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Abstract

We introduce a hybrid method for finding a common element of the set of solutions of an equilibrium
problem defined on the dual space of a Banach space and the set of common fixed points of a family
of generalized nonexpansive mappings and prove strong convergence theorems by using the new hybrid
method. Using our main results, we obtain some new strong convergence theorems for finding a solution
of an equilibrium problem and a fixed point of a family of generalized nonexpansive mappings in a Banach
space. c©2016 All rights reserved.
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1. Introduction

Let E be a real Banach space, E∗ the dual space of E and C a closed subset of E such that JC is a
closed and convex subset of E∗, where J is the duality mapping on E. Let f be a bifunction from JC × JC
to R, where R is the set of real numbers. The equilibrium problem is to find

x̂ ∈ C such that f(Jx̂, Jy) ≥ 0, ∀y ∈ C.
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The set of such solutions x̂ is denoted by EP (f). A mapping T of C into itself is called nonexpansive
if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. We use F (T ) to denote the set of fixed points of T , that is,
F (T ) = {x ∈ C : x = Tx}. A mapping T of C into itself is called quasi-nonexpansive if F (T ) is nonempty
and ‖Tx − y‖ ≤ ‖x − y‖ for all x ∈ C and y ∈ F (T ). It is easy to see that if T is nonexpansive with
F (T ) 6= ∅, then it is quasi-nonexpansive.

Numerous problems in physics, optimization and economics reduce to find a solution of the equilibrium
problem. Some methods have been proposed to solve the equilibrium problem in a Hilbert space, see
for instance, Blum and Oettli [1], and Combettes and Hirstoaga [2]. On the other hand, Ibaraki and
Takahashi [3] introduced a new resolvent of a maximal monotone operator in a Banach space and the
concept of a generalized nonexpansive mapping in a Banach space. Ibaraki and Takahashi [3], and Kohsaka
and Takahashi [5] also studied some properties for generalized nonexpansive retractions in Banach spaces.
Recently, Takahashi and Zembayashi [12] considered the following equilibrium problem with a bifunction
defined on the dual space of a Banach space. Moreover, they proved a strong convergence theorem for
finding a solution of the equilibrium problem which generalized the result of Combettes and Hirstoaga [2].

Construction of fixed point iteration of nonlinear mappings is an important subject in the theory of
nonlinear mappings and has been widely studied by many mathematicians. In 1953, Mann [6] introduced an
algorithm which is used to approximate a fixed point of a nonlinear mapping T : C → C. Mann’s iterative
process is defined as follows: x0 ∈ C

xn+1 = αnx0 + (1− αn)Txn, n ≥ 0,

where {αn} is a real sequence in [0, 1]. However, Mann’s algorithm have only weak convergence. For example,
Reich [9] proved that if T : C → C is a nonexpansive mapping with a fixed point in a closed and convex
subset of a uniformly convex Banach space with a Frechét differentiable norm and {αn} is chosen such that∑∞

n=0 αn(1 − αn) = ∞, then the Mann’s iteration converges weakly to a fixed point of T . Later, Nakajo
and Takahashi [8] attempted to modify the Mann’s iteration in order to guarantee strong convergence by
using the hybrid method in mathematical programming, called normal hybrid method. For a nonexpansive
mapping T in a Hilbert space, it is as follows:

x1 = x ∈ C,C0 = C,

un = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖z − un‖ ≤ ‖z − xn‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

(1.1)

for all n ∈ N where αn ⊂ [0, a] for a ∈ [0, 1), then sequence {xn} generated by (1.1), converges strongly to
PF (T )x which is the metric projection from C onto F (T ). Construction the sets Cn and Qn is difficult to
obtain because it has complicated condition. For this reason, Takahashi et al. [11] introduced another hybrid
method and proposed the following modification iteration method different from Nakajo and Takahashi ’s
hybrid method [8]. We call such a method the shrinking projection method :

x1 = x ∈ C,C0 = C,

un = αnxn + (1− αn)Txn,

Cn+1 = {z ∈ Cn : ‖z − un‖ ≤ ‖z − xn‖},
xn+1 = PCnx

(1.2)

for all n ∈ N, where {αn} ⊂ [0, 1]. They proved strong convergence of the sequence {xn} generated by (1.2)
under an appropriate control condition on the sequence {αn}.

