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Abstract

In this manuscript, common fixed point results for self-mappings satisfying generalized weak integral type
contraction in the setting of G-metric space are established. Using the derived results, some applications to
the systems of non-linear integral and fractional differential equations are also discussed. c©2016 All rights
reserved.
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1. Introduction and preliminaries

Throughout the paper R+, N, N0 will denote the set of all non-negative real numbers, the set of positive
integers, the set of non-negative integers respectively and Φ = ϕ such that ϕ : R+ → R+, where ϕ is
Lebesgue integrable, summable on each compact subset of R+ and

∫ ε
0 ϕ(t)dt > 0, ∀ ε > 0.
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Banach [5] established a theorem known as Banach contraction principle. Banach contraction principle
states that “Any contraction mapping in a complete metric space has a unique fixed point”. After that
many researchers generalized this principle in many directions using different contractive type conditions.
Alber and Guerre-Delabriere [3], gave the concept of weak contraction and studied the existence of fixed
points for self-map in Hilbert spaces. The concept of weak contraction has been extended by Rhoades to
metric spaces who also defined φ-weak contraction as follows:

A self-map T on metric space (X, d) is said to be φ-weak contraction if there exists a map φ : R+ → R+

with φ(0) = 0 and φ(t) > 0 for all t > 0 such that

d(Tx, Ty) ≤ d(x, y)− φ(d(x, y)), ∀x, y ∈ X.

In [21], Rhoades proved the following theorem.

Theorem 1.1. Weak contractive self-map in a complete metric space has a unique fixed point.

Dutta and Choudhury [9] generalized the concept of weak contraction as a (ψ, φ)-weak contraction and
established the following result.

Theorem 1.2. Let T be a self-map on complete metric space (X, d) satisfying the following inequality

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− φ(d(x, y)), ∀x, y ∈ X,

where ψ, φ : R+ → R+ is monotonic non-decreasing and continuous function such that ψ(0) = 0 = φ(0),
ψ(t) > 0 and φ(t) > 0 for t > 0. Then T has a unique fixed point.

Mustafa and Sims [20], introduced a new concept of generalized metric space, named as G-metric space.
In such spaces every triplet of elements are assigned to a non-negative real number, based on the notion of
G-metric spaces after that many researchers extended the known contractions in G-metric space. One of
these is (ψ, φ)-weak contraction (see [6, 8, 10, 18, 19, 23]). Aage and Salunke[1] proved the following result
for weak contraction in G-metric space.

Theorem 1.3. Let (X,G) be a complete G-metric space and let T : X → X be a mapping satisfying

G(Tx, Ty, Tz) ≤ G(x, y, z)− φ(G(x, y, z))

for all x, y, z ∈ X. If φ : [0,∞) → [0,∞) is a continuous and non-decreasing function with φ−1(0) = 0,
φ(t) > 0 for all t ∈ (0,∞), then T has a unique fixed point in X.

Mohanta [16] proved the following result in G-metric space.

Theorem 1.4. Let (X,G) be a G-metric space and ψ, φ be altering distance functions. Let the mappings
T, f : X → X satisfy

ψ(G(Tx, Ty, Tz)) ≤ ψ(G(fx, fy, fz))− φ(G(fx, fy, fz)), ∀x, y, z ∈ X,

where, T (X) ⊂ F (X) and F (X) is a complete subspace of X, then T and f have a unique point of coin-
cidence. Moreover, if T and f are weakly compatible, then T and f have a unique common fixed point in
X.

Branciari [7] introduced the concept of integral type contraction and proved the following famous Banach
contraction theorem:

Theorem 1.5. If T is a self-map of a complete metric space (X, d) such that for all x, y ∈ X∫ d(Tx,Ty)

0
ϕ(t)dt ≤ η

∫ d(x,y)

0
ϕ(t)dt, η ∈ (0, 1),

where, ϕ ∈ Φ, then T has a unique fixed point.
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This result was more generalized and extended by many authors via using different integral type con-
traction for the study of fixed point, common fixed point and coincidence point in the setting of different
spaces. Among these, some are as follows:

Theorem 1.6 ([15]). Let T be ψ∫
φ-weakly contractive self-map on complete metric space (X, d) and ϕ ∈ Φ

satisfying

ψ
(∫ d(Tx,Ty)

0
ϕ(t)dt

)
≤ ψ

(∫ d(x,y)

0
ϕ(t)dt

)
− φ

(∫ d(x,y)

0
ϕ(t)dt

)
,

where x, y ∈ X, ψ : R+ → R+ is continuous and non-decreasing function, φ : R+ → R+ is a lower semi
continuous and non-decreasing function such that ψ(t) = 0 = φ(t) if and only if t = 0. Then T has a unique
fixed point.

