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Abstract

A new hybrid Bregman projection method is considered for finding common solutions of the set of com-
mon fixed points of an infinite family of closed, uniformly asymptotic regular and uniformly Bregman totally
quasi-D-asymptotically nonexpansive mappings, the set of solutions to a variational inequality problem and
the set of common solutions to a system of generalized mixed equilibrium problems, strong convergence theo-
rems of common elements are proved by using new analysis techniques and Bregman mappings in the setting
of uniformly smooth and 2-uniformly convex real Banach spaces. Our results improve and generalize many
important known recent results in the current literature, because Bregman projection mapping generalizes
the generalized projection mapping and the metric projection mapping. (©2016 All rights reserved.
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1. Introduction

Let E be a real Banach space with the dual E*, C' be a nonempty closed convex subset of E, f be a
bifunction from C x C to R, ¢ : C' — R be a real-valued function and A : C' — E* be a nonlinear mapping.
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The so-called generalized mixed equilibrium problem [33],34] is to find z € C such that
f(zy) +(Az,y — 2) + ¢(y) — ¢(2) 2 0, Yy € C. (1.1)
The set of solutions of is denoted by GMEP(f, ¢), that is,
GMEP(f,¢) ={z € C|f(z,y) + (Az,y — z) + o(y) — (z) > 0, Vy € C}.
Special cases:

(I) If A = 0, then the problem (1.1) reduces into the mixed equilibrium problem for f, denoted by
MEP(f,¢), which is to find z € C such that

f(zy) +o(y) —¢(z) >0, ¥y € C.

(IT) If f = 0, then the problem (|1.1)) reduces into the mixed variational inequality of Browder-type, denoted
by VI(C, A, ), which is to find z € C such that

(Az,y —2) + o(y) —¢(2) 20, vy € C.
In particular, VI(C, A,0) is denoted by VI(C, A).

(III) If ¢ = 0, then the problem (I.1)) reduces into the generalized equilibrium problem, denoted by GEP(f),
which is to find z € C such that

f(zy)+(Az,y —2) >0, Vy € C.

(IV) If A =0, ¢ = 0, then the problem (1.1) reduces into the equilibrium problem, denoted by EP(f),
which is to find z € C such that
f(z,y) =20, Vy € C. (1.2)

The generalized mixed equilibrium problems include fixed point problems, variational inequality problems,
optimization problems, equilibrium problems and Nash equilibrium problems as special cases (see for example
[33, 34]). Some methods have been proposed to solve the generalized mixed equilibrium problem (see for
example [3, 1TIHI6] 1820} 26], 27, B33, B4, B6, B8-43, [47]). Numerous problems in physics, economics and
optimization help to find a solution of problem .

An operator B : C' — E* is called a-inverse-strongly monotone, if there exists a positive real number «
such that

(x —y, Bxr — By) > o||Bx — By||* Vx,y € C.

Obviously, if B is a-inverse-strongly monotone, then B is é—continuous and VI(C, B) is both closed and
convex. In this paper, we shall assume that (B1)VI(C, B) # 0; (B2)||By|| < ||By — Bul| for all y € C and
ueVI(C,B).

In the sequel, let F(T) denote the set of fixed points of a mapping 7' : C' — C, RT and R denote the
set of all nonnegative real numbers and all real numbers, respectively. A mapping T : C' — C' is said to be
nonexpansive, if ||[Tx —Ty|| < ||z —y|| for all z,y € C. T is said to be quasi-nonexpansive, if F(T") # () and
| Tz — p|| < ||z —p|| for all z € C,p € F(T).

It turns out that the fixed point theory of nonexpansive mappings can be applied to the solutions of
diverse problems such as finding zeros of monotone mappings and solutions to certain evolution equations and
solving convex feasibility, variational inequality and equilibrium problems. There are, in fact, many papers
that deal with methods for finding fixed points of nonexpansive and quasi-nonexpansive mappings in Hilbert,
uniformly convex and uniformly smooth Banach spaces (see for example [3, TIHI6], 18-20, 26], 27, 36, B8~
43, [47)).
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The main purpose of introducing the concept of relatively nonexpansive mapping is to hope that the
results of iterative approximation of relevant nonexpansive mapping in a Hilbert space can be generalized
to general Banach space, because, in a Hilbert space H, nonexpansive mapping is equivalent to relatively
nonexpansive mapping.

Many problems in nonlinear analysis can be reformulated as a problem of finding a fixed point of a
nonexpansive mapping T of a closed and convex subset C' of a Banach space E. In 1953, Mann [I6]
introduced the following iterative method: a sequence {x,} defined by z1 € C' and

Tpn+1 = Qpdp + (]- - O{n)TllTn, n = 1) 2737 T

where {a,,} is a sequence in [0,1]. It is known that under appropriate conditions the sequence {z,,} converges
only weakly to a fixed point of T. However, even in a Hilbert space, Mann iteration may fail to converge
strongly.

Several attempts to construct the iteration method guaranteeing the strong convergence have been made.
For example, Halpern [12] proposed the following so-called Halpern iteration:

x1=x € Cand xp11 =anr1+ (1 —ap)Tan, n=1,2,3-,
where {a,,} is a sequence in (0,1) satisfying
(C1) limp—s 400 = 0;

(C2) Zj{i‘jan = +o0;

(C3) limp 400 Oéiil =1or Z:{i‘ﬂan — an+1} < +00.

In 2001, another approach which is the so-called C'QQ method for a nonexpansive mapping in a Hilbert
space H was proposed by Bauschke and Combettes [3]. More precisely, their algorithm is defined by

(x1 € C is arbitrary,
Yn = QnTpn + (1 — ap)Txy,
Cn={2€C:|lyn — 2[| < [|lzn — 2|},
Qn={z€C:(x,— 2,21 —x4) >0},
Tn+1 = Pe,ng,r1, n=1,2,3,---,

where lim, o supa, < 1, K is a closed and convex subset of H, and Px denotes the metric projection
from a Hilbert space H onto K.

Recently, Martinez-Yanes and Xu [18] has adapted Bauschke and Combettes [3] idea to modify above
process for a single nonexpansive mapping 7" in a Hilbert space H:

x1 € C is arbitrary,

Yn = anZy + (1 — ap)Txy,

Cn={2€C:|lyn — 21> < lJwn — 21> + an(|[zol[* + 2(zn — 20, 2))},
Qn=1{2€C:(xy,—2z20—x,) >0},

Tn+1 = Pe,ng,r0, n=1,2,3,---.

They proved that the sequence {z,} generated by above iterative scheme converges strongly to Pp(p)zo
provided the sequence {a,,} C (0, 1) satisfies lim,,_; oo a, = 0.

It should be noted here that the above iteration works only in Hilbert space setting. To extend this
iteration to a Banach space, a relatively nonexpansive mapping [3| 12l 18] was introduced. In a Hilbert
space H, the duality mapping .J is the identity mapping and ¢(x,y) = ||z — y||? for all z,y € H, hence the
nonexpansive mapping of H is equivalent to relatively nonexpansive mapping.
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There are many methods for approximating fixed points of relatively nonexpansive mappings (see, e.g.,
[19] 20l 27, 36]) in a Banach space. liduka and Takahashi [13] investigated the following iterative scheme
for finding a zero point of a monotone operator B in a uniformly smooth and 2-uniformly convex Banach

space E:
x1 € E chosen arbitrarily,

Yn = J H(Jzp — MBzxy),

Crn={2€E:¢(z,yn) < &(2,2n)}, (1.3)
Qn={z€E:(xy—2zJx; —Jzx,) >0},

( Zn+1 = e, ng.71s

where Il¢, o, is the generalized projection from E onto Cy, () Qn and {\,} is a sequence of positive real
numbers. They proved that the sequence {x,} converges strongly to an element of B~!(0). Moreover,
under the additional suitable assumptions, they proved that the sequence {z,} generated by converges
strongly to an element of VI(C, B). Some solution methods have been proposed to solve the variational
inequality problem, (see for instance, [11], T3H15] 26 36], B8-43, [47]).

In 1967, Bregman [6] discovered a technique for using of the Bregman distance function D(-,-) (see,
Section [2| Definition in designing and analyzing optimization and feasibility algorithms. Bregman’s
technique has been applied in various ways. In 2005, Butnariu and Resmerita [7] introduced Bregman-type
iterative algorithms and investigated the convergence of the iterative algorithm of solving some nonlinear
operator equations.

In 2011, Reich and Sabach [31] introduced the concept of Bregman strongly nonexpansive mapping and
study the convergence of two iterative algorithms for finding common fixed points of finitely many Bregman
strongly nonexpansive mappings in reflexive Banach spaces. In 2012, Suantai et al. [35] also considered the
strong convergence for Bregman strongly nonexpansive mappings in reflexive Banach spaces.

