn, un) + ||xn − p|| · ||Og(un)− Og(xn)||.
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In view of (3.9) and (3.11), we obtain

D(p, xn)−D(p, un)→ 0, n→∞. (3.13)

Combining (3.12) and (3.13), limn→+∞ ζn = 0, T0 = I and lim infn→∞(1− αn)β
(0)
n β

(i)
n > 0, we have

ρ∗r(||Og(Tn0 xn)− Og(Tni xn)||)→ 0, n→∞.

It follows from the property of ρ∗r that

lim
n→+∞

||Og(xn)− Og(Tni xn)|| = 0. (3.14)

Since xn → p as n → ∞ and Og(·) is uniformly norm-to-norm continuous on any bounded sets, we
obtain that

||Og(xn)− Og(p)|| → 0 as n→∞. (3.15)

Note that ||Og(Tni xn) − Og(p)|| ≤ ||Og(xn) − Og(Tni xn)|| + ||Og(xn) − Og(p)||. From (3.14) and (3.15),
we see that

lim
n→+∞

||Og(Tni xn)− Og(p)|| = 0. (3.16)

Observe that Og∗(·) is also uniformly norm-to-norm continuous on any bounded sets. It follows from
(3.16) that

lim
n→+∞

||Tni xn − p|| = 0. (3.17)

Using ||Tn+1
i xn − p|| ≤ ||Tn+1

i xn − Tni xn|| + ||Tni xn − p||, the uniformly asymptotic regularity of Ti and
(3.17), we have limn→+∞ ||Tn+1

i xn− p|| = 0. That is, Ti(T
n
i xn)→ p as n→∞, it follows from the closeness

of Ti that Tip = p for all i ∈ N , i.e., p ∈
⋂+∞
i=0 F (Ti).

(b) Now we prove that p ∈
⋂m
k=1GMEP (fk, ϕk) =

⋂m
k=1EP (Gk).

In fact, in view of un = θmn yn, (3.7) and Lemma 2.13, for each q ∈ F (θkn), we have

0 ≤ D(un, yn) = D(θmn yn, yn) ≤ D(p, yn)−D(p, θmn yn) ≤ D(p, xn)−D(p, un) + ωn.

It follows from (3.13) and limn→+∞ ωn = 0 that D(un, yn) → 0 as n → ∞. Using Lemma 2.9, we see that
||un− yn|| → 0 as n→∞. Furthermore, ||xn− yn|| ≤ ||xn−un||+ ||un− yn|| → 0 as n→∞. Since xn → p,
as n→∞ and ||xn − yn|| → 0, as n→∞, then yn → p, as n→∞. By the fact that θkn(k = 1, 2, · · · ,m) is
a Bregman quasi-D-nonexpansive mapping and using Lemma 2.13 and (3.7) again, we have that

0 ≤ D(θknyn, yn) ≤ D(p, yn)−D(p, θknyn) ≤ D(p, xn)−D(p, θknyn) + ωn. (3.18)

Observe that

D(p, un) = D(p, θmn yn) = D(p, TGm
rm,n

TGm−1
rm−1,n

· · ·TG2
r2,nT

G1
r1,nyn)

= D(p, TGm
rm,n

TGm−1
rm−1,n

· · · θknyn) ≤ D(p, θknyn).
(3.19)

Using (3.19) in (3.18), we obtain that 0 ≤ D(θknyn, yn) ≤ D(p, xn) −D(p, un) + ωn → 0 as n → ∞. Then
Lemma 2.9 implies that limn→∞ ||θknyn − yn|| = 0, k = 1, 2, · · · ,m. Now

||θknyn − p|| ≤ ||θknyn − yn||+ ||yn − p|| → 0, n→∞,

k = 1, 2, · · · ,m. Similarly, limn→+∞ ||θk−1n yn − p|| = 0, k = 1, 2, · · · ,m. This further implies that

lim
n→+∞

||θk−1n yn − θknyn|| = 0. (3.20)
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Also, since Og(·) is uniformly norm-to-norm continuous on any bounded sets and using (3.20), we obtain
that limn→+∞ ||Og(θknyn) − Og(θk−1n yn)|| = 0. From {rk,n}+∞n=1 ⊂ (0,+∞) satisfying lim infn→+∞ rk,n > 0
for each k = 1, 2, · · · ,m, we see that

lim
n→∞

||Og(θknyn)− Og(θk−1n yn)||
rk,n

= 0. (3.21)

By Lemma 2.13, we have that for each k = 1, 2, · · · ,m,

Gk(θ
k
nyn, y) +

1

rk,n
〈y − θknyn,Og(θknyn)− Og(θk−1n yn)〉 ≥ 0, ∀y ∈ C.

Furthermore, replacing n by nj in the last inequality and using condition (C2), we obtain

||y − θknj
ynj || ·

||Og(θknj
ynj )− Og(θk−1nj

ynj )||
rk,nj

≥ 1

rk,nj

〈y − θknj
ynj ,Og(θknj

ynj )− Og(θk−1nj
ynj )〉

≥ −Gk(θknj
ynj , y) ≥ Gk(y, θknj

ynj ) ∀y ∈ C.