Ayadi [4] proved the following common fixed point theorem for integral type contraction in generalized
metric spaces.

Theorem 1.7. Let (X,G) be a complete G-metric space and f, g : X → X be mappings such that∫ G(fx,fy,fz)

0
ϕ(t)dt ≤ α

∫ G(gx,gy,gz)

0
ϕ(t)dt, ∀x, y, z ∈ X,

where α ∈ [0, 1) and ϕ ∈ Φ. If f(X) ⊂ g(X) and g(X) is a complete subspace of X. Then f and g have a
unique point of coincidence in X. Moreover, if f and g are weakly compatible, then f and g have a unique
common fixed point.

In the current work we derive some fixed point results for (ψ, φ)-weak integral type contraction in com-
plete G-metric space. In addition application to the system of non-linear integral and fractional differential
equations are also discussed.

Definition 1.8 ([20]). Let X be a non-empty set and let G : X × X × X → R+ be a function satisfying
the conditions:

1. G(x, y, z) = 0 implies that x = y = z, ∀x, y, z ∈ X;

2. 0 < G(x, x, y), ∀x, y ∈ X with x 6= y;

3. G(x, x, y) ≤ G(x, y, z), ∀x, y, z ∈ X with y 6= z;

4. G(x, y, z) = G(P{x, y, z}), where P is an arbitrary permutation of x, y, z (symmetry in three variables);

5. G(x, y, z) ≤ G(x, k, k) +G(k, y, z), ∀x, y, z, k ∈ X.

Then it is a G-metric on X and the pair (X,G) is called G-metric space.

Proposition 1.9 ([20]). Let (X,G) be a G-metric space. The following are equivalent:

1. (xn) is G-convergent to x;

2. G(xn, xn, x)→ 0 as n→∞;

3. G(xn, x, x)→ 0 as n→∞;

4. G(xn, xm, x)→ 0 as n,m→∞.

The following definitions can be found in [20].

Definition 1.10. Let (X,G) be a G-metric space and let xn be a sequence in X. A point x ∈ X is said to
be the limit of the sequence xn if

lim
n,m→∞

G(xn, xm, x) = 0,

and the sequence xn is said to be G-convergent to X.
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Definition 1.11. A sequence xn is called a G-Cauchy sequence if for every ε > 0, there is a positive integer
N such that G(xn, xm, xl) < ε for all n,m, l > N.

Definition 1.12. A metric space (X,G) is said to be G-complete (or a complete G-metric space) if every
G-Cauchy sequence in (X,G) is G-convergent in X.

Definition 1.13 ([12]). The function X : R+ → R+ is called a sub-additive integrable function if for any
a, b ∈ R+ we have, ∫ a+b

0
X(t)dt =

∫ a

0
X(t)dt+

∫ b

0
X(t)dt.

Proposition 1.14 ([24]). Let f and g be weakly compatible self-mappings on a set X. If f and g have a
unique point of coincidence ξ = fψ = gψ, then ξ is the unique common fixed point of f and g.

Definition 1.15 ([11]). A mapping ς : [0,∞)→ [0,∞) is called an altering distance function if the following
condition are satisfied:

• ς is continuous and non-decreasing

• ς(t) = 0 if and only if t = 0.

Definition 1.16 ([24]). Let S and T be self-mappings on a non-empty set X.

1. A point x ∈ X is said to be a fixed point of T if Tx = x.

2. A point x ∈ X is said to be a coincidence point of S and T if Sx = Tx and we shall called w = Sx = Tx
that a point of coincidence of S and T .

3. A point x ∈ X is said to be a common fixed point of S and T if x = Sx = Tx.

Definition 1.17 ([2]). Let X be a non-empty set and T, f : X → X. The mappings T , f are said to be
weakly compatible if they commute at their coincidence point (i.e., Tfx = fTx whenever Tx = fx).

Lemma 1.18 ([13, 14]). Let ϕ ∈ Φ and {rn}n∈N is a non-negative sequence with limn→∞ rn = a. Then

lim
n→∞

∫ rn

0
ϕ(t)dt =

∫ a

0
ϕ(t)dt.

Lemma 1.19 ([13, 14]). Let ϕ ∈ Φ and {rn}n∈N is a non-negative sequence. Then

lim
n→∞

∫ rn

0
ϕ(t)dt = 0⇔ lim

n→∞
rn = 0.