In 2013, Zhu et al. [46] introduced the following hybrid projection algorithm:

xg € C chosen arbitrarily,

C1 = C, 1 = Proj, xo,

Yn = Vg [nVg(xn) + (1 — an)Vg(Tzn)],

f(un,y) +{y — un, Vg(un) — Vg(yn)) 2 0, Vy € C,
Cpy1={2€Cy: D(z,uy) < D(z,2p)},

Tpt1 = Projgvnﬂxo

\
for every n > 0, where T is Bregman strongly nonexpansive mapping. They proved under the appropriate
conditions on the parameters that the sequence {z,} generated by converges strongly to a common
solution of the set of fixed points of Bregman strongly nonexpansive mappings 7" and the set of solutions of
an equilibrium problem EP(f) in a reflexive Banach space E, where Projf.(z¢) is the Bregman projection
of E onto F.

Recently, Naraghirad and Yao [22] presented the following Bregman projection proximal algorithm:

(29 € C' chosen arbitrarily,

Co=20C,
Yn = Proj%(Vg*[Vg(azn) — A Bzy]),

o0
Zn = Vg lan0Vg(@n) + Y aniVg(Tiygn)],

2 (1.5)

1
un, € C such that f(uy,y) + T—(y — Up, Vg(un) — Vg(yn)) >0, Yy € C,

n

Cp+1 ={2€Cy: D(z,un) < D(z,zp)},

_ -g
Tptl = Pr0j0n+1xg.
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They proved under the appropriate conditions on the parameters that the sequence {x,,} generated by
converges strongly to a common solution of the set of solutions of an equilibrium problem EP(f), the set
of zero points of a-inverse strongly monotone mapping B : C — E* and the set of fixed points of an infinite
family of Bregman weak relatively nonexpansive mappings in a 2-uniformly convex Banach space E.
Motivated by the above mentioned results and the on-going research, we introduce a new hybrid Breg-
man projection algorithm based on the shrinking projection method and prove strong convergence theorems
for approximation of a common element of the set of common fixed points of an infinite family of Breg-
man totally quasi-D-asymptotically nonexpansive mappings (which contains Bregman strongly nonexpan-
sive mapping, Bregman relatively nonexpansive mapping, Bregman quasi- D-asymptotically nonexpansive
mapping in the intermediate sense, Bregman quasi-D-nonexpansive mapping, and quasi-¢-asymptotically
nonexpansive mapping as its special case), the set of solutions to a variational inequality problem and the
set of solutions to a system of generalized mixed equilibrium problems in a 2-uniformly convex real Banach
space. The assumption F(T) = F(T) or F(T) = F(T) on the mapping T is removed. Our results extend
the results of Saewan and Kumam [33], Martinez- Yanes and Xu [18], Qin and Su [27], Iliduka and Takahashi
[14], Reich and Sabach [28], Naraghirad and Yao [22], Zhu et al. [46], Pang and Naraghirad [24], Chang et
al. [9], Agarwal et al. [I], Wu and Lv [37], and many other recent and important results in the literature.

2. Preliminaries

Throughout this paper, we denote by N the set of nonnegative integers. Let E be a real Banach
space with the dual E*. For all x € E and z* € E*, we denote the value of z* at = by (z,z*). The
duality mapping J : E — 2F is defined by J(z) = {2* € E* : (z,2*) = ||z||> = ||z*||?}. Let g : E —
R|J{+o0} be a proper, convex and lower semicontinuous function. Denote the domain of g by domg i.e.,
domg={z € E : g(r) < +oo}. The Fenchel conjugate of g is the function ¢* : E* — (—o00,400| defined
by g*(¢) = sup,ep{(¢, ) — g(z)}. If E is reflexive, we know from [44] that (vg)~! = vg*, vg = (vg*)~},
ranVg=domVg*=int(dom ¢*) and ranVg*=domVg=int(dom g).

Definition 2.1 ([0, [7]). Let g : E — R be a Gateaux differentiable and convex function. The function
D(-,+) : domg x int(dom g) — [0,4+00) defined by D(y,x) = g(y) — g(z) — (y — x, Vg(z)) is called the
Bregman distance with respect to g.

It follows from the strict convexity of g that D(x,y) > 0 for all z,y in E. However, D(-,-) might not be
symmetric and D(-,-) might not satisfy the triangular inequality.

Remark 2.2 ([31]). The Bregman distance has the following properties:

(1) the three point identity, for any = € dom g and y, z € int(dom g),

D(z,2) = D(z,y) + D(y, 2) + (Vg(y) — Vg(2),z — y);

(2) the four point identity, for any y,w € dom g and z, z € int(dom g),

D(y,x) — D(y,2) — D(w,z) + D(w, z) = (Vg(2) — Vg(z),y — w).

Definition 2.3 ([21]). Let g : E — R be a Gateaux differentiable and convex function, C' be the nonempty,
closed and convex subset of E. The Bregman projection of x € int(dom g) onto C(C dom g) is the necessarily
unique vector Proji(z) € C' satisfying the following:

D(Proji(z),z) = inf{D(y,z) : y € C}.
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Remark 2.4.

(1) If E is a smooth Banach space and g(x) = ||z||? for all x € E, then we have that Vg(x) = 2Jz for all
rin E. Hence, D(,-) is reduced to the usual map ¢(-,-) as D(z,y) = ||z||? — 2(z, Jy) +||y||? = ¢(x,y)
for all z,y € E. The Bregman projection Projl(z) is reduced to the generalized projection II¢(x)
(see [6HI6]), which is defined by

¢(HC(‘T)7 JI) = inf{é(ywr) ry € C}7

where ¢ : E x E — RT denotes the Lyapunov functional defined by ¢(z,y) = ||z||? — 2(x, Jy) + ||y||?
for all 2,y € E. From the definition of ¢ , we have (||z|| — ||y||)? < é(z,y) < (||| + [|y|])*.

(2) If E is a Hilbert space and g(x) = ||z||? for all € E, then D(z,y) = ||z —y||?, the Bregman projection
Projl,(z) is reduced to the metric projection Pc(z) of z onto C. For more details we refer the readers
to [5].

Definition 2.5 ([2§]). Let B be the closed unit ball of a Banach space E. A function g : F — R is said to
be

(1) uniformly smooth on bounded subsets of E if the function o : [0, +00) — [0, +00], defined by

or(t) = sup gz + (1 = a)ty) + (1 - @)g(z — aty) — g()] x [a(l - a)] 7%,
zerByeE||yl|=1,a€(0,1)

ar(t)
t

satisfies limy|o =0 for all r > 0;

(2) uniformly convex on bounded subsets of E if the gauge p, : [0, +00) — [0, +00] of uniform convexity
of g, defined by

pr®) = o o @9@) + (1= )g(y) —glaz + (1 = )] x [a(l - a)] 7V,

satisfies p,.(t) > 0 for all ,¢ > 0.
Definition 2.6.

(1) A mapping T : C — C is said to be Bregman totally quasi-D-asymptotically nonexpansive [9], if
F(T) # () and there exist nonnegative real sequences {vy},{un} satisfying vy, u, — 0 (as n — 400)
and a strictly increasing continuous function ¢ : R™ — R* with ¢(0) = 0 such that

D(p,T"x) < D(p,z) + vn - ¢[D(p,z)] + pn ¥n > 1,2 € C,p € F(T). (2.1)

(2) A mapping T : C — C is said to be Bregman quasi-D-asymptotically nonexpansive [9], if F(T) # ()
and there exists a sequence {k,} C [1,4+00) satisfying lim,_, o kn = 1 such that

D(p,T"z) < k,D(p,z) forallz € C,p € F(T) and n > 1. (2.2)

(3) A mapping T : C' — C'is said to be Bregman quasi- D-asymptotically nonexpansive in the intermediate
sense with sequence {v,} [23], if F(T) # 0 and there exists a sequence {v,} in [0,+0c0) satisfying
limy, s 400 ¥ = 0 such that

limsup sup [D(p,T"z) — (14 v,,)D(p,z)] < 0. (2.3)
n—+00 zeC,peF(T)

(4) A mapping T : C' — C is said to be totally quasi-¢-asymptotically nonexpansive [38|, if F/(T') # () and
there exist nonnegative real sequences {v,},{un} satisfying vy, p, — 0 (as n — +00) and a strictly
increasing continuous function ¢ : R — R™ with ¢(0) = 0 such that

o(p, T"x) < ¢(p, ) + vn - ([¢(p, )] + ptn VN = 1,2 € C,p € F(T).
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(5) A mapping T : C — C is said to be quasi-¢-asymptotically nonexpansive [38, 47], if F(T) # 0 and
there exists a sequence {k, } C [1,+00) satisfying lim,_, 4 kn = 1 such that ¢(p, T"x) < k,¢(p, x) for
allz € C,p e F(T) and n > 1.

(6) A mapping T : C — C is said to be quasi-¢-asymptotically nonexpansive in the intermediate sense
with sequence {1, }, if F(T') # () and there exists a sequence {1, } in [0, +00) satisfying lim, 4 oo vy = 0
such that

limsup sup  [p(p, T"z) — (1 + vp)o(p,x)] < 0.
n—+o00 zeC,peF(T)

Obviously, Bregman (totally D-asymptotically, D-asymptotically, respectively) nonexpansive mapping
contains Bregman quasi- D-nonexpansive mapping, and (totally ¢-asymptotically, ¢-asymptotically, respec-
tively) nonexpansive mapping as its special case. Indeed, if E is a smooth Banach space and g(z) = ||=||?
for all x € E, then we have that D(x,y) = ¢(x,y) for all z,y € E and (totally ¢-asymptotically, ¢-
asymptotically, respectively) nonexpansive mapping is reduced to the Bregman (totally D-asymptotically,
D-asymptotically, respectively) nonexpansive mapping, but the converse is not true in general, in fact, let
g(x) = ||z||P for all x € E and p € (2,400), then D(z,y) # ¢(x,y) in general for some x,y € E. Thus, a
Bregman (totally D-asymptotically, D-asymptotically, respectively) nonexpansive mapping is not always a
(totally ¢-asymptotically, ¢-asymptotically, respectively) nonexpansive mapping.