By taking the limit as j → +∞ in the above inequality, for each k = 1, 2, · · · ,m, we have from the condition
(C4), (3.21) and θknj

ynj → p as j → +∞ that Gk(y, p) ≤ 0, for all y ∈ C.
For 0 < t ≤ 1 and y ∈ C, define yt = ty + (1− t)p. It follows from y, p ∈ C and the convexity of C that

yt ∈ C, which yields that Gk(yt, p) ≤ 0. It follows from the conditions (C1) and (C4) that

0 = Gk(yt, yt) ≤ tGk(yt, y) + (1− t)Gk(yt, p) ≤ tGk(yt, y).

That is,
Gk(yt, y) ≥ 0.

Let t → 0+, from the condition (C3), then we obtain that Gk(p, y) ≥ 0, ∀y ∈ C. This implies that
p ∈ EP (Gk), k = 1, 2, · · · ,m, i.e., p ∈

⋂m
k=1EP (Gk) =

⋂m
k=1GMEP (fk, ϕk).

(c) Next we prove that limn→∞ ||xn − ProjgC(tn)|| = 0.
In fact, it follows from Lemma 2.10, Lemma 2.14, (3.5), (3.9), (3.10), and 1

α -Lipschitzian of B that

D(xn, P roj
g
C(tn)) ≤ D(xn, tn)−D(ProjgC(tn), tn)

≤ D(xn, tn)

= V (xn,Og(xn)− λnBxn)

≤ V (xn, [Og(xn)− λnBxn] + λnBxn)− 〈Og∗[Og(xn)− λnBxn]− xn, λnBxn〉
= D(xn, xn)− 〈tn − xn, λnBxn〉
= −〈tn − xn, λnBxn〉

≤ 1

c
λ2n||Bxn −Bp||2

≤ λ2n
cα2
||xn − p||2

≤ b2

cα2
(||xn − un||+ ||un − p||)2 → 0 (n→∞).

So, from Lemma 2.9, we have limn→∞D(xn, P roj
g
C(tn)) = 0 which implies that

lim
n→∞

||xn − ProjgC(tn)|| = 0. (3.22)

Thus, by the uniform continuity on any bounded set of Og(·), we obtain that

lim
n→∞

||Og(xn)− Og[ProjgC(tn)]|| = 0. (3.23)
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(d) Now we prove that p ∈ V I(C,B). Define M : E → 2E
∗

as follows:

Mv =

{
Bv +NC(v), v ∈ C,
∅, v /∈ C,

where NC(v) = {w ∈ E : 〈v − u,w〉 ≥ 0, ∀u ∈ C} is the normal cone to C at v ∈ C. Then the multi-
valued mapping M is maximal monotone and M−10 = V I(C,B). Let G(M) denote the graph of M and
let (v, w) ∈ G(M), then we have w ∈ Mv = Bv + NC(v) and hence w − Bv ∈ NC(v). Therefore, by
ProjgC(tn) ∈ C, we have

〈v − ProjgC(tn), w −Bv〉 ≥ 0. (3.24)

On the other hand, it follows from Lemma 2.10 that

〈v − ProjgC(tn),Og(ProjgC(tn))− Og(tn)〉 ≥ 0.

That is,

〈v − ProjgC(tn),
Og(xn)− Og(ProjgC(tn))

λn
−Bxn〉 ≤ 0. (3.25)

It follows from (3.24) and (3.25) that

〈v − ProjgC(tn), w〉 ≥ 〈v − ProjgC(tn), Bv〉

≥ 〈v − ProjgC(tn), Bv〉+ 〈v − ProjgC(tn),
Og(xn)− Og[ProjgC(tn)]

λn
−Bxn〉

= 〈v − ProjgC(tn), Bv −B(ProjgC(tn))〉+ 〈v − ProjgC(tn), B(ProjgC(tn))

−Bxn〉+ 〈v − ProjgC(tn),
Og(xn)− Og[ProjgC(tn)]

λn
〉

≥ −||v − ProjgC(tn)|| ·
||ProjgC(tn)− xn||

α
− ||v − ProjgC(tn)||

·
||Og[ProjgC(tn)]− Og(xn)||

a

≥ −L
( ||ProjgC(tn)− xn||

α
+
||Og[ProjgC(tn)]− Og(xn)||

a

)
,

where L = sup{||v − ProjgC(tn)|| : n ∈ N}, letting n = nk and k → +∞, using (3.9), (3.10), (3.22),
and (3.23), we obtain that 〈v − p, w〉 ≥ 0. Since M is maximal monotone, we have p ∈ M−10 and hence
p ∈ V I(C,B). Thus we have p ∈ F .