2. Main results

Theorem 2.1. Let (X,G) be a G-metric space and ψ, φ be altering distance functions. Let the mappings
T, f : X → X satisfy

ψ(

∫ G(Tx,Ty,Tz)

0
ϕ(t)dt) ≤ ψ(

∫ G(fx,fy,fz)

0
ϕ(t)dt)− φ(

∫ G(fx,fy,fz)

0
ϕ(t)dt) (2.1)

for all x, y, z ∈ X, where, ϕ : [0,+∞)→ [0,+∞) is a non-negative mapping which is sub-additive integrable
on each compact subset of [0,+∞) such that

∫ ε
0 φ(t)dt > 0 for each ε > 0. T (X) ⊂ F (X) and F (X) is a

complete G-metric subspace of X, then T and f have a unique point of coincidence. Moreover, if T and f
are weakly compatible, then T and f have a unique common fixed point in X.
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Proof. Let x0 be an arbitrary point in X. Since T (X) ⊂ F (X), choose x1 ∈ X such that f(x1) = T (x0),
choose x2 ∈ X such that f(x2) = T (x1) and yn = f(xn+1) = T (xn) for any n ∈ N .

Let
G(n) = G(f(xn), f(xn+1), f(xn+1)).

From (2.1), we have

ψ(

∫ G(f(xn),f(xn+1)),f(xn+1))

0
ϕ(t)dt) = ψ(

∫ G(T (xn−1),T (xn),T (xn))

0
ϕ(t)dt) (2.2)

≤ ψ(

∫ G(f(xn−1),f(xn),f(xn))

0
ϕ(t)dt)− φ(

∫ G(f(xn−1),f(xn),f(xn))

0
ϕ(t)dt),

which implies that

ψ(

∫ G(f(xn),f(xn+1),f(xn+1))

0
ϕ(t)dt) ≤ ψ(

∫ G(f(xn−1),f(xn),f(xn))

0
ϕ(t)dt).

Hence, we get ∫ G(n)

0
ϕ(t)dt ≤

∫ G(n−1)

0
ϕ(t)dt,

and

ψ(

∫ G(f(xn−1),f(xn),f(xn))

0
ϕ(t)dt) = ψ(

∫ G(T (xn−2),T (xn−1),T (xn−1))

0
ϕ(t)dt)

≤ ψ(

∫ G(f(xn−2),f(xn−1),f(xn−1))

0
ϕ(t)dt)

− φ(

∫ G(f(xn−2),f(xn−1),f(xn−1))

0
ϕ(t)dt).

Thus, we have ∫ G(n−1)

0
ϕ(t)dt ≤

∫ G(n−2)

0
ϕ(t)dt.

In this way we get

0 <

∫ G(n)

0
ϕ(t)dt ≤

∫ G(n−1)

0
ϕ(t)dt ≤

∫ G(n−2)

0
ϕ(t)dt ≤ · · · .

Thus, the sequence G(n) is non-increasing and bounded from below. Hence it converges to some l ≥ 0
such that

lim
n→∞

∫ G(n)

0
ϕ(t)dt = l. (2.3)

We show that l = 0, otherwise if l > 0 then by taking n→∞ in (2.2) and by using (2.3), we have

ψ(l) ≤ ψ(l)− φ(l),

which is contradiction unless l = 0. Hence

lim
n→∞

∫ G(n)

0
ϕ(t)dt = 0. (2.4)

For m,n ∈ N , n < m, by using rectangular inequality, we have∫ G(f(xn),f(xm),f(xm))

0
ϕ(t)

≤
∫ G(f(xn),f(xn+1),f(xn+1))+G(f(xn+1),f(xn+2),f(xn+2))+...+G(f(xm−1),f(xm),f(xm))

0
ϕ(t)dt.

By taking limit n→∞ and using sub-additivity property and (2.4), we have
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lim
n→∞

∫ G(f(xn),f(xm),f(xm))

0
ϕ(t)dt) = 0 as m,n→∞.

By using rectangular property of G-metric space, we have∫ G(f(xn),f(xm),f(xl))

0
ϕ(t)dt ≤

∫ G(f(xn),f(xm),f(xm))+G(f(xl),f(xm),f(xm))

0
ϕ(t)dt.

For m,n, l→∞, we get ∫ G(f(xn),f(xm),f(xl))

0
ϕ(t)dt→ 0.