Let C be a nonempty closed convex subset of E¥ and T" be a mapping from C to itself. A point p € C
is said to be an asymptotic fixed point of T" [6] if C' contains a sequence {z,} which converges weakly to p
such that lim,,_,« ||2, — Tz,|| = 0. A point p € C' is said to be a strong asymptotic fixed point of T' [28), [31]
if C' has a sequence {r,} which converges strongly to p such that lim, e |[Tn — Tzy|| = 0. We denote the
sets of asymptotic fixed points and strong asymptotic fixed points of 7" by ﬁ(T) and F(T'), respectively.

Definition 2.7.

(1) A mapping T from C into itself is said to be Bregman relatively nonexpansive [2, 25], if F(T) =
F(T) # 0 and D(p,Tx) < D(p,z) for all z € C and p € F(T);

(2) T is said to be Bregman weak relatively nonexpansive [, 22, 24], if F(T) = F(T) # 0 and D(p, Tz) <
D(p,z) for all x € C and p € F(T);

(3) T is said to be Bregman quasi-D-nonexpansive [29], if F/(T') # () and D(p, Tx) < D(p,z) for all z € C
and p € F(T);

(4) T is said to be Bregman firmly nonexpansive [21], [31], if
(Vg(Tz) = vg(Ty), Tz — Ty) < (Vg(x) — Vg(y), Tx — Ty)Va,y € C,
or, equivalently,

D(Tx,Ty) + D(Ty, Tx) + D(Tx,x) + D(Ty,y) < D(Tw,y) + D(Ty, x)Vx,y € C;

(5) T is said to be Bregman strongly nonexpansive [28| 45, 46], if F(T) # 0 and D(p,Tx) < D(p,z) for
all z € C and p € F(T) and if whenever {z,} C FE is bounded, p € F(T) and lim,_,+~[D(p, z,) —
D(p,Tx,)] =0, it follows that lim, . D(T2p, x,) = 0;

(6) T is said to be relatively quasi-nonexpansive [33, 36], if F(T) = F(T) # 0 and ¢(p, Tz) < ¢(p, z) for
all z € C and p € F(T);

(7) T is said to be weak relatively nonexpansive [33, 5], if F(T) = F(T) # 0 and ¢(p, Tz) < ¢(p, z) for
all z € C and p € F(T);
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(8)

T is said to be quasi-¢-nonexpansive [33, [47], if F(T) # 0 and ¢(p,Tz) < ¢(p,x) for all x € C and
p e F(T).

Remark 2.8.

(1)

If {(t) =t,t > 0, then (2.1)) is reduced to
D(p,T"z) < (1+wvy) - D(p,x) + pun Yn > 1,2 € C,p € F(T). (2.4)

In addition, if u, = 0 for all n > 1, then Bregman totally quai-D-asymptotically nonexpansive
mappings coincide with Bregman quai-D-asymptotically nonexpansive mappings. If p, = 0 and
v, = 0 for all n > 1, we obtain from the class of mappings that includes the class of Bregman
quai-nonexpansive mappings. If v, = 0 and p, = 0, = max{0,sup,c g perr) (PP, T"z) — D(p, x))}
for all n > 1, then is reduced to , which has been studied as Bregman quai-D-asymptotically
nonexpansive mappings in the intermediate sense.

From the definitions, it is obvious that if ﬁ(T) = F(T) # 0, then a Bregman strongly nonexpansive
mapping is a Bregman relatively nonexpansive mapping; A Bregman relatively nonexpansive map-
ping is a Bregman quasi-D-nonexpansive mapping. A Bregman quasi-D-nonexpansive mapping is a
Bregman quasi-D-asymptotically nonexpansive mapping with k, = 1, but the converse is not true.

If one takes ((t) =t,t > 0, vy, = kyy — 1, i, = 0, limy, s 1 oo ky, = 1, then can be rewritten as .
This implies that each Bregman quasi-D-asymptotically nonexpansive mapping must be a Bregman
total quasi-D-asymptotically nonexpansive mapping, but the converse is not true. In [9], S. S. Chang
et al. gave an example of Bregman total quasi-D-asymptotically nonexpansive mapping. A Bregman
relatively nonexpansive mapping is a Bregman weak relatively nonexpansive mapping, but the converse
is not true in general. Indeed, for any mapping 7' : C' — C, we have F(T) C F(T) Cc F(T). I T
is Bregman relatively nonexpansive, then F(T) = F(T) = F(T). In [22], Naraghirad and Yao have
given two examples of a Bregman weak relatively nonexpansive mapping which is not a Bregman
relatively nonexpansive mapping, and a Bregman quasi-nonexpansive mapping which is neither a
Bregman relatively nonexpansive mapping nor a Bregman weak relatively nonexpansive mapping.

The class of quasi-¢-(asymptotically) nonexpansive mappings is more general than that of relatively
nonexpansive mappings which requires the restriction F'(T") = F(T'). A quasi-¢-nonexpansive mapping
with a nonempty fixed point set F(7T') is a quasi-¢-asymptotically nonexpansive mapping, but the
converse may not be true. In Hilbert spaces, quasi-¢-(asymptotically) nonexpansive mappings is
reduced to quasi-(asymptotically) nonexpansive mappings.

The theory of fixed points with respect to Bregman distances has been studied in the last ten years
and much intensively in the last six years. In [4], Bauschke and Combettes introduced an iterative method
to construct the Bregman projection of a point onto a countable intersection of closed and convex sets in
reflexive Banach spaces, they proved strong convergence theorem of the sequence produced by their method.
For more details, see [[2], Theorem 4.6]. For some recent articles on the existence of fixed points for Bregman
nonexpansive type mappings, we refer the readers to [1, 2] [4, [5l [7, O 10, 17, 21H25] 29-32], 35, [45], [46].

We need the following eight lemmas for our main results.

Lemma 2.9 ([46]). Let E be a Banach space and g : E — R a Gateauz differentiable function which is
locally uniformly convex on E. Let {y,} and {z,} be sequences in E such that either {y,} or {z,} is bounded.
Then the following assertions are equivalent: (1) limy, 100 D(Yn, 2n) = 0; (2) limy—s 400 ||yn — 2n|| = 0.

Lemma 2.10 (|22 28]). Let C' be a nonempty closed convexr subset of a reflexive Banach space E, Let
g: E — R be a Gateaux differentiable and totally convex function, and let x € E. Then

(1)

z = ProjZ(x) if and only if (y — z,Vg(x) — Vg(z)) <0, for ally € C;
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(2) D(y, Projl(z)) + D(Proj(z),z) < D(y, ), for allz € E,y € C;
(3) when the sequence {D(xn,x)}nen is bounded, we have that the sequence {xytnen is bounded too.

Lemma 2.11 ([23]). Let C be a nonempty closed convex subset of Banach space E and g : E — (—00, +00]

be a Gateauz differentiable function which is locally uniformly convexr on E. Let T : C — C be a closed and

Bregman totally quasi-D-asymptotically nonexpansive mapping with nonnegative real sequences {vyn}, {un}

and a strictly increasing and continuous function ¢ : RT™ — RT satisfying (0) = 0. If vp, ptn — 0 (as n —
00), then F(T) is a closed convex subset of C.

Lemma 2.12 ([22]). Let E be a Banach space, v > 0 be a positive number and g : E — R be a continuous
and convex function which is uniformly convex on bounded subsets of EE. Then

~+00 +o0
9( D M) < D Maglan) = Mdypr(llas — )
n=1 n=1

for any given infinite subset {x,,} C B.(0) = {x € E : ||z|| < r} and for any given sequence {\,} of positive
numbers with Z+°° A =1, for any i,5 € N with ¢ < j, where p, is the gauge of uniformly convexity of g.

For solving the equilibrium problem, let us assume that bifunction f : C' x C' — R satisfies the following
conditions:

(Cl) f(z,z) =0, for all z € C;

(C2) f is monotone, i.e., f(z,y) + f(y,z) <0, for all z,y € C,

(C3) for each y € C, the function x — f(x,y) is upper semicontinuous;
(C4) for all x € C,y — f(x,y) is a convex and lower semicontinuous.