Step 6 Finally, we prove that p = ProjgF (x0).
From xn = ProjgCn

(x0) and Lemma 2.10, we see that 〈xn − z,Og(x0) − Og(xn)〉 ≥ 0, for all z ∈ Cn.
Since F ⊂ Cn for each n ≥ 0, we have 〈xn−w,Og(x0)−Og(xn)〉 ≥ 0, for all w ∈ F. Let n→ +∞ in the last
inequality, we see that 〈p − w,Og(x0) − Og(p)〉 ≥ 0, for all w ∈ F . In view of Lemma 2.10, we can obtain
that p = ProjgFx0. This completes the proof of Theorem 3.1.

Remark 3.2.

(1) If we suppose that Ti is uniformly Li-Lipschitz continuous on C for each i ∈ N+, then the assumption
that Ti is closed and uniformly asymptotic regular on C can be removed in Theorem 3.1.

(2) Theorem 3.1 extends the mapping in Theorem 5.2 of Naraghirad and Yao [22] from a family of
Bregman weak relatively nonexpansive mappings to a countable family of Bregman totally quasi-
D-asymptotically nonexpansive mappings. Meanwhile, Theorem 3.1 also removes the assumption
F̂ (T ) = F (T ) on the mapping T . If we set λn ≡ λ, αn ≡ 1, ζn ≡ 0, rk,n ≡ rn, ϕk = Ak ≡ 0,
k = m = 1, for all n ∈ N in (3.1), then (3.1) can be rewritten as (1.5). Hence, Theorem 3.1 improves
and extends Theorem 5.2 of Naraghirad and Yao [22].



R. Ni, J. Nonlinear Sci. Appl. 9 (2016), 4924–4948 4940

(3) Theorem 3.1 also improves and generalizes Corollary 7 and Corollary 8 of Reich and Sabach [28],
Theorem 12 of Zhu et al. [46], Theorem 20 of Pang and Naraghirad [24], Theorem 3.1 of Agarwal et
al. [1], Theorem 2.1 of Wu and Lv [37], and others.

(4) For any positive integer i, let Ri be a maximal monotone operator from E to E∗ such that R−1i 0 6= ∅.
Let ri > 0 and Resgri,Ri

= (Og+ riRi)
−1Og be the g-resolvent of Ri. Letting Ti = Resgri,Ri

. In view of
Lemma 3.2 in [30], we may conclude that Ti is a closed and Bregman relatively nonexpansive mapping
and F̃ (Resgri,Ri

) = F (Resgri,Ri
) = R−1i (0), so Ti is a closed Bregman totally quasi-D-asymptotically

nonexpansive mapping. Thus, if we take Ti = Resgri,Ri
in Theorem 3.1, then we can obtain an algorithm

for finding common zeroes of finitely many maximal monotone operators, here is omitted.

The space in Theorem 3.1 can be applicable to E = Lp(lp, W
p
m, respectively, where p ∈ (1, 2]) and

g(x) = ||x||2 for every x ∈ E or E= H, etc.. Now, we give the following Example 3.3 in order to support
Theorem 3.1. Meanwhile, Example 3.3 also shows that there is a countable family of closed, uniformly
asymptotic regular and uniformly Bregman totally quasi-D-asymptotically nonexpansive mappings which
are not Bregman D-nonexpansive mappings.

Example 3.3. Let E = l2 and C = {x ∈ l2
∣∣ ||x|| ≤ 1}, where l2 =

{
σ = (σ1, σ2, · · · , σn, · · · )

∣∣,∑+∞
n=1 |σn|2 <

+∞
}

, ||σ|| =
(∑+∞

n=1 |σn|2
) 1

2 for all σ = (σ1, σ2, · · · , σn, · · · ) ∈ l2, 〈σ, η〉 =
∑+∞

n=1 σnηn for all σ =
(σ1, σ2, · · · , σn, · · · ), and η = (η1, η2, · · · , ηn, · · · ) ∈ l2. Set x0 = (1, 0, 0, · · · ), then x0 ∈ C and ||x0|| = 1.
Define the following countable family of mappings Ti : C → C by

Ti(x1, x2, x3, · · · ) =

{
(0, x21, a2x2, a3x3, · · · ), if x ∈ {x = (x1, x2, x3, · · · ) |x = x0

2n ∈ C}
4
= Q,

− 1
i+2(x1, x2, x3, · · · ), if x ∈ {x = (x1, x2, x3, · · · ) |x ∈ C and x 6= x0

2n }

for all i ∈ N and n ≥ 1, n ∈ N , where {ai} is a sequence in (0,1) such that Π+∞
i=2 ai = 1

2 .
It is proved in Goebel and Kirk [11] that

(i) ||Tix− Tiy|| ≤ 2||x− y|| ∀x, y ∈ Q, i ∈ N ;

(ii) ||Tni x− Tni y|| ≤ (2Πn
j=2aj)||x− y|| ∀x, y ∈ Q, ∀n ≥ 2, i ∈ N.