By using Lemma 1.19, we get
G(f(xn), f(xm), f(xl))→ 0.

This shows that f(xn) is a G-Cauchy sequence in f(X). Since f(X) is G-Complete, there exist u1, v1 ∈ X
such that f(xn)→ v1 = fu1. By Proposition 1.9 we have

lim
n→∞

G(f(xn), f(u1), f(u1)) = 0,

and by using (2.1), we have

ψ(

∫ G(f(xn+1),T (u1),T (u1))

0
ϕ(t)dt) = ψ(

∫ G(T (xn),T (u1),T (u1))

0
ϕ(t)dt)

≤ ψ(

∫ G(f(xn),f(u1),f(u1))

0
ϕ(t)dt)− φ(

∫ G(f(xn),f(u1),f(u1))

0
ϕ(t)dt).

By taking limit n→∞ and by using Lemma 1.19

lim
n→∞

ψ(

∫ G(f(xn),T (u1),T (u1))

0
ϕ(t)dt) = 0.

We have

ψ(

∫ G(f(u1),T (u1),T (u1))

0
ϕ(t)dt) = 0.

Since ψ is altering distance function, therefore∫ G(f(u1),T (u1),T (u1))

0
ϕ(t)dt = 0.

and
f(u1) = T (u1) = v1(say). (2.5)

Hence v1 is a point of coincidence.
Next we show that the point of coincidence is unique. Suppose there exists another point of coincidence

t1 ∈ X such that fx = Tx = t1 for x ∈ X.

ψ(

∫ G(v1,t1,t1)

0
ϕ(t)dt) = ψ(

∫ G(T (u1),T (x),T (x))

0
ϕ(t)dt)

≤ ψ(

∫ G(f(u1),f(x),f(x))

0
ϕ(t)dt)− φ

∫ G(f(u1),f(x),f(x))

0
ϕ(t)dt)

= ψ(

∫ G(v1,t1,t1)

0
ϕ(t)dt)− φ(

∫ G(v1,t1,t1)

0
ϕ(t)dt),

which is contradiction unless G(v1, t1, t1) = 0. Hence v1 = t1. Thus the point of coincidence is unique. If
T and f are weakly compatible, then by Proposition 1.14 T and f have a unique common fixed point in
X.
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The above theorem yields the following corollaries.

Corollary 2.2. Let (X,G) be a G-metric space and φ be a altering distance function. Let the mappings
T, f : X → X satisfy∫ G(Tx,Ty,Tz)

0
ϕ(t)dt ≤

∫ G(fx,fy,fz)

0
ϕ(t)dt− φ(

∫ G(fx,fy,fz)

0
ϕ(t)dt), ∀x, y, z ∈ X,

where, ϕ : [0,+∞) → [0,+∞) is a non-negative mapping which is sub-additive integrable on each compact
subset of [0,+∞) such that

∫ ε
0 φ(t)dt > 0 for each ε > 0. T (X) ⊂ F (X) and F (X) is a complete G-metric

subspace of X, then T and f have a unique point of coincidence. Moreover, if T and f are weakly compatible,
then T and f have a unique common fixed point in X.

Proof. The proof follows by taking ψ(t) = t in Theorem 2.1.

Corollary 2.3. Let (X,G) be a G-metric space and T : X → X be a mapping satisfy

G(Tx, Ty, Tz) ≤ c(G(x, y, z)), ∀x, y, z ∈ X,

where, 0 ≤ c < 1, then T has a unique fixed point in X.

Proof. The proof follows by taking ϕ(t) = 1, ψ(t) = t, fx = I and φ(t) = (1 − c)t, where 0 ≤ c < 1 in
Theorem 2.1.

Corollary 2.4. Let (X,G) be a G-metric space and T : X → X be a mapping satisfy

G(Tx, Ty, Ty) ≤ c(G(x, y, y)), ∀x, y, z ∈ X,

where, 0 ≤ c < 1, then T has a unique fixed point in X.

Proof. The proof follows by taking ϕ(t) = 1, ψ(t) = t, fx = I, y = z and φ(t) = (1− c)t, where 0 ≤ c < 1
in Theorem 2.1.

Corollary 2.5. Let (X,G) be a G-metric space and ψ, φ be altering distance functions. Let the mappings
T, f : X → X satisfy

ψ(G(Tx, Ty, Tz)) ≤ ψ(G(fx, fy, fz))− φ(G(fx, fy, fz)), ∀x, y, z ∈ X,

where, T (X) ⊂ F (X) and F (X) is a complete G-metric subspace of X, then T and f have a unique point of
coincidence. Moreover, if T and f are weakly compatible, then T and f have a unique common fixed point
in X.