Lemma 2.13 ([1]). Let E be a reflexive Banach space and g : E — R a convez, continuous and strongly
coercive function which is bounded on bounded subsets and uniformly conver on bounded subset of E. Let
C be a nonempty, closed and convex subset of E and f : C x C — R a bifunction satisfying conditions
(C1)-(C4) and EP(G) # 0, ¢ : C — R be a lower semicontinuous and convex functional, A : C — E* be a
continuous and monotone mapping. For r > 0 and x € E, define a mapping TTG : E — C as follows:

1
Tz ={z€C:Glz.y) + ~{y — 2 Vg(2) - Vg(x)) 2 0, ¥y € C},
where G(z,y) = f(z,y) + ¢(y) — o(x) + (Az,y — z) for all z,y € E. Then, the following statements hold:
(1) dom(TE) = E;

(2) TTG is a Bregman firmly nonexpansive mapping, i.e., for all x,y € F,

(TFx - TPy, V(T z) — vg(TFy)) < (TFx — Ty, vg(z) — Vg(y));

3) TE is single-valued;

5

(3)

(4) F(TF) = GMEP(f,¢);

(5) D(q,TCz) + D(TFx,x) < D(q,x) Vg € F(TF);
(6)

6) GMEP(f,y) is closed and convex subset of C.

Lemma 2.14 ([7,25]). Let E be a reflexive Banach space, g : E — R a strongly coercive Bregman function
and the function V defined by V(x,2*) = g(x) — (x,2*) + g*(«*) for allx € E,z* € E*. Then the following
assertions hold:
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(1) D(z,vg*(z*)) =V (z,z*) for allx € E,z* € E*;
(2) V(z,2*) + (Vg*(z*) — z,y") < V(z,2* + y*) forallz € Eandz*,y* € E*.

Lemma 2.15 ([44]). Let E be a Banach space, let g : E — (—o0,400] be a proper, lower semicontinuous
and convex function. Then the following statements are equivalent:

(1) There exists a constant ¢; > 0 such that g is py-convez with p,(t) := $t* for all t > 0.

(2) There exists a constant ¢ > 0 such that for all z,y € E and z* € 0g(z),y* € 9g(y), we have
lz* — y*|| > c||lz — y||, where L is the 2-uniformly convezity constant.

Lemma 2.16 ([44]). Let E be a reflexive Banach space and let g : E — R be a convex, continuous and
strongly coercive function. Then the following assertions are equivalent:

(1) g is bounded on bounded subsets and uniformly smooth on bounded subsets of E;
(2) g* is Fréchet differentiable and Vg* is uniformly norm-to-norm continuous on bounded subsets of E*;

(3) dom g* = E*, g* is strongly coercive and uniformly convex on bounded subsets of E*.

3. Main results

Theorem 3.1. Let E be a 2-uniformly convex Banach space and g : E — R be a strongly coercive Bregman
function which is bounded on bounded subsets and uniformly smooth and 2-uniformly convexr on bounded
subsets of E. Let C be a nonempty, closed and conver subset of E. Suppose B : C — E* is an «-
inverse-strongly monotone operator satisfying (B1)-(B2). For each k = 1,2,--- ,m, let Ay : C — E* be
a continuous and monotone mapping, pr : C — R be a lower semicontinuous and convex functional, let
fr : C x C = R be a bifunction satisfying (C1)-(C4) and T; : C — C for all i € N be an infinite family
of closed and uniformly Bregman totally quasi-D-asymptotically nonexpansive mappings with nonnegative
real sequences {M(«L)} {,u } and a strictly increasing and continuous function ¢ : Rt — RT with ((0) = 0.

limy, 400 sup1>0{1/¢(L } =0 and limy, 4o supl>0{un)} =0, To = I and I is the identity mapping on C.
Assume that F := [ﬂ+°° (T; )} [ﬂk 1 GMEP(fk,gpk)] NVI(C,B) # 0 and T; is uniformly asymptotic
reqular on C' for all i > 0, i.e., lim,_, oo SUp, e |17 2 — TPx|| = 0 holds for any bounded subset K of C.

For each k =1,2,--+ ,m,{rpn 12 C (0,400) satisfying liminf, oo Tkn > 0 for all 2,y € C,
Gk(Z,y) = fk(za y) + ka(y) - gOk(Z) + <Akzay - Z>a
1
T (2) ={z € C: Gi(z,y) + —{y =2 Vy(2) = Vg(x)) 20, vy € C}.

n
Let {x,,} be a sequence generated by

(29 € C' chosen arbitrarily,
Co=C,
yn = Vg {anVg(Projt[Vg (Vg(zn) — AnBzy)]) + (1 — an)Vg(zn)},

+oo
20 = Vg" [Zﬁﬁf)w(ﬂ”xn)], (3.1)
tn = T%’ZT&”“S T T s

Crny1={2€Cy:D(z,un) <apnD(z,z) + (1 — apn)D(z,2n) < D(2,2) + wn }s

Tn+l = PTOJ%TLH (xO)’
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where wy, = supizo{l/ff)} -sup,e p{C[D(p, 7n)]} + Supizo{,ug)} < +0o0o for each n >0, {\,} C [a,b] for some
a,b with 0 < a < b < ca, where % is 2-uniformly convexity constant of E satisfying Lemma (2), {an},
{ﬁf(f)}(z’ € N) are real sequences in [0, 1] satisfy the conditions:

¥n>0,> " BY =1 liminf(1 — a,)8{" B > 0 Vi € N.
Then the sequence {xy,} converges strongly to Proj%xo.
Proof. We define a bifunction Gy, : C' x C — R by

Gr(z,y) = fu(z,y) + or(y) — or(x) + (Apz,y — ) Yo,y € C.

Then, we may prove from Lemma that the bifunction G} satisfies conditions (C1)-(C4) for each
k=1,2,--- ,m. Therefore, the generalized mixed equilibrium problem (1.1)) is equivalent to the following

equilibrium problem: find z € C such that Gp(z,y) > 0, for all y € C. Hence, GMEP(fi, ox) = EP(Gg).
By taking 6F = TgknT,i’:fn . -TanTgln,k‘ =1,2,---,m and 60 = I for all n > 0, we obtain u,, = 0™y,
Let t, = Vg*[V g(:z:n) — A\ Bxy). In view of Lemma Lemma and the closeness and convexity of
VI(C, B), we find that F is closed and convex subset of C, so that Projyz is well-defined for any z, € C.

We divide the proof of Theorem into six steps:
Step 1. We first show that C), is both closed and convex for each n > 1.
In fact, for z € C,, we see that
D(z,um) < amD(z,xm) + (1 — apm)D(2, 2m) < D(z,2m) + Wi
is equivalent to
(2 = Um, amVg(Tm) + (1 — ) Vg(zm) — Vg(um)) < amD(tUm, Tm) + (1 — am) D(tm, 2m) — g(um)
and
(1 —am){z — m, Vg(xm) — Vg(zm)) < —(1 — am) D(Tm,y 2m) + Wi
The last two inequalities are affine with respect to z, so C,, is closed and convex.
Step 2. Assume that F' C C), for all n > 0. Then the sequence {z,} is bounded. In fact, by the construction
of Cy,, we have that z,, = Proj%n (z0), then it follows from Lemma m that
D(2n,0) = D(Proj¢, (z0),20) < D(p,x0) — D(p,zn) < D(p, x0)
for each p € F' C C, for all n > 0. Hence, the sequence {D(x,,z¢)} is bounded. Thus, by Lemma
{zy} is bounded and so are {T;x,}, {yn}, {zn}, {un}

Step 3. Next, we show that F C C,, for all n > 0.
In fact, it is obvious that F' C Cy = C. Assume now that ' C C,, for some n € N. It follows from the
definition of D(-,-) and T;, Lemma and (3.1 that, for each p € F C C),, we have

“+oo
D(p,zn) =D (p7 vg* { > B Vg(Ti”wn)} )
=0
“+o0o
< Z ﬁff)D(p, Tznxn)
i=0
= : ) (3.2)
<> BIHD(p, wn) + vC(D(p, )] + 1}
i=0
+o0 )
< Z /87(;) [D(p, -rn) + Wn]
1=0

= D(p,xn) + wp.
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Observe that p € F implies p € C, by Lemma Lemma and (3.1)), for all p € C, we have

D(p, Projg(tn)) (pu tn) D(Projg'(tn)v tn)
< D(p, tn)
=V(p,Vg(@n) — AnBay) (3.3)
<V(p,[Vg(xn) — \MuBxyp] + A\pnBxy,) — (Vg*[Vg(xy) — \pBxy] — p, \nBxy,) '
= V(p, VQ(wn)) — An(tn — p, Bxy)
= D(p,zpn) — M (xn — p, Bxy) + (tn — Tpy —AnBxy,).
From p € VI(C, B) and the fact that B is an a-inverse-strongly monotone operator, we obtain
— Ml — p, Bzy) = =My (2 — p, Bxy, — Bp) — A\y(xn — p, Bp) < —Ana||Bz,, — Bpl|*. (3.4)
By Lemma and condition (B2), we also obtain
(tn — Tn, =AnBry) < |[tn — znl| - An||Bry||
1
< EHVg(tn) - Vg(xn)H : /\nHanH
1 (3.5)
= X, - || Bz
c
1
< f)\leB:):n — Bp||%.
Combining (3.3)-(3.5)), An € [a,b] and 0 < b < ca, we obtain
. b
D(p, Projé,(ta)) < D(p:tn) < D(p,@n) + An( = @) - [|Ban = Bpl[* < D(p,zn). (3.6)