In this paper, motivated by Takahashi et al. [11], we introduce a new hybrid method by using the
shrinking projection method and Takahashi and Zambayashi [12] for finding a common element of the set
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of solutions of equilibrium problem and the set of common fixed points of a countable family of generalized
nonexpansive mappings in a Banach space and prove strong convergence theorems in a Banach space. Using
this results, we obtain some new strong convergence results for finding a solution of an equilibrium problem
and a fixed point of a generalized nonexpansive mapping or a family of generalized nonexpansive mappings
in a Banach space.

2. Preliminaries

Throughout this paper, we assume that all linear spaces are real. Let N and R be the sets of all positive
integers and real numbers, respectively. Let E be a Banach space and let E∗ be the dual space of E. For
a sequence {xn} of E and a point x ∈ E, the weak convergence of {xn} to x and the strong convergence
of {xn} to x are denoted by xn ⇀ x and xn → x, respectively. The duality mapping J from E into 2E

∗
is

defined by
Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, ∀x ∈ E.

Let S(E) be the unit sphere centered at the origin of E. Then the space E is said to be smooth if the
limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for all x, y ∈ S(E). It is also said to be uniformly smooth if the limit exists uniformly in x, y ∈ S(E).
A Banach space E is said to be strictly convex if ‖x+y

2 ‖ < 1 whenever x, y ∈ S(E) and x 6= y. It is said to
be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such that ‖x+y

2 ‖ < 1− δ whenever x, y ∈ S(E)
and ‖x− y‖ ≥ ε. We know the following (see [10]):

(i) if E is smooth, then J is single-valued;

(ii) if E is reflexive, then J is onto;

(iii) if E is strictly convex, then J is one-to-one;

(iv) if E is strictly convex, then J is strictly monotone;

(v) if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E.

Let E be a smooth, strictly convex and reflexive Banach space and let C be a closed convex subset of
E. Throughout this paper, define the function φ : E × E → R by

φ(y, x) = ‖y‖2 − 2〈y, Jx〉+ ‖x‖2, ∀y, x ∈ E. (2.1)

Observe that, in a Hilbert space H, (2.1) reduces to φ(x, y) = ‖x− y‖2, for all x, y ∈ H. It is obvious from
the definition of the function φ that for all x, y ∈ E,

(P1) (‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2,

(P2) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉,

(P3) φ(x, y) = 〈x, Jx− Jy〉+ 〈y − x, Jy〉 ≤ ‖x‖‖Jx− Jy‖+ ‖y − x‖‖y‖.

Let C be a closed convex subset of a Banach space E, and let T be a mapping from C into itself. Recall
that a self-mapping T : C → C is generalized nonexpansive if F (T ) 6= ∅ and φ(Tx, u) ≤ φ(x, u) for all x ∈ C
and u ∈ F (T ). Let R be a mapping from E onto C. Then R is said to be a retraction if R2 = R. The
mapping R from E onto C is said to be sunny if R(Rx+ t(x−Rx)) = Rx for all x ∈ E and t ≥ 0.

A nonempty closed subset C of a smooth Banach space E is said to be a sunny generalized nonexpansive
retract of E if there exists a sunny generalized nonexpansive retraction R from E onto C. We know the
following lemmas for sunny generalized nonexpansive retractions.
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Lemma 2.1 ([3]). Let C be a nonempty closed subset of a smooth and strictly convex Banach space E and
let R be a retraction from E onto C. Then the following assertions are equivalent:

(i) R is sunny generalized nonexpansive;

(ii) 〈x−Rx, Jy − JRx〉 ≤ 0, ∀x ∈ E, y ∈ C.

Lemma 2.2 ([3]). Let C be a nonempty closed sunny generalized nonexpansive retract of a smooth and
strictly convex Banach space E. Then the sunny generalized nonexpansive retraction from E onto C is
uniquely determined.

Lemma 2.3 ([3]). Let C be a nonempty closed subset of a smooth and strictly convex Banach space E such
that there exists a sunny generalized nonexpansive retraction R from E onto C, let x ∈ E and z ∈ C. Then
the following assertions hold:

(i) z = Rx if and only if 〈x− z, Jy − Jz〉 ≤ 0 for all y ∈ C;

(ii) φ(x,Rx) + φ(Rx, z) ≤ φ(x, z).