Proof. The proof follows by taking ϕ(t) = 1 in Theorem 2.1.

Corollary 2.6. Let (X,G) be a G-metric space and ψ, φ be altering distance functions. Let the mapping
T : X → X satisfy

ψ(G(Tx, Ty, Tz)) ≤ ψ(G(x, y, z))− φ(G(x, y, z)), ∀x, y, z ∈ X.

Then T has a unique common fixed point in X.

Proof. The proof follows by taking ϕ(t) = 1 and fx = I in Theorem 2.1.

Corollary 2.7. Let (X,G) be a G-metric space and ψ, φ be altering distance functions. Let the mapping
T : X → X satisfy

G(Tx, Ty, Tz) ≤ G(x, y, z)− φ(G(x, y, z)), ∀x, y, z ∈ X.

Then T has a unique common fixed point in X.
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Proof. The proof follows by taking ϕ(t) = 1, ψ(t) = I and fx = I in Theorem 2.1.

Corollary 2.8. Let (X,G) be a G-metric space. Let the mappings T, f : X → X satisfy∫ G(Tx,Ty,Tz)

0
ϕ(t)dt ≤ k

∫ G(fx,fy,fz)

0
ϕ(t)dt, ∀x, y, z ∈ X,

where 0 ≤ k < 1 and ϕ : [0,+∞) → [0,+∞) is a non-negative mapping which is sub-additive integrable
on each compact subset of [0,+∞) such that

∫ ε
0 φ(t)dt > 0 for each ε > 0. T (X) ⊂ F (X) and F (X) is a

complete G-metric subspace of X, then T and f have a unique point of coincidence. Moreover, if T and f
are weakly compatible, then T and f have a unique common fixed point in X.

Proof. The proof follows by taking ψ(t) = t and φ(t) = (1− k)t, where 0 ≤ k < 1 in Theorem 2.1.

Corollary 2.9. Let (X,G) be a G-metric space and let the mappings T, f : X → X satisfy

G(Tx, Ty, Tz) ≤ G(fx, fy, fz), ∀x, y, z ∈ X,

where, T (X) ⊂ F (X) and F (X) is a complete G-metric subspace of X, then T and f have a unique point of
coincidence. Moreover, if T and f are weakly compatible, then T and f have a unique common fixed point
in X.

Proof. The proof follows by taking ϕ(t) = 1, ψ(t) = t and φ(t) = 0 in Theorem 2.1.

Theorem 2.10. Let (X,G) be a complete G- metric space and ψ, φ be a altering distance function. Let the
mappings f, g, h : X → X satisfy

ψ(

∫ G(fx,gy,hz)

0
ϕ(t)dt) ≤ ψ(

∫ G(x,y,z)

0
ϕ(t)dt)− φ(

∫ G(x,y,z)

0
ϕ(t)dt), ∀x, y, z ∈ X, (2.6)

where, ϕ : [0,+∞) → [0,+∞) is a non-negative mapping which is sub-additive integrable on each compact
subset of [0,+∞) such that

∫ ε
0 φ(t)dt > 0 for each ε > 0. Then f , g and h have a unique common fixed

point.

Proof. Suppose that fv1 = v1. We prove that v1 = gv1 = hv1. If not then

ψ(

∫ G(fv1,gv1,hv1)

0
ϕ(t)dt) ≤ ψ(

∫ G(v1,v1,v1)

0
ϕ(t)dt)− φ(

∫ G(v1,v1,v1)

0
ϕ(t)dt),

which is contradiction. By using the similar arguments to those given above, we obtain a contradiction
for v1 6= gv1, and v1 = hv1 or for v1 = gv1 and v1 6= hv1. Hence in all the cases, we conclude that
fv1 = gv1 = hv1 = v1. Let x0 be arbitrary in X, we define a sequence xn by the rule,

x3n+1 = fx3n, x3n+2 = gx3n+1 and x3n+3 = hx3n+2 , ∀n ∈ N.

Let
G(n) = G(f(x3n), g(x3n+1), h(x3n+2)).