Thus, by . -, Lemma [2.12] Lemma 2. 3 and the fact that Tgkn (k = 1,2,--- ,m) is a Bregman
quasi- D-nonexpansive mapping, for each p € We obtain

D(p,un) = D(p, 0, yn)
< D(p,yn)
= D(p7 vg* [anVQ(PrOjg(tn)) +(1— an)VQ(Zn)D
< anD(p, Proj¢(ta)) + (1 — an) D(p, 2n) (3.7)
< anD(p,zn) + (1 — an)D(p, 21)
< anD(p,xn) + (1 — an)[D(p, zn) + wh]
< D(p,xn) + wp.
This proves that p € Cj,41. Consequently, we see that F' C (), for any n € N.
Step 4. Now, we show that {x,} is Cauchy sequence.
In fact, combining z,, 11 = Projgnﬂ(xo) € Cpy1 C O, and Lemma we obtain
0 < D(xpn, Tnt1) < D(n,x0) — D(2ps1,20)

for all n > 0. Thus, the sequence {D(zy,x0)} is nondecreasing. It follows from the boundedness of
{D(xn, o)} that the limit of {D(zy,x0)} exists.
For any positive integer m, it then follows from Lemma and existence of the limit of {D(x,, o)}
that
D(@ptm,Tn) = D(xn+m7p""0j(gjn (20))
< D(@ntm, o) — D(Proj¢, (xo), o) (3.8)

= D(@ntm,x0) — D(zpn, x0).
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It follows from (3.8) that D(zyp4+m,xn) — 0 as n — co. We have from the boundedness of {D(x,,z¢)} that
{zy} is bounded and combining Lemma we obtain

Tntm — Tn — 0, n — 00.

Hence, the sequence {z,} is Cauchy in C. Since E is a Banach space and C is closed, then there exists
p € C such that z, — p as n — oo. Now, since D(Zp1m,Zn) — 0 as n — oo for any positive integer
m, we have in particular that lim, oo D(Zp41,2,) = 0 and this further implies from Lemma that
limy, 500 [|Tnt1 — xn|| = 0. Since x,11 = Proj%nﬂ(l‘o) € Cpi1 C Cp and lim,, o wy, = 0, we have

D(zpy1,upn) < D(xpt1,Tn) +wp — 0,1 — oo.
From Lemma we obtain that lim, e ||Zn+1 — un|| = 0. Therefore

|zn = un|| < [lzn — nal] + [[#n41 — un|| = 0. (3.9)
It follows from lim,_ o ||z, — p|| = 0 and that

Up — P, N — 00. (3.10)

Step 5. Now we prove that p € { S P(T, )] {ﬂk 1 GMEP(f,¢r)| NVI(C,B).

(a) First we prove that p € ;.55 F(T;).

Since ¢ is bounded on bounded subsets and uniformly smooth on bounded subsets of E, we have from
Lemma that Vg(-) is uniformly norm-to-norm continuous on any bounded sets and combining , we
obtain

nh—{go [Vg(zn) — Vg(un)|| = 0. (3.11)

It follows from the boundedness of the sequences {z,} and {(,}, D(p,T]'xn) < D(p,xyn) + (, for each

p € F, i € N that the sequences {Vg(T'z,)} are bounded. In view of Lemma we know that
domg* = E* and g* is strongly coercive and uniformly convex on bounded subsets of E*. Let r =
sup{||Vg(zn)||, [|V9(T]*zy)|| : @ € N,n € N} and pf : E* — R be the gauge of uniformly convexity of
the conjugate function ¢g*. For each p € F', we have from Lemma Lemma and that
D(p,un) = D(p, 05'yn)

< D(p, yn)

= D(p, Vg [anVg(Proji(tn)) + (1 — an)Vg(za)])

< @ D(p, Proj(t,)) + (1 — ) D(p, z)

+oo
< anD(p, Proj(tn) + (1 — an) - (3 89 D(p, T') — 8080 pi (119 9(T w0) — vg(T7w0))))
1=0

< Do) + (1 - a) - (ZB (0. 00) + ] — BOBY g (1199(Tgz) - To(Tiw) ) )
< anD(p,xn) + (1 = an)D(p, 2n) + wn — (1 — an)ﬁ(o) @ *(HVQ(TO Tn) — Vg(TZ"xn)H)
= D(p,n) +wn — (1= an) 308 01 (199(T3' ) — V(T w0)))-
This implies that
0 < (1-an)BY 8 o (1V9(Tg wn) — Vo(Tin)[) < D(p, ) — D(pyun) + wn. (3.12)
On the other hand, it follows from the three point identity (see Remark (1)) that

|D(p, x1) — D(p,un)| = | = D(xn, un) + (xn — p, Vg(un) — Vg(zn))|
< D(@n, un) + [|lzn = pll - [[Vg(un) — Vg(an)]]-
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In view of (3.9) and (3.11]), we obtain
D(p,x,) — D(p,up) = 0,n — 0. (3.13)

Combining (3.12) and (3.13)), lim,,—, y o0 ¢, = 0, Tp = I and liminf,, (1 — an)ﬂg))ﬂg) > 0, we have
pr(||Vg(Tg'en) — Vg(Tizn)l) = 0,n — oo.
It follows from the property of p; that

lim ||Vg(zn) — Vg(T]'xn)|| = 0. (3.14)

n—-+o00

Since x, — p as n — oo and Vg(-) is uniformly norm-to-norm continuous on any bounded sets, we
obtain that
|Vg(xn) — Vg(p)|| — 0 as n — oo. (3.15)

Note that |[Vg(T{'zn) — Vg(p)|| < [|Vg(zn) — Vg(T]'zn)l| + [|Vg(2n) — Vg(p)||. From (3.14) and (3.15),
we see that

lim_[|9g(T}'an) — Vg(p)|| = 0. (3.16)

n—-+00

Observe that Vg*() is also uniformly norm-to-norm continuous on any bounded sets. It follows from

(3.16) that
lim ||T}'z, —p|| = 0. (3.17)

n—-+o0o

Using ||T]" @, — pl| < ||T7 2, — TPan|| + [T, — pl|, the uniformly asymptotic regularity of T; and
(3-17), we have lim,,— o0 || T} 2, — p|| = 0. That is, T;(Txy,) — p as n — oo, it follows from the closeness
of T; that Typ = p for all i € N, i.e., p € N5 F(Th).

(b) Now we prove that p € (yy GMEP(fi, ¢r) = ey EP(Gk).
In fact, in view of u, = 0]y, (3.7) and Lemma for each q € F(0F), we have
0 < D(un, Yn) = D03 Yn, yn) < D(p,yn) — D(p,03"yn) < D(p, 2n) — D(p, up) + wn.

It follows from and limy, 4 oo wy, = 0 that D(up,y,) — 0 as n — co. Using Lemma we see that
[|tn, — yn|| = 0 as n — oco. Furthermore, ||z, — yn|| < ||zn — un|| + ||un — yn|| — 0 as n — oco. Since z,, — p,
as n — 0o and ||z, — yn|| — 0, as n — oo, then y, — p, as n — oco. By the fact that 08 (k =1,2,--- ,m) is
a Bregman quasi-D-nonexpansive mapping and using Lemma and again, we have that

0 < D(0%yn, yn) < D(p,yn) — D(p, 0Fyn) < D(p,xn) — D(p, 05 yn) + wn. (3.18)
Observe that
D(p,un) = D(p,07yn) = D(p, TSm TEm=1 ... TG2 7C1 4

Tm,n™ Tm—1,n T2n " T1ln (3 19)

= D(p, TS™ TEm=1 ... 0%y,) < D(p, 0%y,).

Tm,n" Tm—1,n

Using (3.19) in (3.18)), we obtain that 0 < D(6%y,,,y,) < D(p,xn) — D(p,un) + w, — 0 as n — oo. Then
Lemma [2.9| implies that lim, oo |08 yn — yul| = 0,k = 1,2,--- ,m. Now

16390 — 2II < 10390 — Y| + 1y — pl| = 0,1 — o0,
k=1,2,---,m. Similarly, lim, o |05 'y, — p|| =0,k =1,2,--- ,m. This further implies that

lim Hefl_lyn - egynH =0. (3.20)

n—-+4o0o
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Also, since Vg(+) is uniformly norm-to-norm continuous on any bounded sets and using (3.20]), we obtain
that lim, 40 ||Vg(0Fyn) — Vg(0E~Ly,)|| = 0. From {ry,} 25 C (0,+00) satisfying liminf, e 75n > 0
for each k =1,2,--- ,m, we see that

i [Vg(0ky,) — Vg0 1y,)||

n—oo T‘k:,n

= 0. (3.21)
By Lemma we have that for each £k =1,2,--- ,m,

1 B
Gr (05 yn, y) + - Ohyn, Vg(Ohyn) — Vg(0k'yn)) > 0, Vy € C.

Furthermore, replacing n by n; in the last inequality and using condition (C2), we obtain

1V g(OF yn,) — Vg0 tyn NIl 1
ly — O yn; || - - L >y — Oy, V(05 yn,) — V9 (O) )

Tk,n]- Tk,n]-

> —Gi(br yn;»y) 2 Gk(y,eﬁjynj) vy € C.