Lemma 2.4 ([5]). Let C be a nonempty closed subset of a smooth, strictly convex and reflexive Banach
space E. Then the following items are equivalent:

(i) C is a sunny generalized nonexpansive retract of E;

(ii) JC is closed and convex.

Lemma 2.5 ([5]). Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty
closed sunny generalized nonexpansive retract of E . Let R be the sunny generalized nonexpansive retraction
from E onto C, let x ∈ E and z ∈ C. Then the following assertions are equivalent:

(i) z = Rx;

(ii) φ(x, z) = miny∈C φ(x, y).

Let C be a nonempty closed subset of a smooth, strictly convex and reflexive Banach space E such that
JC is closed and convex. To solve the equilibrium problem, let us assume that a bifunction f : JC×JC → R
satisfies the following conditions:

(A1) f(x∗, x∗) = 0 for all x∗ ∈ JC;

(A2) f is monotone, i.e., f(x∗, y∗) + f(y∗, x∗) ≤ 0 for all x∗, y∗ ∈ JC;

(A3) for all x∗, y∗, z∗ ∈ JC, lim supt↓0 f(tz∗ + (1− t)x∗, y∗) ≤ f(x∗, y∗);

(A4) for all x∗ ∈ JC, f(x∗, ·) is convex and lower semicontinuous.

Lemma 2.6 ([1]). Let C be a nonempty closed subset of a smooth, strictly convex and reflexive Banach space
E such that JC is closed and convex, and let f be a bifunction from JC × JC to R satisfying (A1)-(A4).
Then, for r > 0 and x ∈ E, there exists z ∈ C such that

f(Jz, Jy) +
1

r
〈z − x, Jy − Jz〉 ≥ 0, ∀y ∈ C.

Lemma 2.7 ([12]). Let C be a nonempty closed subset of a uniformly smooth, strictly convex and reflexive
Banach space E such that JC is closed and convex, let f be a bifunction from JC × JC to R satisfying
(A1)-(A4). For r > 0 and x ∈ E, define a mapping Tr : E → C as follows:

Tr(x) = {z ∈ C : f(Jz, Jy) +
1

r
〈z − x, Jy − Jz〉 ≥ 0, ∀y ∈ C}.

Then the following statements hold:
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(i) Tr is single-valued;

(ii) for all x, y ∈ E, 〈Trx− Try, JTrx− JTry〉 ≤ 〈x− y, JTrx− JTry〉;

(iii) F (Tr) = EP (f);

(iv) JEP (f) is closed and convex.

Lemma 2.8 ([12]). Let C be a nonempty closed subset of a smooth, strictly convex and reflexive Banach
space E such that JC is closed and convex, let f be a bifunction from JC × JC to R satisfying (A1)-(A4)
and let r > 0. Then, for x ∈ E and p ∈ F (Tr),

φ(x, Trx) + φ(Trx, p) ≤ φ(x, p).

The following lemmas are also needed for the proof of our main results.

Lemma 2.9 ([4]). Let E be a uniformly convex and smooth Banach space and let {xn} and {yn} be two
sequences in E such that either {xn} or {yn} is bounded. If limn→∞ φ(xn, yn) = 0, then limn→∞ ‖xn−yn‖ =
0.

Lemma 2.10 ([5]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive Banach space
E and let T be a generalized nonexpansive mapping from C into itself. Then F(T) is closed and JF (T ) is
closed and convex.

Lemma 2.11 ([5]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive Banach space
E and let T be a generalized nonexpansive mapping from C into itself. Then F(T) is a sunny generalized
nonexpansive retract of E.

Lemma 2.12 ([4]). Let E be a uniformly convex and smooth Banach space and let r > 0. Then there exists
a strictly increasing, continuous and convex function g : [0,∞)→ [0,∞) such that g(0) = 0 and

g(‖x− y‖) ≤ φ(x, y)

for all x, y ∈ Br(0), where Br(0) = {z ∈ E : ‖z‖ ≤ r}.

Lemma 2.13 ([13]). Let E be a uniformly convex Banach space and let r > 0. Then there exists a strictly
increasing, continuous and convex function g : [0,∞)→ [0,∞) such that g(0) = 0 and

‖tx+ (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2 − t(1− t)g(‖x− y‖)

for all x, y ∈ Br(0) and t ∈ [0, 1], where Br(0) = {z ∈ E : ‖z‖ ≤ r}.