It is clear that F (Ti) = {0} for all i ∈ N , E is a Hilbert space. Let g : E → R be defined by g(x) = ||x||2,
x ∈ E, then the Bregman distance D(x, y) = ||x− y||2 for all x, y ∈ E.

Let ζ(t) = t for all t ≥ 0, and {µn} be a nonnegative real sequence with µn → 0 as n → +∞. For any
p ∈ F (Ti) = {0} and x ∈ C, we consider the following two cases:

1) If x ∈ Q, then from (i) and (ii), we have

D(p, Tni x) = ||p− Tni x||2 = ||0− Tni x||2 = ||Tni 0− Tni x||2 ≤ (2Πn
j=2aj)

2||0− x||2

= ||x||2 + [(2Πn
j=2aj)

2 − 1] · ||x||2 = D(0, x) + [(2Πn
j=2aj)

2 − 1] ·D(0, x)

≤ D(p, x) + [(2Πn
j=2aj)

2 − 1] · ζ(D(p, x)) + µn;

2) If x ∈ C\Q, then x 6= x0
2n , x ∈ C and Tni x = (−1)n

(i+2)nx, we have

D(p, Tni x) = ||p− Tni x||2 = ||0− Tni x||2 = ||Tni x||2 =
1

(i+ 2)2n
||x||2

≤ ||0− x||2 +
1

(i+ 2)2n
||0− x||2 + µn = D(p, x) +

1

(i+ 2)2n
D(p, x) + µn

= D(p, x) +
1

(i+ 2)2n
ζ(D(p, x)) + µn.
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It follows from 1) and 2) that

D(p, Tni x) ≤ D(p, x) + ν(i)n · ζ(D(p, x)) + µ(i)n ∀p ∈ F (T ), x ∈ C, n ≥ 1, i ≥ 0,

where ν
(i)
n = max{(2Πn

j=2aj)
2 − 1, 1

(i+2)2n
} and µ

(i)
n = µn.

Note that

0 ≤ lim
n→+∞

sup
i≥0
{ν(i)n } ≤ lim

n→+∞
max{(2Πn

j=2aj)
2 − 1,

1

22n
} = 0,

thus we have limn→+∞ supi≥0{ν
(i)
n } = 0. This implies that Ti : C → C is a countable family of uniformly

Bregman totally quasi-D-asymptotically nonexpansive mappings for every i ∈ N . Next, we claim that Ti is
not a Bregman D-nonexpansive mapping for all i ∈ N . Indeed, let s = 3x0

5 , t = x0
2 ∈ C, then

D(Tis, Tit) = ||Tis− Tit||2 =
∣∣∣∣(− 1

i+ 2
)(

3

5
, 0, 0, · · · )− (0,

1

4
, 0, · · · )

∣∣∣∣2
=

9

25(i+ 2)2
+

1

16
> (

1

10
)2 = ||3x0

5
− x0

2
||2 = ||s− t||2 = D(s, t)

for all i ∈ N .
Now, if x ∈ Q, then Tmi x = 1

22n
(Πm

j=2aj) ·
(

0, · · · , 0︸ ︷︷ ︸
m

, 1, 0, · · ·
)

for all i ∈ N and m ≥ 2, m ∈ N . For any

bounded subset K of C, we have

0 ≤ lim
n→+∞

sup
y∈K
||Tn+1

i y − Tni y||

≤ lim
n→+∞

max
(∣∣∣∣ 1

22n
(Πn+1

j=2 aj) ·
(

0, · · · , 0︸ ︷︷ ︸
n+1

, 1, 0, · · ·
)
− 1

22n
(Πn

j=2aj) ·
(

0, · · · , 0︸ ︷︷ ︸
n

, 1, 0, · · ·
)∣∣∣∣,

sup
y∈K\{ x0

2n
}

∣∣∣∣ (−1)n+1

(i+ 2)n+1
y − (−1)n

(i+ 2)n
y
∣∣∣∣)

≤ lim
n→+∞

max
( 1

22n
(Πn

j=2aj) ·
√
a2n+1 + 1, sup

y∈C\{ x0
2n
}

i+ 3

(i+ 2)n+1
||y||

)
≤ lim

n→+∞
max

(√12 + 1

22n
(Πn

j=2aj),
i+ 3

(i+ 2)n+1
· 1
)

≤ lim
n→+∞

max
(Πn

j=2aj

22n−0.5
,

2i+ 4

(i+ 2)n+1

)
≤ lim

n→+∞
max

( 1

22n−0.5
,

2

(i+ 2)n

)
≤ lim

n→+∞
max

( 1

22n−0.5
,

1

2n−1

)
= lim

n→+∞

1

2n−1
= 0.