By taking the limit as j — +oo in the above inequality, for each kK = 1,2,--- ;m, we have from the condition
(C4), (3.21)) and 6% JYn; = D as j — +00 that Gr(y,p) <0, for all y € C.

For0<t<1 and y € C, define y; = ty + (1 — t)p. It follows from y,p € C and the convexity of C' that
y¢ € C, which yields that G (y¢, p) < 0. It follows from the conditions (C1) and (C4) that

0= Gr(ys,yt) < tGr(y,y) + (1 = t)Gr(ye, p) < tGr(ye,y).

That is,
Gr(yt,y) > 0.
Let ¢ — 01, from the condition (C3), then we obtain that Gp(p,y) > 0, Yy € C. This implies that
p€ EP(Gk), k=1,2,--- ,m,ie, pe€ ey EP(Gy) = ey GMEP(fy, ¢k)-
(c) Next we prove that lim, o ||z, — Projé(t,)|| = 0.

In fact, it follows from Lemma . Lemma. . . -, and + =-Lipschitzian of B that

D(zy, Projc(t ) < D(xp,tn) — D(Projc(tn),tn)
< D(xp,ty)
= V(zn, Vg(xn) — AnBxy)
< V(zp, [Vg(zn) — AMpBxy| + A\nBxy) — (Vg [Vg(an) — Ay Bxyp] — Tpn, AnBay)
= D(xp, xpn) — (tn — Tn, \nBxy)
= —(ty, — Tn, \nBxy,)
< 2X2|Ban — BalP
2
< 20l — P
b? 9
< —(llzn — unll + [[un = pI[)* = 0 (n — o0).

cx

So, from Lemma we have lim,,_,o, D(xp, Projg(tn)) = 0 which implies that
Tim [l — Progd(t)| = 0. (3.22)
Thus, by the uniform continuity on any bounded set of Vg(-), we obtain that

lim |[9g(za) — Vg[Proj(t,)]]| = 0. (3.23)
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(d) Now we prove that p € VI(C, B). Define M : E — 2F" as follows:

[ Buv+ N¢(v), veC,
Mv_{@, vé¢C,

where No(v) = {w € E : (v —u,w) > 0, Yu € C} is the normal cone to C at v € C. Then the multi-
valued mapping M is maximal monotone and M 10 = VI(C, B). Let G(M) denote the graph of M and
let (v,w) € G(M), then we have w € Mv = Bv + N¢(v) and hence w — Bv € N¢(v). Therefore, by
Projt(tn) € C, we have

(v — Projl(tn),w — Bv) > 0. (3.24)
On the other hand, it follows from Lemma that
(v — Projl(tn), Vg(Projl(tn)) — Vg(tn)) > 0.
That is,

Vg(Tn) — VQ(PT’OJ%(tn))

(v — Projg(tn), ;

It follows from ([3.24]) and (3.25)) that
(v — Projl(tn),w) > (v — Projg(t,), Bv)

— Bz,) < 0. (3.25)

Vg(xn) — Vg[Proji(t,)]
An
= <U - Projg‘(tn)a Bv — B(PTOJ%@n)» + <U - PTOj%(tn)a B(ijg(tn))
vVg(x,) — Vg[Projg(tn)}>
An
IProgb(tn) — eall

> (v— PT’OJ'%(tn), Bov) + (v — Projg'(tn)7 — By

— Bxp) + (v — Projd(ty),

> —|[v = Proj&(tn)| " |[v — Projé.(t,)]|
. ||VQ[PT0jgj'(tn)] - Vg(xn)H
a
> _L(IIPTOj%(tn) — n| n [Vg[Projé(tn)] — Vg(wn)ll)’
(6% a

where L = sup{||v — Projl(t,)|| : n € N}, letting n = ny and k — +oo, using (3.9), (3.10), (3.22),
and ([3.23)), we obtain that (v — p,w) > 0. Since M is maximal monotone, we have p € M~'0 and hence
p € VI(C,B). Thus we have p € F.

Step 6 Finally, we prove that p = Proj% (o).

From z, = Proj¢, (xo) and Lemma we see that (x, — 2z, Vg(zo) — Vg(z,)) > 0, for all z € C,,.
Since F' C C), for each n > 0, we have (z, —w, Vg(z¢) — Vg(x,)) > 0, for all w € F. Let n — +o00 in the last
inequality, we see that (p —w, Vg(zo) — Vg(p)) > 0, for all w € F. In view of Lemma we can obtain
that p = Proj%:zo. This completes the proof of Theorem O

Remark 3.2.

(1) If we suppose that T is uniformly L;-Lipschitz continuous on C' for each i € NT, then the assumption
that T; is closed and uniformly asymptotic regular on C' can be removed in Theorem

(2) Theorem extends the mapping in Theorem 5.2 of Naraghirad and Yao [22] from a family of
Bregman weak relatively nonexpansive mappings to a countable family of Bregman totally quasi-
D-asymptotically nonexpansive mappings. Meanwhile, Theorem also removes the assumption
ﬁ(T) = F(T) on the mapping T. If weset A\, = X\, ay =1, (o =0, 14y = 7, 0 = A = 0,
k=m=1,foralln € N in , then can be rewritten as (|1.5). Hence, Theorem improves
and extends Theorem 5.2 of Naraghirad and Yao [22].
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(3) Theorem also improves and generalizes Corollary 7 and Corollary 8 of Reich and Sabach [2§],
Theorem 12 of Zhu et al. [46], Theorem 20 of Pang and Naraghirad [24], Theorem of Agarwal et
al. [I], Theorem 2.1 of Wu and Lv [37], and others.

(4) For any positive integer i, let R; be a maximal monotone operator from E to E* such that R; 1o #£ 0.
Let r; > 0 and Resr R = (Vg +r;R;)"1Vg be the g-resolvent of R;. Letting T} = Resﬁi R, 1n view of
Lemma 3.2 in [30], we may conclude that 7; is a closed and Bregman relatively nonexpahsive mapping
and ﬁ(ResfivRi) = F(ResﬁivRi) = R;1(0), so T; is a closed Bregman totally quasi-D-asymptotically
nonexpansive mapping. Thus, if we take T; = Resfh R, I Theorem then we can obtain an algorithm
for finding common zeroes of finitely many maximal monotone operators, here is omitted.

The space in Theorem can be applicable to E = Ly(l,, Wi, respectively, where p € (1,2]) and
g(z) = ||z||? for every 2 € E or E= H, etc.. Now, we give the following Example in order to support
Theorem Meanwhile, Example also shows that there is a countable family of closed, uniformly
asymptotic regular and uniformly Bregman totally quasi-D-asymptotically nonexpansive mappings which
are not Bregman D-nonexpansive mappings.

Example 3.3. Let £ =1? and C = {z € I?|||z|| < 1}, where I? = {0 = (01,02, -+ , 00, ) |, T on|? <
1
+ook, llol] = (X525 onl?)? for all 0 = (01,02, ,0n,+) € 12, (o,n) = S o for all 0 =

(01,09, ,0ny---), and 0 = (91,02, ,n,---) € 12, Set zo = (1,0,0,---), then 29 € C and ||zg|| = 1.
Define the following countable family of mappings T; : C — C' by

3 AN
E(xth,-’I/B,"')_{ (0 $1,&2$2,a3$3’---), lffll'e{l’:($1’$2’1’3’...)|$:§72GC}:Q’

B z+2(x1,x2,x3,~--), if v € {x = (z1,22,23,---) |z € C and z # 3}

foralli € N and n > 1, n € N, where {a;} is a sequence in (0,1) such that H;;OQOai = %
It is proved in Goebel and Kirk [I1] that

(i) 1T — Tiyl| < 2llz — yl| Vay € Q, i € N;
(i) 177 — TPyl| < (2I_ya))|z — yl| Va,y € Q. ¥n > 2, € N.

It is clear that F(T}) = {0} for all i € N, E is a Hilbert space. Let g : E — R be defined by g(x) = ||z||?,
r € E, then the Bregman distance D(z,y) = ||z — y||? for all z,y € E.