Lemma 2.14 ([4]). Let E be a smooth and strictly convex Banach space, z ∈ E, and {ti}mi=1 ⊂ (0, 1) with∑m
i=1 ti = 1. If {xi}mi=1 is a finite sequence in E such that

φ
( m∑
i=1

tixi, z
)

=
m∑
i=1

tiφ(xi, z),

then x1 = x2 = ... = xm.

Next, we recall some lemmas for NST-condition.
Let E be a real Banach space and C be a closed convex subset of E. Motivated by Nakajo et al. [7],

we give the following definition: Let {Tn} and T be two families of generalized nonexpansive mappings of
C into E such that

⋂∞
n=1 F (Tn) = F (T ) 6= ∅, where F (Tn) is the set of all fixed points of Tn and F (T ) is

the set of all common fixed points of T . Then, {Tn} is said to satisfy the NST-condition with T if for each
bounded sequence {xn} ⊂ C,

lim
n→∞

‖xn − Tnxn‖ = 0⇒ lim
n→∞

‖xn − Txn‖ = 0, for all T ∈ T .

In particular, if T = {T}, i.e., T consists of one mapping T , then {Tn} is said to satisfy the NST-condition
with T . It is obvious that {Tn} with Tn = T for all n ∈ N satisfies NST-condition with T = {T}.
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Lemma 2.15. Let C be a closed subset of a uniformly smooth and uniformly convex Banach space E and
let T be a generalized nonexpansive mapping from C into E with F (T ) 6= ∅. Let {βn} ⊂ [0, 1] satisfies
lim inf
n→∞

βn(1− βn) > 0. For n ∈ N, define the mapping Tn from C into E by

Tnx = βnx+ (1− βn)Tx

for all x ∈ C. Then, {Tn} is a countable family of generalized nonexpansive mappings satisfying the NST-
condition with T .

Lemma 2.16. Let C be a closed subset of a uniformly smooth and uniformly convex Banach space E and
let S and T be generalized nonexpansive mappings from C into E with F (S) ∩ F (T ) 6= ∅. Let {βn} ⊂ [0, 1]
satisfies lim inf

n→∞
βn(1− βn) > 0. For n ∈ N, define the mapping Tn from C into E by

Tnx = βnSx+ (1− βn)Tx

for all x ∈ C. Then, {Tn} is a countable family of generalized nonexpansive mappings satisfying the NST-
condition with T = {S, T}.

3. Strong convergence theorems

In this section, we introduce and prove a strong convergence theorem of a new hybrid method for finding
a common element of the set of solutions of an equilibrium problem and the set of common fixed points of
a family of generalized nonexpansive mappings in a Banach space. Recall that an operator T in a Banach
space is call closed, if xn → x and Txn → y, then Tx = y.

Before proving our main result, we give the following lemma for non-self generalized nonexpansive map-
pings in a Banach space.

Lemma 3.1. Let E be a smooth, strictly convex and reflexive Banach space and let C be a closed subset
of E such that JC is closed and convex. Let T be a generalized nonexpansive mapping from C into E such
that F (T ) 6= ∅, then F (T ) is closed and JF (T ) is closed and convex.

Proof. We first prove that F (T ) is closed. Let {xn} ⊂ F (T ) with xn → x. Since T is generalized nonexpan-
sive, then we have

φ(Tx, xn) ≤ φ(x, xn)

for each n ∈ N. This implies

φ(Tx, x) = lim
n→∞

φ(Tx, xn) ≤ lim
n→∞

φ(x, xn) = φ(x, x) = 0.

Therefore, we have φ(Tx, x) = 0 and hence x ∈ F (T ).
We next show that JF (T ) is closed. Let {x∗n} ⊂ JF (T ) such that x∗n → x∗ for some x∗ ∈ E∗. Note

that since JC is closed and convex, we have x∗ ∈ JC. Then, there exist x ∈ C and {xn} ⊂ F (T ) such that
x∗ = Jx and x∗n = Jxn for all n ∈ N. Thus

φ(Tx, xn) ≤ φ(x, xn)

= ‖x‖2 − 2〈x, x∗n〉+ ‖x∗n‖2

→ ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2 = 0.