By following the same lines in the proof of Theorem 2.1 we conclude that xn is a G-Cauchy sequence in
X. Since X is G-Complete, there exists v1 ∈ X such that xn → v1. We claim that fv1 = v1, if not then,

ψ(

∫ G(fv1,g(x3n+1),h(x3n+2))

0
ϕ(t)dt) ≤ ψ(

∫ G(v1,x3n+1,x3n+2)

0
ϕ(t)dt)− φ(

∫ G(v1,x3n+1,x3n+2)

0
ϕ(t)dt),
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and

ψ(

∫ G(fv1,x3n+2,x3n+3))

0
ϕ(t)dt) ≤ ψ(

∫ G(v1,x3n+1,x3n+2)

0
ϕ(t)dt)− φ(

∫ G(v1,x3n+1,x3n+2)

0
ϕ(t)dt).

By taking limit n→∞ and using Lemma 1.19

ψ(

∫ G(f(v1),v1,v1)

0
ϕ(t)dt) = 0.

Since, ψ is altering distance function therefore∫ G(f(v1),v1),v1)

0
ϕ(t)dt = 0.

Hence
f(v1) = v1. (2.7)

Similarly one can show that g(v1) = v1, h(v1) = v1.
Finally we show that this fixed point is unique. Assume that there exists another fixed point v2 ∈ X of

f, g and h. Then we have

ψ(

∫ G(v1,v2,v2)

0
ϕ(t)dt) = ψ(

∫ G(fv1,gv2,hv2)

0
ϕ(t)dt)

≤ ψ(

∫ G(v1,v2,v2)

0
ϕ(t)dt)− φ(

∫ G(v1,v2,v2)

0
ϕ(t)dt).

The above will not hold unless G(v1, v2, v2) = 0. Thus f, g, h have a unique common fixed point in X.

Example 2.11. Let X = R+ and define G : X ×X ×X → R+ by

G(x, y, z) = |x− y|+ |y − z|+ |z − x|.

Then (X,G) is complete G-metric space. Let f, g : X → X, ϕ : R+ → R+, ψ : R+ → R+ and
φ : R+ → R+ define by,

ϕ(t) = 2t, ψ(t) =
t

12
, φ(t) =

t

24
.

T (x) =
x

12
, g(x) =

x

4
.

ψ(

∫ G(Tx,Ty,Tz)

0
ϕ(t)dt) = ψ((|Tx− Ty|+ |Ty − Tz|+ |Tz − Tx|)2)

= ψ(
(|x− y|+ |y − z|+ |z − x|)

144
) =

G(x, y, z)2

1728
.

Now

ψ(

∫ G(fx,fy,fz)

0
ϕ(t)dt)− φ(

∫ G(fx,fy,fz)

0
ϕ(t)dt) = ψ(G(fx, fy, fz))− φ(G(fx, fy, fz))

=
G(x, y.z)2

384
.

So

ψ(

∫ G(Tx,Ty,Tz)

0
ϕ(t)dt) ≤ ψ(

∫ G(fx,fy,fz)

0
ϕ(t)dt)− φ(

∫ G(fx,fy,fz)

0
ϕ(t)dt).

By Theorem 2.1 f, g have a unique common solution.
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Remark 2.12.

• Corollaries 2.4 and 2.3 are the result of Mustafa [17].

• Corollary 2.8 is the result of Ayadi [4].

• Corollary 2.7 is the result of Aage and Salunke [1].

3. Applications to systems of non-linear integral and differential equations

In this section, we give an existence theorem for the solution of fractional differential equations and
non-linear integral equations.

First we consider the following system of integral equations.
x(t) = g(t) +

∫ b

a
K1(t, s, V (s))ds, t ∈ [a, b],

y(t) = g(t) +

∫ b

a
K2(t, s, U(s))ds, t ∈ [a, b].

(3.1)

In the following theorem, we develop sufficient conditions for the existence of unique solution for the
above system of integral equations.

Theorem 3.1. Assume the following hypotheses hold

(A1) K1,K2 : [a, b]× [a, b]× R+ → R+, and g : R+ → R+ are continuous;

(A2) K1(t, s, U(s)) ≤ K2(t, s, V (s)), t ∈ [a, b].

Then the system (3.1) of integral equations has a unique solution in C[a, b].

Proof. Define f, g : C([a, b])→ C([a, b]) by

fx(t) = g(t) +

∫ b

a
K1(t, s, V (s))ds, t ∈ [a, b],

gy(t) = g(t) +

∫ b

a
K2(t, s, U(s))ds, t ∈ [a, b].

Consider
G(x, y, z) = max{x, y}+ max{y, z}+ max{z, x}.