This implies that limn→+∞ supy∈K ||Tn+1
i y − Tni y|| = 0, that is, Ti is uniformly asymptotically regular on

C for all i ∈ N .
For any sequence {yn} ⊆ C such that limn→+∞ yn = x0 and limn→+∞ Tiyn = y0, we consider the

following two cases:

1) If the sequence yn = x0
2n and limn→+∞ yn = x0, then we have that x0 = 0 and

0 = lim
n→+∞

||Tiyn − y0|| = lim
n→+∞

||(0, 1

22n
, 0, · · · )− y0||

≥ lim sup
n→+∞

∣∣∣||y0|| − 1

22n

∣∣∣ = ||y0|| ≥ 0,

this implies that y0 = 0 and Tix
0 = − x0

i+2 = 0 = y0.
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2) If yn 6= x0
2n , yn ∈ C and limn→+∞ yn = x0, then it follows from

0 = lim
n→+∞

||Tiyn − y0|| = lim
n→+∞

|| − 1

i+ 2
yn − y0|| = lim

n→+∞
|| − 1

i+ 2
(yn − x0)− (y0 +

x0

i+ 2
)||

≥ lim sup
n→+∞

∣∣||y0 +
x0

i+ 2
|| − ||yn − x

0

i+ 2
||
∣∣ = ||y0 +

x0

i+ 2
|| ≥ 0

that y0 = − x0

i+2 , hence Tix
0 = − 1

i+2x
0 = y0.

In summary, we can obtain that the map Ti is closed for every i ∈ N .
Choose i ∈ N , for any n ≥ 1 and n ∈ N , we may set xn = x0

2n+1 , then xn ∈ C and xn → 0 ∈ F (Ti) = {0}
as n→ +∞.

Finally, it is obvious that the family {Ti}i∈N satisfies all the aspects of the hypothesis of Theorem 3.1.

The following Example 3.4 shows that there is a Bregman totally quasi-D-asymptotically nonexpansive
mapping T which is not a BregmanD-nonexpansive mapping, but T is both Bregman relatively nonexpansive
and Bregman quasi-nonexpansive.

Example 3.4. Let E = l2, C = {x ∈ l2
∣∣ ||x|| ≤ 1} and g(x) = ||x||2, where l2 = {σ = (σ1, σ2, · · · , σn, · · · )

∣∣∑+∞
n=1 |σn|2 < +∞}. ||σ|| =

(∑+∞
n=1 |σn|2

) 1
2 for all σ = (σ1, σ2, · · · , σn, · · · ) ∈ l2; 〈σ, η〉 =

∑+∞
n=1 σnηn for all

σ = (σ1, σ2, · · · , σn, · · · ), η = (η1, η2, · · · , ηn, · · · ) ∈ l2.
Let T : C → C be a mapping defined by

T (x1, x2, x3, · · · ) = (0, x21, a2x2, a3x3, · · · ) ∀(x1, x2, x3, · · · ) ∈ C,

where {ai} is a sequence in (0,1) such that Π+∞
i=2 ai = 1

2 . Let g : E → R be defined by g(x) = ||x||2, x ∈ E,
then the Bregman distance

D(x, y) = g(x)− g(y)− 〈Og(y), x− y〉 = ||x||2 − ||y||2 − 〈2y, x− y〉 = ||x− y||2∀x, y ∈ C,F (T ) = {0}( 6= ∅)

and E is a Hilbert space. It is proved in Goebel and Kirk [11]that

(i) ||Tx− Ty|| ≤ 2||x− y|| ∀x, y ∈ C;

(ii) ||Tnx− Tny|| ≤ (2Πn
j=2aj)||x− y|| ∀x, y ∈ C, ∀n ≥ 2.

Let ζ(t) = t, for all t ≥ 0, {µn} be a nonnegative real sequence with µn → 0 as n→ +∞ and

νn =

{
3, if n = 1,
(2Πn

j=2aj)
2 − 1, if n ≥ 2 and n ∈ N,

then from (i) and (ii), we have

||Tnx− Tny||2 ≤ ||x− y||2 + νnζ(||x− y||2) + µn ∀x, y ∈ C, ∀n ≥ 1,

that is,
D(Tnx, Tny) ≤ D(x, y) + νnζ(D(x, y)) + µn ∀x, y ∈ C, ∀n ≥ 1.

Let x0 = (1, 0, 0, · · · ), y0 = (12 , 0, 0, · · · ) ∈ C, then

D(Tx0, Ty0) = ||Tx0 − Ty0||2 = ||(0, 12, 0, · · · )− (0,
1

4
, 0, · · · )||2 = (1− 1

4
)2 =

9

16

> ||x0 − y0||2 = ||(1, 0, 0, · · · )− (
1

2
, 0, 0, · · · )||2 = (1− 1

2
)2 =

4

16
= D(x0, y0)
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and

D(0, Tx) = ||0− Tx||2 = x41 + Σ+∞
i=2 a

2
ix

2
i ≤ x21 + Σ+∞

i=2x
2
i

= ||x||2 = ||0− x||2 = D(0, x), ∀x = (x1, x2, x3, · · · ) ∈ C.
(3.26)

It is obvious that F (T ) ⊂ F̂ (T ) for any mapping. Now, we show that F̂ (T ) ⊂ F (T ) = {0}. For any
p ∈ F̂ (T ), then there exists a sequence {xn} in C which converges weakly to p and limn→+∞ ||xn−Txn|| = 0.