Hence, lim
n→∞

φ(Tx, xn) = 0. Since

0 = lim
n→∞

φ(Tx, xn) = lim
n→∞

(‖Tx‖2 − 2〈Tx, x∗n〉+ ‖x∗n‖2)

= ‖Tx‖2 − 2〈Tx, x∗〉+ ‖x∗‖2 = φ(Tx, x),
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we have φ(Tx, x) = 0 and hence x = Tx. This implies x∗ = Jx ∈ JF (T ).
We finally show that JF (T ) is convex. Let x∗, y∗ ∈ JF (T ) and let α ∈ (0, 1) and β = 1 − α. Then we

have x, y ∈ F (T ) such that x∗ = Jx and y∗ = Jy. Thus, we have

φ(TJ−1(αJx+ βJy), J−1(αJx+ βJy))

=‖TJ−1(αJx+ βJy)‖2 − 2〈TJ−1(αJx+ βJy), αJx+ βJy〉+ ‖J−1(αJx+ βJy)‖2

+ α‖x‖2 + β‖y‖2 − (α‖x‖2 + β‖y‖2)

=αφ(TJ−1(αJx+ βJy), x) + βφ(TJ−1(αJx+ βJy), y) + ‖αJx+ βJy‖2 − (α‖x‖2 + β‖y‖2).

Since x, y ∈ F (T ) and T is generalized nonexpansive, we have

αφ(TJ−1(αJx+ βJy), x) + βφ(TJ−1(αJx+ βJy), y) + ‖αJx+ βJy‖2 − (α‖x‖2 + β‖y‖2)

≤αφ(J−1(αJx+ βJy), x) + βφ(J−1(αJx+ βJy), y) + ‖αJx+ βJy‖2 − (α‖x‖2 + β‖y‖2)

=α
{
‖αJx+ βJy‖2 − 2〈J−1(αJx+ βJy), Jx〉+ ‖x‖2

}
+ β

{
‖αJx+ βJy‖2 − 2〈J−1(αJx+ βJy), Jy〉+ ‖y‖2

}
+ ‖αJx+ βJy‖2 − (α‖x‖2 + β‖y‖2)

=2‖αJx+ βJy‖2 − 2〈J−1(αJx+ βJy), αJx+ βJy〉
=2‖αJx+ βJy‖2 − 2‖αJx+ βJy‖2 = 0.

Then we have TJ−1(αJx + βJy) = J−1(αJx + βJy) and hence J−1(αJx + βJy) ∈ JF (T ). This implies
that αJx+ βJy ∈ JF (T ). Therefore, JF (T ) is convex and the proof is complete.

Using Lemmas 2.4 and 3.1, we obtain the following lemma.

Lemma 3.2. Let E be a smooth, strictly convex and reflexive Banach space and C be a closed subset of E
such that JC is closed and convex. Let T be a generalized nonexpansive mapping from C into E such that
F (T ) 6= ∅, then F (T ) is a sunny generalized nonexpansive retract of E.

Theorem 3.3. Let E be a uniformly smooth and uniformly convex Banach space and let C be a nonempty
closed subset of E such that JC is closed and convex. Let f be a bifunction from JC × JC to R satisfying
(A1)-(A4) and {Tn} be a countable family of generalized nonexpansive mappings from C into E, and let T
be a family of closed generalized nonexpansive mappings from C into E such that

⋂∞
n=1 F (Tn) = F (T ) 6= ∅

and F (T ) ∩ EP (f) 6= ∅. Suppose that {Tn} satisfies the NST-condition with T . Let {xn} be the sequence
generated by x0 = x ∈ C,C0 = C and

yn = αnxn + (1− αn)Tnxn,

un ∈ C, such that f(Jun, Jy) + 1
rn
〈un − yn, Jy − Jun〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(un, z) ≤ φ(xn, z)},
xn+1 = RCn+1x

for all n ∈ N ∪ {0}, where J is the duality mapping on E and {αn} ⊂ [0, 1] satisfies lim inf
n→∞

αn(1− αn) > 0

and {rn} ⊂ [a,∞) for some a > 0. Then, {xn} converges strongly to RF (T )∩EP (f)x, where RF (T )∩EP (f) is
the sunny generalized nonexpansive retraction from E onto F (T ) ∩ EP (f).

Proof. Since the proof of Theorem 3.3 is very long, so we divide it into 5 steps.