Now, we have

G(fx(t), fy(t), fz(t)) = max
t∈[a,b]

{fx(t), fy(t)}+ max
t∈[a,b]

{fy(t), fz(t)}+ max
t∈[a,b]

{fz(t), fx(t)}

= max
t∈[a,b]

{∫ b

a
K1(t, s, x(s))ds+ g(t),

∫ b

a
K1(t, s, y(s))ds+ g(t)

}
+ max
t∈[a,b]

{∫ b

a
K1(t, s, y(s))ds+ g(t),

∫ b

a
K1(t, s, z(s))ds+ g(t)

}
+ max
t∈[a,b]

{∫ b

a
K1(t, s, z(s))ds+ g(t),

∫ b

a
K1(t, s, x(s))ds+ g(t)

}
≤ max

t∈[a,b]

{∫ b

a
K2(t, s, x(s))ds+ g(t),

∫ b

a
K2(t, s, y(s))ds+ g(t)

}
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+ max
t∈[a,b]

{∫ b

a
K2(t, s, y(s))ds+ g(t),

∫ b

a
K2(t, s, z(s))ds+ g(t)

}
+ max
t∈[a,b]

{∫ b

a
K2(t, s, z(s))ds+ g(t),

∫ b

a
K2(t, s, x(s))ds+ g(t)

}
= max{gx(t), gy(t)|+ max{gy(t), gz(t)|+ max{gy(t), gz(t)|
= G(gx(t), gy(t), gz(t)).

Thus, we have
G(fx(t), fy(t), fz(t)) ≤ G(gx(t), gy(t), gz(t)).

Thus by Corollary 2.9, the system of equations has a unique solution in C[a, b].

Now, we solve the following system (3.2) of fractional differential equations with the help of Theorem
2.1. {

cDαu(t) + f̂(t, v(t)) = 0, cDαv(t) + ĝ(t, u(t)) = 0, 1 < α ≤ 2, t ∈ [0, 1],

u(0) = v(0) = a, u(1) = v(1) = b, where a, b are constant,
(3.2)

where f̂ , ĝ : [0, 1]× [0,∞)→ [0,∞). By using the result [22] we have,

Iα[cDαu(t)] = u(t) + C0 + C1t+ C2t
2 + · · ·+ Cn−1t

n−1,

where n = [α] + 1 and Ci ∈ R+ and Iα is the integral operator of fractional order. Then the solution of
(3.2) is given by the system of integral equations

u(t) = a+ t(b− a) +

∫ 1

0
G(t, s)f̂(s, v(s))ds,

v(t) = a+ t(b− a) +

∫ 1

0
G(t, s)ĝ(s, u(s))ds,

(3.3)

where G(t, s) is called Green’s function defined by

G(t, s) =
1

Γ(α)

{
t(1− s)α−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,

t(1− s)α−1, 0 ≤ t ≤ s ≤ 1.
(3.4)

The above system (3.3) is equivalent to the system (3.1) with

g(t) = a+ t(b− a), V (t) =

∫ 1

0
G(t, s)f̂(s, v(s))ds, U(t) =

∫ 1

0
G(t, s)ĝ(s, u(s))ds.

Thus by Theorem 2.1, the considered system (3.2) has a unique solution.
Further, we study the unique solution to the following general non-linear system of Fredholm integral

equations of second kind given by

x(t) = φ(t) +

∫ b

a
K1(t, s, x(s))ds, t ∈ [a, b],

y(t) = φ(t) +

∫ b

a
K2(t, s, y(s))ds, t ∈ [a, b],

z(t) = φ(t) +

∫ b

a
K3(t, s, z(s))ds, t ∈ [a, b].

(3.5)

Let X = C[a, b] be the set of all continuous functions defined on [a, b]. Define
G : X ×X ×X → R+ by

G(x, y, z) = ‖x− y‖+ ‖y − z‖+ ‖z − x‖,
where ‖x‖ = sup{|x(t)| : t ∈ [a, b]}. Then (X,G) is a complete G-metric space on X. For the derivation of
aforesaid condition, we give the following theorem.
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Theorem 3.2. Assume that the following assumptions hold

(A1) Ki : [a, b]× [a, b]× R+ → R+, for i = 1, 2, 3 and φ : R+ → R+ are continuous;

(A2) there exists a continuous function G : [a, b]× [a, b]→ [0,∞) such that,

|Ki(t, s, u)−Kj(t, s, v)| ≤ G(t, s)|u− v|

for each t, s ∈ [a, b],

(A3) supt,s∈[a,b]
∫ 1
0 |G(t, s)| ≤ r for r < 1.