Setting xn = (x
(n)
1 , x

(n)
2 , x

(n)
3 , · · · ), we have

||xn − Txn||2 =
∣∣∣∣(x(n)1 , x

(n)
2 , x

(n)
3 , · · · )−

(
0, (x

(n)
1 )2, a2x

(n)
2 , a3x

(n)
3 , · · ·

)∣∣∣∣2
= (x

(n)
1 )2 + [x

(n)
2 − (x

(n)
1 )2]2 + Σ+∞

i=3 (x
(n)
i − ai−1x

(n)
i−1)

2 → 0 as n→ +∞

⇐⇒ x
(n)
i → 0 as n→ +∞ for all i ∈ N+ ⇐⇒ xn → 0 as n→ +∞

=⇒ {xn} in C which converges weakly to 0.

Thus, p = 0 ∈ F (T ), from F̂ (T ) = F (T ) = {0} 6= ∅ and (3.26), these imply that T : C → C is a Bregman
relatively (asymptotically) nonexpansive nonlinear mapping.

These imply that T is a Bregman totally D-asymptotically nonexpansive mapping with the nonempty
fixed point set which is not a Bregman D-nonexpansive mapping. Hence, T is a Bregman totally quasi-
D-asymptotically nonexpansive mapping which is not a Bregman D-nonexpansive mapping, but T is both
Bregman relatively nonexpansive and Bregman quasi-nonexpansive.

Setting ζ(t) = t, ν
(i)
n = k

(i)
n − 1, limn→+∞ supi≥0{k

(i)
n } = 1, and µ

(i)
n ≡ 0 for each i ≥ 0 in Theorem 3.1,

we have the following Corollary 3.5.

Corollary 3.5. Let E be a 2-uniformly convex Banach space and g : E → R be a strongly coercive Bregman
function which is bounded on bounded subsets and uniformly smooth and 2-uniformly convex on bounded
subsets of E. Let C be a nonempty, closed and convex subset of E. Suppose B : C → E∗ is an α-
inverse-strongly monotone operator satisfying (B1)-(B2). For each k = 1, 2, · · · ,m, let Ak : C → E∗ be
a continuous and monotone mapping, ϕk : C → R be a lower semicontinuous and convex functional, let
fk : C × C → R be a bifunction satisfying (C1)-(C4) and Ti : C → C ∀i ∈ N be an infinite family
of closed and uniformly Bregman quasi-D-asymptotically nonexpansive mappings with nonnegative real se-

quences {k(i)n }. limn→+∞ supi≥0{k
(i)
n } = 1, T0 = I. Assume that Ti is uniformly asymptotic regular on

C for all i ≥ 0, i.e., limn→+∞ supx∈K ||Tn+1
i x − Tni x|| = 0 holds for any bounded subset K of C and

F =
[⋂+∞

i=0 F (Ti)
]
∩
[⋂m

k=1GMEP (fk, ϕk)
]
∩ V I(C,B) 6= ∅ for each k = 1, 2, · · · ,m, {rk,n}+∞n=1 ⊂ (0,+∞)

satisfying lim infn→+∞ rk,n > 0 for all z, y ∈ C, Gk(z, y) = fk(z, y) + ϕk(y) − ϕk(z) + 〈Akz, y − z〉,
TGk
rk,n

(x) = {z ∈ C : Gk(z, y) + 1
rk,n
〈y − z,Og(z) − Og(x)〉 ≥ 0, ∀y ∈ C}. Let {xn} be a sequence gen-

erated by 

x0 ∈ C chosen arbitrarily,

C0 = C,

yn = Og∗{αnOg(ProjgC [Og∗(Og(xn)− λnBxn)]) + (1− αn)Og(zn)},

zn = Og∗
[ +∞∑
i=0

β(i)n Og(Tni xn)
]
,

un = TGm
rm,n

TGm−1
rm−1,n

· · ·TG2
r2,nT

G1
r1,nyn,

Cn+1 = {z ∈ Cn : D(z, un) ≤ αnD(z, xn) + (1− αn)D(z, zn) ≤ D(z, xn) + ωn},
xn+1 = ProjgCn+1

(x0),
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where ωn = supi≥0{k
(i)
n − 1} · supp∈F {D(p, xn)} < +∞ for each n ≥ 0, {λn} ⊂ [a, b] for some a, b with 0 <

a < b < cα, where 1
c is 2-uniformly convexity constant of E satisfying Lemma 2.15 (2), {αn}, {β(i)n }(i ∈ N)

are real sequences in [0, 1] satisfying the conditions:

∀n ≥ 0,

∞∑
i=0

β(i)n = 1, lim inf
n→∞

(1− αn)β(0)n β(i)n > 0 ∀i ∈ N.

Then the sequence {xn} converges strongly to ProjgFx0.