Step1 : We begin by proving that {xn} is well-defined. Putting un = Trnyn for all n ∈ N∪{0}, we have from
Lemma 2.8 that Trn is generalized nonexpansive. We first show that F (T ) ∩ EP (f) is a sunny generalized
nonexpansive retract of E and JCn is closed and convex. From Lemmas 2.7 and 3.1, we have JEP (f) and
JF (T ) are closed and convex, respectively. Since E is uniformly convex, J is injective and hence

J(F (T ) ∩ JEP (f)) = JF (T ) ∩ JEP (f),
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which is also closed and convex. Using Lemma 2.4, we have F (T )∩EP (f) is a sunny generalized nonexpansive
retract of E. It is obvious that JC0 is closed and convex. Since φ(un, z) ≤ φ(xn, z) is equivalent to

0 ≤ ‖xn‖2 − ‖un‖2 − 2〈xn − un, Jz〉,

which is affine in Jz, hence JCn is closed and convex. Next, we show by the induction that F (T )∩EP (f) ⊂
Cn for all n ∈ N∪{0}. From C0 = C, we have F (T ) ∩ EP (f) ⊂ C0. Suppose that F (T ) ∩ EP (f) ⊂ Ck for
some k ∈ N∪{0}. Since Trk and Tn are generalized nonexpansive, we have

φ(uk, u) = φ(Trkyk, u) ≤ φ(yk, u)

= φ(αkxk + (1− αk)Tkxk, u)

= ‖αkxk + (1− αk)Tkxk‖2 − 2〈αkxk + (1− αk)Tkxk, Ju〉+ ‖u‖2

≤ αk‖xk‖2 + (1− αk)‖Tkxk‖2 − 2αn〈xk, Ju〉 − 2(1− αk)〈Tkxk, Ju〉+ ‖u‖2

= αkφ(xk, u) + (1− αk)φ(Tkxk, u)

≤ αkφ(xk, u) + (1− αk)φ(xk, u) = φ(xk, u).

(3.1)

Hence, we have u ∈ Ck+1. This implies that F (T )∩EP (f) ⊂ Cn for all n ∈ N∪{0}. So, {xn} is well-defined.

Step2 : We will show that limn→∞ ‖xn − un‖ = 0. It follows from Lemma 2.3 (ii) and xn = RCnx that

φ(x, xn) = φ(x,RCnx) ≤ φ(x, u)− φ(RCnx, u) ≤ φ(x, u)

for all u ∈ F (T ) ∩ EP (f) ⊂ Cn. Then, {φ(x, xn)} is bounded. Moreover, by definition of φ, we have that
{xn} is bounded. From Cn+1 ⊂ Cn and xn = RCnx, we have

φ(x, xn) ≤ φ(x, xn+1), n ≥ 0.

So, the limit of {φ(x, xn)} exists. From xn = RCnx, and for any positive integer k, we have

φ(xn, xn+k) = φ(RCnx, xn+k) ≤ φ(x, xn+k)− φ(x,RCnx) = φ(x, xn+k)− φ(x, xn).

This implies that lim
n→∞

φ(xn, xn+k) = 0. Using Lemma 2.12, we have that, for m,n ∈ N with m > n,

g(‖xn − xm‖) ≤ φ(xn, xm) ≤ φ(x, xm)− φ(x, xn),

where g : [0,∞) → [0,∞) is a continuous, strictly increasing and convex function with g(0) = 0. Then the
property of the function g yields that {xn} is a Cauchy sequence in C, so there exists w ∈ C such that
xn → w. In view of xn+1 = RCn+1x ∈ Cn+1 and definition of Cn+1, we also have

φ(un, xn+1) ≤ φ(xn, xn+1).

It follows that lim
n→∞

φ(un, xn+1) = lim
n→∞

φ(xn, xn+1) = 0. Since E is uniformly convex and smooth, we have

from Lemma 2.9 that
lim
n→∞

‖xn − xn+1‖ = lim
n→∞

‖un − xn+1‖ = 0.