Then The system of integral equations (3.5) has a unique solution in C([a, b]).

Proof. Define f, g, h : C([a, b])→ C([a, b]) by

fx(t) = φ(t) +

∫ b

a
K1(t, s, x(s))ds, t ∈ [a, b].

gy(t) = φ(t) +

∫ b

a
K2(t, s, y(s))ds, t ∈ [a, b].

hz(t) = φ(t) +

∫ b

a
K3(t, s, z(s))ds, t ∈ [a, b].

Now we have

G(fx(t), gy(t), hz(t)) = sup
t∈[a,b]

|fx(t)− gy(t)|+ sup
t∈[a,b]

|gy(t)− hz(t)|+ sup
t∈[a,b]

|hz(t)− fx(t)|

≤ sup
t∈[a,b]

∫ b

a
|k1(t, s, x(s))− k2(t, s, y(s))|ds+ sup

t∈[a,b]

∫ b

a
|k2(t, s, y(s))− k3(t, s, z(s))|ds

+ sup
t∈[a,b]

∫ b

a
|k2(t, s, z(s))− k3(t, s, x(s))|ds

≤ sup
t∈[a,b]

∫ b

a
G(t, s)|x(s)− y(s)|ds+ sup

t∈[a,b]

∫ b

a
G(t, s)|y(s)− z(s)|ds

+ sup
t∈[a,b]

∫ b

a
G(t, s)|z(s)− x(s)|ds

≤ sup
t∈[a,b]

|x(t)− y(t)| sup
t∈[a,b]

∫ b

a
G(t, s)ds+ sup

t∈[a,b]
|y(t)− z(t)| sup

t∈[a,b]

∫ b

a
G(t, s)ds

+ sup
t∈[a,b]

|z(t)− x(t)| sup
t∈[a,b]

∫ b

a
G(t, s)ds

≤ sup
t∈[a,b]

|x(t)− y(t)|+ sup
t∈[a,b]

|y(t)− z(t)|

+ sup
t∈[a,b]

|z(t)− x(t)|

= ‖x(t)− y(t)‖+ ‖y(t)− z(t)‖+ ‖z(t)− x(t)‖ = G(x(t), y(t), z(t)),

which implies that
G(fx(t), gy(t), hz(t)) ≤ G(x(t), y(t), z(t)).

Define ψ(t) = t
2 , φ(t) = t and ϕ(t) = 1, then by Theorem 3.1, the system (3.5) has a unique common

solution in X.
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With the help of Theorem 3.1, one can also solve the following coupled system of non-linear fractional
ordered differential equations given by

cDαu(t) + f̂(v(t)) = 0, 1 < α ≤ 2, t ∈ [0, 1],
cDαv(t) + ĝ(w(t)) = 0, 1 < α ≤ 2, t ∈ [0, 1]

cDαv(t) + ĥ(u(t)) = 0, 1 < α ≤ 2, t ∈ [0, 1],

u(0) = v(0) = w(0) = a, u(1) = v(1) = w(1) = b,

where a, b are constant,

(3.6)

where f̂ , ĝ, ĥ : [0, 1] × [0,∞) → [0,∞). Then the equivalent system of integral equations corresponding to
(3.6) is given by 

u(t) = φ(t) +

∫ 1

0
G(t, s)f̂(v(s)ds, t ∈ [0, 1],

v(t) = φ(t) +

∫ 1

0
G(t, s)ĝ(w(s)ds, t ∈ [0, 1],

w(t) = φ(t) +

∫ 1

0
G(t, s)ĥ(u(s)ds, t ∈ [0, 1],

(3.7)

where G(t, s) is the Green’s function

G(t, s) =


(t− s)α−1 − t(1− s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

−t(1− s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

(3.8)

and continuous on [0, 1]×[0, 1]. Moreover, sup
t∈[0,1]

∫ 1
0 |G(t, s)|ds ≤ 1. Further, using K(t, s, x(s)) = G(t, s)f̂(v(s)

etc. Then the coupled system (3.7)become

x(t) = φ(t) +

∫ 1

0
K1(t, s, x(s))ds, t ∈ [0, 1],

y(t) = φ(t) +

∫ 1

0
K2(t, s, x(s))ds, t ∈ [0, 1],

z(t) = φ(t) +

∫ 1

0
K2(t, s, x(s))ds, t ∈ [0, 1].

(3.9)

Evidently by Theorem 3.2 the system (3.9) has a unique solution, which is the corresponding to the
unique solution of the system of non-linear fractional differential equation(3.6).
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