Let ((t) =t for all t > 0, and {u,} be a nonnegative real sequence with u, — 0 as n — +oo. For any
p € F(T;) = {0} and = € C, we consider the following two cases:

1) If z € Q, then from (i) and (ii), we have
D(p, T}'z) = |lp — T7'z[|* = ||0 = T{"z[[* = ||T7°0 — T{"2||* < (21T}_5a;)||0 — 2|
= ||=[]” + (21 _pa;)® — 1] - [|2[|* = D(0,2) + [(2I}_5a;)* — 1] - D(0, )
< D(p,x) + [(21T}_ya5)* = 1] - ((D(p, 7)) + ftn;

2) If x € O\Q, then x # 52, x € C and T}'x = &712);% we have

D(p Ti'z) = llp = T'a|l” = |0 = Tl = || 77| = (+QVJ|W
1 ) 1
WHO—»”UH + pin = D(p, x) +W

g D) +

<|lo—z|* + D(p,x) + fin

= D(p,z) +
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It follows from 1) and 2) that
D(p, Tj'x) < D(p,x) + v - {(Dp,2)) + pufl) ¥p € F(T), € Cn>1,1>0,

n n
where 1/7(L) = max{(2H 2a])2 -1, W} and uq(f) = ln.
Note that .
0< lim sup{r{)} < hrf max{ (2117_ 0ai)% — 1, 27n}

n—-+00 ’L>0

thus we have lim,,_, | o supizo{yn } = 0. This implies that 7; : C — C' is a countable family of uniformly

Bregman totally quasi-D-asymptotically nonexpansive mappings for every ¢ € N. Next, we claim that T; is

. . . _ 3 _
not a Bregman D-nonexpansive mapping for all i € N. Indeed, let s = %2, ¢t = % € C, then

1 1
D(Tis, Tit) = ||Tis — Tit|* = |[(~ )( 0,0,---) = (0, ,

+2 5’
9 1 3xg
12 = [|s — tI[* = D(s, 1)

:m‘*‘ﬁ ( ) _Hf—*

0,...)H2

for all - € N.
Now, if x € Q, then ﬂmx:yin(ﬂgnﬂaj)-(o,-~ ,0,1,0,---) for alli € N and m > 2, m € N. For any

bounded subset K of C, we have

0< lim sup||T"+1y Ty

n—-+o00 yeK

n—-+o0o

< lim maX(H22n (I ay) - (o,---,0,1,0,~~) 5 (Ia;) - (0. ,0,1,0, )

(_1)n+1
sup Yy — )

yGK\{%OL} (2+2)TL+1 Z+2
1,

1+ 3 )

< lim max(22n ' yai) - \Ja2, + el

su
T n—+oo b

yEC\{To} i+2

\/124—1 i+ 3 )

< lim max jQJ)W.

T n—+oo

H] 25 2t +4 )

=50 22n 05 (G + 2)n+1

(5
< lim max(
(=

< lim max
n—-+o0o

22n—05" ( z+2) )

< lim max(# L) = lim L:O.
~ notoo 22n70.5’ 2n71 n—-+o0 2n71
This implies that limy, oo SUPye HTi"Hy — TMy|| = 0, that is, T; is uniformly asymptotically regular on
C forall7e N.

For any sequence {y,} C C such that lim, iy, = 20 and limy, 400 Tiy = yo, we consider the
following two cases:

1) If the sequence y,, = and limy 400 Yn = 20, then we have that z° = 0 and

27L

. 1
0= lim |[Tiyn—y"ll = Tim [[(0, 55;,0,--+) ="

) 1
> limsup ‘Hyol ~ 5| T 1yl > 0,
n—-+00
this implies that y° = 0 and Tj2? = —m =0=1"
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2) If yo # 55, yn € C and limy, 5 oo Yn = 20, then it follows from

0
_ _ I (TR _ 0y _ (400 &
0= lim ||Tign — Yl = i ] Z.+2yn yoll = MWH ZJrz( —a) =+ )l
> timsup [ + |- 1 = )2 0
11m Su - s —
_n%Jro? Y i+ 2 L+ Y
that ¢ = Z+2,hence Ty lionzy

In summary, we can obtain that the map T; is closed for every i € .

Choose i € N, for any n > 1 and n € N, we may set &, = 547, then 2, € C and z, — 0 € F(T;) = {0}
as n — +o0.

Finally, it is obvious that the family {T;};cn satisfies all the aspects of the hypothesis of Theorem

The following Example shows that there is a Bregman totally quasi-D-asymptotically nonexpansive
mapping 7" which is not a Bregman D-nonexpansive mapping, but 7" is both Bregman relatively nonexpansive
and Bregman quasi-nonexpansive.

Example 3.4. Let E =12, C = {zx ¢ l2| l|lz|| <1} and g(z) = ||z||?, where [? = {0 = (01,09, -+ ,0p, - )|

+
n=1

1
a1 lonl? < ook ol = (3027 [onf?)? for all o = (01,02, ,op, ) € 1% (o,n) =
02(017027"' 70-717'”)77]:(7]177727”' 777717'”) 612

Let T : C' — C be a mapping defined by

onny for all

T($17$27$37 o ) = (0,1’%,&21’2,@3%3, o ) V($1,$2,ZC3, o ) c O?

where {a;} is a sequence in (0,1) such that II%5a; = 1. Let g : E — R be defined by g(z) = ||z||?, = € E,
then the Bregman distance

D(x,y) = g(z) = g(y) = (Va(y),x = y) = [[ll* = [ly|I* = 2y, 2 — ) = [Jo — y|[*Vz,y € C, F(T) = {0}(# 0)
and F is a Hilbert space. It is proved in Goebel and Kirk [11]that

(i) [Tz = Tyl| < 2|}z —yl| Yo,y € C;

(i) [Tz —T"y[| < (M0 )l|z — yl| Yo,y € C, Vn > 2.

Let ((t) =t, for all t > 0, {u,} be a nonnegative real sequence with p, — 0 as n — 400 and

] 3, ifn=1,
Yn = 211" ,a;)?> —1, ifn>2andn € N,
7=2%J

then from (i) and (ii), we have
Tz — T™| > < ||z — | + vnC(||z — y||?) + pn Vz,y € C, V0 > 1,

that is,
D(T"z,T"y) < D(z,y) + val(D(x,y)) + pn Yo,y € C, Vn > 1.

Let 29 = (1,0,0,---), yo = (3,0,0,---) € C, then
1
D(Two, Tyo) = [|Two — Tyo|[* = [1(0,1%,0, ) = (0, 1,0, )| = (1 -

1 4
> Jlzo = yol* = 11(1,0,0,-++) = (5, 0,0, )|* = (1 = 5)* = 1+ = D(x0, 30)
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and

D(0,Tx) = ||0 — Tz||* = 27 + S Faa? < 2% + 2 Sa?

(3.26)
= [lz||* = 1|0 — z[|* = D(0,z), Va = (21,22, 23,---) € C.

It is obvious that F(T) ¢ F(T) for any mapping. Now, we show that F(T) ¢ F(T) = {0}. For any

p € F'(T), then there exists a sequence {z, } in C which converges weakly to p and limy, ;oo ||2n — Ty || = 0.
Setting x,, = (mgn), a:én), a::(,,n), -++), we have
e = Taal* = || 2", 2, 257, ) = (0. (2")?, @z agaf?”, ) |

= (asgn)) + [xén) - (xgn))Z]Q + E:;O?f(xf n ai_lxg_)l) — 0 as n — +0o0

<— xg”)—>0 as n— +oo for all ie NT «<— x, -0 as n — 400

= {z,} in C which converges weakly to 0.

Thus, p =0 € F(T), from F(T) = F(T) = {0} # 0 and (3-26), these imply that T : C' — C' is a Bregman
relatively (asymptotically) nonexpansive nonlinear mapping.

These imply that T is a Bregman totally D-asymptotically nonexpansive mapping with the nonempty
fixed point set which is not a Bregman D-nonexpansive mapping. Hence, T is a Bregman totally quasi-
D-asymptotically nonexpansive mapping which is not a Bregman D-nonexpansive mapping, but 71" is both
Bregman relatively nonexpansive and Bregman quasi-nonexpansive.

Setting ((t) = t, i = kY -1 Jimy, oo supl>0{k: )} = 1,and YY) = 0 for each i > 0 in Theorem
we have the following Corollary [3.5]

Corollary 3.5. Let E be a 2-uniformly convex Banach space and g : E — R be a strongly coercive Bregman
function which is bounded on bounded subsets and uniformly smooth and 2-uniformly conver on bounded
subsets of E. Let C be a nonempty, closed and convex subset of E. Suppose B : C — E* is an «-
inverse-strongly monotone operator satisfying (B1)-(B2). For each k = 1,2,--- ,m, let Ay, : C — E* be
a continuous and monotone mapping, o : C — R be a lower semicontinuous and convex functional, let
fr : C x C — R be a bifunction satisfying (C1)-(C4) and T; : C — C Vi € N be an infinite family
of closed cmd uniformly Bregman quasz -D-asymptotically nonexpansive mappings with nonnegative real se-
quences {k )}. limy, 4 oo supz>0{k } 1, Ty = I. Assume that T; is uniformly asymptotic reqular on
C for all t > 0, i.e., lim, 4o SUp,cx HTZ‘HQ: — TPz|| = 0 holds for any bounded subset K of C' and
F = [NE5S FT)| 0 [ M GMEP(frs )| N VI(C, B) £ 0 for each kb =1,2,-+ ,m, {ren i € (0, +00)
satisfying iminf, oy > 0 for all z,y € C, Gi(z,y) = fr(z,y) + cpk(y) — or(2) + (Agz,y — 2),
Tgkn(:c) = {z € C: Gi(z,v) rkln (y —2,Vg(z) — Vg(z)) > 0, Yy € C}. Let {z,} be a sequence gen-
erated by ’

(9 € C' chosen arbitrarily,
Co=0C,
yn = Vg {anVg(Projt[vg"(Vg(zn) — AnBn)]) + (1 — om)Vg(zn)},

o0 [ Azt

Up = TGm T7Gm-1 G2 G

Tm,n™ Tm—1,n To,n T, nynv
Cni1={2€Cy:D(z,up) < anD(z,zp) + (1 — apn)D(z,2,) < D(2z,2) + wn },

Tpyl = Projgynﬂ(xo),
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where wy, = supizo{k,(f) — 1} - suppep{D(p; zn) } < +o00 for each n >0, {\,} C [a,b] for some a,b with 0 <

a < b < ca, where % s 2-uniformly convexity constant of F satisfying Lemma (2), {an}, {ﬁ,(f)}(z €EN)
are real sequences in [0, 1] satisfying the conditions:

Vn >0, ZB() =1 l1m1nf(1 —an)BO8% >0 VieN.
=0

Then the sequence {xy} converges strongly to Projy.xo.