Remark 3.6. Using Remark 3.2 (1), Corollary 3.5 improves and generalizes Theorem 3.4 of Chang et al. [9]
in many aspects.

Setting ν
(i)
n = µ

(i)
n ≡ 0 for each i ≥ 0 in Theorem 3.1, we have the following Corollary 3.7.

Corollary 3.7. Let E be a 2-uniformly convex Banach space and g : E → R be a strongly coercive Bregman
function which is bounded on bounded subsets and uniformly smooth and 2-uniformly convex on bounded
subsets of E. Let C be a nonempty, closed and convex subset of E. Suppose B : C → E∗ is an α-inverse-
strongly monotone operator satisfying (B1)-(B2). For each k = 1, 2, · · · ,m, let Ak : C → E∗ be a continuous
and monotone mapping, ϕk : C → R be a lower semicontinuous and convex functional, let fk : C×C → R be
a bifunction satisfying (C1)-(C4) and Ti : C → C for all i ∈ N be an infinite family of closed and Bregman

quasi-D-nonexpansive mappings and T0 = I. Assume that F =
[⋂+∞

i=0 F (Ti)
]
∩
[⋂m

k=1GMEP (fk, ϕk)
]
∩

V I(C,B) 6= ∅. For each k = 1, 2, · · · ,m, {rk,n}+∞n=1 ⊂ (0,+∞) satisfying lim infn→+∞ rk,n > 0 for all
z, y ∈ C,

Gk(z, y) = fk(z, y) + ϕk(y)− ϕk(z) + 〈Akz, y − z〉,

TGk
rk,n

(x) = {z ∈ C : Gk(z, y) +
1

rk,n
〈y − z,Og(z)− Og(x)〉 ≥ 0, ∀y ∈ C}.

Let {xn} be a sequence generated by

x0 ∈ C chosen arbitrarily,

C0 = C,

yn = Og∗{αnOg(ProjgC [Og∗(Og(xn)− λnBxn)]) + (1− αn)Og(zn)},

zn = Og∗
[ +∞∑
i=0

β(i)n Og(Tni xn)
]
,

un = TGm
rm,n

TGm−1
rm−1,n

· · ·TG2
r2,nT

G1
r1,nyn,

Cn+1 = {z ∈ Cn : D(z, un) ≤ αnD(z, xn) + (1− αn)D(z, zn) ≤ D(z, xn)},
xn+1 = ProjgCn+1

(x0),

where {λn} ⊂ [a, b] for some a, b with 0 < a < b < cα, where 1
c is 2-uniformly convexity constant of E

satisfying Lemma 2.15 (2), {αn},{β(i)n }(i ∈ N) are real sequences in [0, 1] satisfying the conditions: ∀n ≥ 0,∑∞
i=0 β

(i)
n = 1, lim infn→∞(1− αn)β

(0)
n β

(i)
n > 0 for all i ∈ N . Then the sequence {xn} converges strongly to

ProjgFx0.

Remark 3.8. Using Remark 3.2 (1), Corollary 3.7 improves and generalizes Theorem 3.1 of Saewan and
Kumam [33] in the following aspects:

(i) For the structure of Banach spaces, we extend the normalized duality mapping to a more general case,
that is, a convex, continuous and strongly coercive Bregman function which is bounded on bounded
subsets and uniformly convex and 2-uniformly smooth on bounded subsets.
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(ii) We extend the mapping from two relatively nonexpansive mappings to an infinite family of Bregman
quasi-D-nonexpansive mappings, and the assumption F̂ (T ) = F (T ) on the mapping T is removed.

(iii) For generalized mixed equilibrium problems, we extend the problems from one to a finite family.

Setting g(x) = ||x||2 in Theorem 3.1, we have the following Corollary 3.9.

Corollary 3.9. Let C be a nonempty, closed and convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Suppose B : C → E∗ is a α-inverse-strongly monotone operator satisfying (B1)-
(B2). For each k = 1, 2, · · · ,m, let Ak : C → E∗ be an continuous and monotone mapping, ϕk : C → R be a
lower semicontinuous and convex functional, let fk : C×C → R be a bifunction satisfying (C1)-(C4) and Ti :
C → C for all i ∈ N be an infinite family of closed and uniformly totally quasi-φ-asymptotically nonexpansive

mappings with nonnegative real sequences {ν(i)n }, {µ(i)n } and a strictly increasing and continuous function

ζ : R+ → R+ with ζ(0) = 0. limn→+∞ supi≥0{ν
(i)
n } = 0 and limn→+∞ supi≥0{µ

(i)
n } = 0, T0 = I and I is

the identity mapping on C. Assume that F :=
[⋂+∞

i=0 F (Ti)
]
∩
[⋂m

k=1GMEP (fk, ϕk)
]
∩ V I(C,B) 6= ∅ and

Ti is uniformly asymptotic regular on C for all i ≥ 0, i.e., limn→+∞ supx∈K ||Tn+1
i x − Tni x|| = 0 holds for

any bounded subset K of C. For each k = 1, 2, · · · ,m, {rk,n}+∞n=1 ⊂ (0,+∞) satisfying lim infn→+∞ rk,n > 0,
for all z, y ∈ C,

Gk(z, y) = fk(z, y) + ϕk(y)− ϕk(z) + 〈Akz, y − z〉,

TGk
rk,n

(x) = {z ∈ C : Gk(z, y) +
1

rk,n
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C}.