Remark 3.6. Using Remark (1), Corollary improves and generalizes Theorem 3.4 of Chang et al. [9]
in many aspects.

Setting 1/( )~ /M(f ) = 0 for each i > 0 in Theorem we have the following Corollary

Corollary 3.7. Let E be a 2-uniformly conver Banach space and g : E — R be a strongly coercive Bregman
function which is bounded on bounded subsets and uniformly smooth and 2-uniformly conver on bounded
subsets of E. Let C' be a nonempty, closed and convex subset of E. Suppose B : C' — E* is an a-inverse-
strongly monotone operator satisfying (B1)-(B2). For each k =1,2,--- ,m, let Ay : C — E* be a continuous
and monotone mapping, ¢ : C — R be a lower semicontinuous and convex functional, let fr, : CxC — R be
a bifunction satisfying (C1)-(C4) and T; : C — C for alli € N be an infinite family of closed and Bregman
quasi-D-nonexpansive mappings and Ty = 1. Assume that F = [ﬂ;o(? F(Tz)} N [ﬂ}?:l GMEP(fr, k)
VI(C,B) # 0. For each k = 1,2, ,m,{rgs}t2 C (0,400) satisfying iminf, oo, > 0 for all
z,y € C,
Gk(Z,y) = fk(zay) + ('Pk(y) - gpk(z) + <Ak’zay - Z>a
1
TTGk’fn(x) ={z€C:Gi(z,y) + K@ —2,Vg(z) — Vg(x)) >0, Yy € C}.
n

Let {z,} be a sequence generated by

xg € C' chosen arbitrarily,
Co=C,
yn = Vg {anVg(Proj[Vg (Vg(zn) — AnBzy)]) + (1 — an)Vg(zn)},

o= Vg’ [f BOg(T an),

G G G G
U =T Tom 102 T Yns

Cny1 ={2€Cy: D(z,un) < anD(z,2,) + (1 — an)D(2,2,) < D(z,2,)},

| Tnt1 = Projg,nﬂ(a:o),

where {\,} C [a,b] for some a,b wz’th 0 < a<b< ca, where % is 2-uniformly convezity constant of E

satisfying Lemma (2), {an}, {B ' }(z € N) are real sequences in [0, 1] satisfying the conditions: ¥n > 0,
Yoo ﬂ,(f) =1, liminf, (1 — an)ﬂn Bn) > 0 for alli € N. Then the sequence {x,} converges strongly to
Proj%xo.

Remark 3.8. Using Remark (1), Corollary improves and generalizes Theorem 3.1 of Saewan and
Kumam [33] in the following aspects:

(i) For the structure of Banach spaces, we extend the normalized duality mapping to a more general case,
that is, a convex, continuous and strongly coercive Bregman function which is bounded on bounded
subsets and uniformly convex and 2-uniformly smooth on bounded subsets.
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(ii) We extend the mapping from two relatively nonexpansive mappings to an infinite family of Bregman
quasi- D-nonexpansive mappings, and the assumption F(7') = F(T') on the mapping 7" is removed.

(iii) For generalized mixed equilibrium problems, we extend the problems from one to a finite family.
Setting g(z) = ||z||* in Theorem 3.1 ., we have the following Corollary .

Corollary 3.9. Let C' be a nonempty, closed and conver subset of a 2-uniformly convex and uniformly
smooth Banach space E. Suppose B : C — E* is a a-inverse-strongly monotone operator satisfying (B1)-
(B2). For each k =1,2,--- ,m, let Ay : C — E* be an continuous and monotone mapping, ¢ : C — R be a
lower semicontinuous and convex functional, let fr, : CxC — R be a bifunction satisfying (C1)-(C4) and T; :

C — C foralli € N be an infinite family of clo(sed and uniformly totally quasi-¢-asymptotically nonexpansive

mappings with nonnegatwe real sequences {l/n 1, {,u(l } and a strictly increasing and continuous function

C:RY — R with (0) = 0. limy— 400 supizo{u D1 =0 and limy, o supi>0{un)} =0,To=1 and I is
the identity mapping on C. Assume that F := [ﬂ+°° F(T, )} [ﬂk 1 GMEP(fk,gok)} NVI(C,B)#0 and
T; is uniformly asymptotic regular on C for all i > 0, i.e., limy, o0 SUpyex || T e — TPx|| = 0 holds for

any bounded subset K of C. For each k =1,2, -+ ,m,{rg,},>5 C (0,400) satisfying liminf, oo 7gn > 0,
forall z,y € C,
Gi(z,y) = fi(2,y) + ory) — @r(2) + (Agz,y — 2),

1
Trcljkn(x) ={z€C:Gi(z,y) + r—(y —z,Jz—Jzx) >0, Vy € C}.

k,n
Let {z,} be a sequence generated by

(9 € C chosen arbitrarily,

Co=2C,
n=J HanJ T[T (T (2n) — MaBxp)]) + (1 — an)J(20)},

+o0o
W=7 B0, (3.27)
1=0
up = Tk T T2 Ty,

Cri1 ={2 € Cp: ¢(z,un) < and(z,2n) + (1 — o) (2, 2n) < d(2,2p) + wn },
Tnt+1 = HCn+1( )

where wy, = supizo{u,(f)} - suppe p{ClP(p, T0)]} + Supizo{ﬂq(ff)} < 400 for each n >0, {\,} C [a,b] for some
a,b with 0 < a < b < car, where  is 2-uniformly convezity constant of E. {on}, {ﬂ,(f)}(z € N) are real
sequences in [0,1] satisfying the conditions: for allm >0, Y2, @(f) =1, liminf, (1 — an)ﬁq(zo <0 for
alli € N. Then the sequence {x,} converges strongly to Ilpxy.

Setting E=H in Theorem we have the following Corollary

Corollary 3.10. Let C be a nonempty, closed and convex subset of real Hilbert space E. Suppose B : C — E*
is an a-inverse-strongly monotone operator satisfying (B1)-(B2). For eachk =1,2,--- ,m, let Ay : C — E*
be a continuous and monotone mapping, pr : C — R be a lower semicontinuous and convex functional, let
fr : C x C — R be a bifunction satisfying (C1)-(C4) and T; : C — C for all i € N be an infinite
family of closed and umformly totally quasi-asymptotically nonexpansive mappings with nonnegative real
sequences {l/n 1, {,un } and a strictly increasing and continuous function ¢ : Rt — R with ¢(0) = 0.

limy, 400 supz>0{1/7(L } =0 and limy, 4+ supz>0{,un } =0, Ty = I and I is the identity mapping on C.
Assume that F := [ﬂ+°° F(T, )} [ﬂk:l GMEP(fk,gpk)] NVI(C,B) # 0 and T; is uniformly asymptotic
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reqular on C' for all i > 0, i.e., lim,_, oo SUp, e ||T7 2 — TPx|| = 0 holds for any bounded subset K of C.
For each k = 1,2, ,m, {rpn 12 C (0,+00) satisfying iminf,, oo 7k, > 0, for all 2,y € C,

Gr(z,y) = fr(z,9) + or(y) — vr(2) + (Arz,y — 2),

1
T,i’“n(x) ={z€C:Gi(z,y) + T—(y— z,z—x) >0, Yy e C}.
’ k,n

Let {z,} be a sequence generated by

xg € C' chosen arbitrarily,
Co=0C,
Yn = anPC(xn - )\ann) + (1 - Oén)Zn,

+o0 '
o= BIT a,,
=0

Uy, = TGm T7Gm-1 ,, G2 G Un,

Tm,n=" Tm—1,n T2,n " Tln

Crnr={z€Ch:|[z- UTLHQ < aplz _anz + (1 —an)llz = ZnHQ < Hz_anQ + wn},

Tn+1l = £Cpyq ($0),

where w, = supizo{l/r(f)} -suppep{¢(llp — zal|?)} + Supizo{ug)} < 400 for each n > 0, {\,} C [a,b] for
some a,b with 0 < a < b < a. {ay}, {Bff)}(z € N) are real sequences in [0, 1] satisfying the conditions: for
alln >0, >, ,6’7(5) =1, liminf, (1 — ozn)@(LO) 0> 0 for alli € N. Then the sequence {xn} converges
strongly to Prxg.

Remark 3.11. Corollary [3.10] improves and extends Theorem 2.1 of Martinez-Yanes and Xu [I8] in the
following aspects:

(1) From a nonexpansive mapping to a countable family of totally quasi-asymptotically nonexpansive
mappings.

(2) Considering the generalized mixed equilibrium problems from zero to a finite family.
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