Let {xn} be a sequence generated by

x0 ∈ C chosen arbitrarily,

C0 = C,

yn = J−1{αnJ(ΠC [J−1(J(xn)− λnBxn)]) + (1− αn)J(zn)},

zn = J−1
[ +∞∑
i=0

β(i)n J(Tni xn)
]
,

un = TGm
rm,n

TGm−1
rm−1,n

· · ·TG2
r2,nT

G1
r1,nyn,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ αnφ(z, xn) + (1− αn)φ(z, zn) ≤ φ(z, xn) + ωn},
xn+1 = ΠCn+1(x0),

(3.27)

where ωn = supi≥0{ν
(i)
n } · supp∈F {ζ[φ(p, xn)]} + supi≥0{µ

(i)
n } < +∞ for each n ≥ 0, {λn} ⊂ [a, b] for some

a, b with 0 < a < b < cα, where 1
c is 2-uniformly convexity constant of E. {αn}, {β(i)n }(i ∈ N) are real

sequences in [0, 1] satisfying the conditions: for all n ≥ 0,
∑∞

i=0 β
(i)
n = 1, lim infn→∞(1−αn)β

(0)
n β

(i)
n > 0 for

all i ∈ N . Then the sequence {xn} converges strongly to ΠFx0.

Setting E=H in Theorem 3.1, we have the following Corollary 3.10.

Corollary 3.10. Let C be a nonempty, closed and convex subset of real Hilbert space E. Suppose B : C → E∗

is an α-inverse-strongly monotone operator satisfying (B1)-(B2). For each k = 1, 2, · · · ,m, let Ak : C → E∗

be a continuous and monotone mapping, ϕk : C → R be a lower semicontinuous and convex functional, let
fk : C × C → R be a bifunction satisfying (C1)-(C4) and Ti : C → C for all i ∈ N be an infinite
family of closed and uniformly totally quasi-asymptotically nonexpansive mappings with nonnegative real

sequences {ν(i)n }, {µ(i)n } and a strictly increasing and continuous function ζ : R+ → R+ with ζ(0) = 0.

limn→+∞ supi≥0{ν
(i)
n } = 0 and limn→+∞ supi≥0{µ

(i)
n } = 0, T0 = I and I is the identity mapping on C.

Assume that F :=
[⋂+∞

i=0 F (Ti)
]
∩
[⋂m

k=1GMEP (fk, ϕk)
]
∩ V I(C,B) 6= ∅ and Ti is uniformly asymptotic
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regular on C for all i ≥ 0, i.e., limn→+∞ supx∈K ||Tn+1
i x− Tni x|| = 0 holds for any bounded subset K of C.

For each k = 1, 2, · · · ,m, {rk,n}+∞n=1 ⊂ (0,+∞) satisfying lim infn→+∞ rk,n > 0, for all z, y ∈ C,

Gk(z, y) = fk(z, y) + ϕk(y)− ϕk(z) + 〈Akz, y − z〉,

TGk
rk,n

(x) = {z ∈ C : Gk(z, y) +
1

rk,n
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}.

Let {xn} be a sequence generated by

x0 ∈ C chosen arbitrarily,

C0 = C,

yn = αnPC(xn − λnBxn) + (1− αn)zn,

zn =
+∞∑
i=0

β(i)n Tni xn,

un = TGm
rm,n

TGm−1
rm−1,n

· · ·TG2
r2,nT

G1
r1,nyn,

Cn+1 = {z ∈ Cn : ||z − un||2 ≤ αn||z − xn||2 + (1− αn)||z − zn||2 ≤ ||z − xn||2 + ωn},
xn+1 = PCn+1(x0),

where ωn = supi≥0{ν
(i)
n } · supp∈F {ζ(||p − xn||2)} + supi≥0{µ

(i)
n } < +∞ for each n ≥ 0, {λn} ⊂ [a, b] for

some a, b with 0 < a < b < α. {αn}, {β(i)n }(i ∈ N) are real sequences in [0, 1] satisfying the conditions: for

all n ≥ 0,
∑∞

i=0 β
(i)
n = 1, lim infn→∞(1 − αn)β

(0)
n β

(i)
n > 0 for all i ∈ N . Then the sequence {xn} converges

strongly to PFx0.

Remark 3.11. Corollary 3.10 improves and extends Theorem 2.1 of Martinez-Yanes and Xu [18] in the
following aspects:

(1) From a nonexpansive mapping to a countable family of totally quasi-asymptotically nonexpansive
mappings.

(2) Considering the generalized mixed equilibrium problems from zero to a finite family.
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