So, we have
lim
n→∞

‖xn − un‖ = 0. (3.2)

Step3 : We will prove that limn→∞ ‖xn − Tnxn‖ = 0. Put r = max{supn ‖xn‖, supn ‖Txn‖}. Since E is a
uniformly convex Banach space, there exists a continuous, strictly increasing and convex function g with
g(0) = 0 such that

‖tx+ (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2 − t(1− t)g(‖x− y‖)
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for all x, y ∈ Br(0) and t ∈ [0, 1]. So, we have that for u ∈ Ω,

φ(un, u) = φ(Trnyn, u) ≤ φ(yn, u)

= φ(αnxn + (1− αn)Tnxn, u)

= ‖αnxn + (1− αn)Tnxn‖2 − 2〈αnxn + (1− αn)Tnxn, Ju〉+ ‖u‖2

≤ αn‖xn‖2 + (1− αn)‖Tnxn‖2 − 2αn〈xn, Ju〉 − 2(1− αn)〈Tnxn, Ju〉+ ‖u‖2

− αn(1− αn)g(‖xn − Tnxn‖)
= αnφ(xn, u) + (1− αn)φ(Tnxn, u)− αn(1− αn)g(‖xn − Tnxn‖)
≤ αnφ(xn, u) + (1− αk)φ(xn, u)− αn(1− αn)g(‖xn − Tnxn‖)
= φ(xn, u)− αn(1− αn)g(‖xn − Tnxn‖).

Therefore, we have

αn(1− αn)g(‖xn − Tnxn‖) ≤ φ(xn, u)− φ(un, u), ∀n ∈ N ∪ {0}.

Since

φ(xn, u)− φ(un, u) = ‖xn‖2 − ‖un‖2 − 2〈xn − un, Ju〉
≤ |‖xn‖2 − ‖un‖2|+ 2|〈xn − un, Ju〉|
≤ |‖xn‖ − ‖un‖|(‖xn‖+ ‖un‖) + 2‖xn − un‖‖Ju‖
≤ ‖xn − un‖|(‖xn‖+ ‖un‖) + 2‖xn − un‖‖Ju‖,

it follows that
lim
n→∞

(
φ(xn, u)− φ(un, u)

)
= 0.

From lim infn→∞ αn(1− αn) > 0, we have limn→∞ g(‖xn − Tnxn‖) = 0. By properties of the function g, we
have limn→∞ ‖xn − Tnxn‖ = 0.

Step4 : We will show that w ∈ F (T ) ∩EP (f). Since {Tn} satisfies the NST-condition with T , we have that

lim
n→∞

‖xn − Txn‖ = 0, for all T ∈ T .

Since xn → w and T is closed, it follows that w is a fixed point of T , that is, w ∈ F (T ) and by (3.2), we
have that un → w. On the other hand, from un = Trnyn, Lemma 2.8 and (3.1) we have that

φ(yn, un) = φ(yn, Trnyn)

≤ φ(yn, u)− φ(Trnyn, u)

≤ φ(xn, u)− φ(Trnyn, u)

= φ(xn, u)− φ(un, u).

Since limn→∞
(
φ(xn, u) − φ(un, u)

)
= 0, we have that limn→∞ φ(yn, un) = 0. Since E is uniformly convex

and smooth, we have from Lemma 2.9 that lim
n→∞

‖yn − un‖ = 0. From rn ≥ a, we have

lim
n→∞

‖yn − un‖
rn

= 0. (3.3)

By un = Trnyn, we have

f(Jun, Jy) +
1

rn
〈un − yn, Jy − Jun〉 ≥ 0, ∀y ∈ C.

By (A2), we have that

1

rn
〈un − yn, Jy − Jun〉 ≥ −f(Jun, Jy) ≥ f(Jy, Jun), ∀y ∈ C. (3.4)
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Since f(x, ·) is convex and lower semicontinuous and un → w, it follows from (3.3) and (3.4) that

f(Jy, Jw) ≤ 0, ∀y ∈ C.

For t with 0 < t ≤ 1 and y ∈ C, let y∗t = tJy + (1− t)Jw. Since JC is convex, we have y∗t ∈ JC and hence
f(y∗t , Jw) ≤ 0. So, from (A1) we have

0 = f(y∗t , y
∗
t ) ≤ tf(y∗t , Jy) + (1− t)f(y∗t , Jw) ≤ tf(y∗t , Jy).

Hence
f(y∗t , Jy) ≥ 0, ∀y ∈ C.

Letting t ↓ 0, from (A3) we have
f(Jw, Jy) ≥ 0, ∀y ∈ C.

Therefore, we have Jw ∈ JEP (f) that is w ∈ EP (f).

Step5 : We will show that xn converges strongly to RF (T )∩EP (f)x by proving w = RF (T )∩EP (f)x. From
Lemma 2.3 (ii), we have

φ(x,RF (T )∩EP (f)x) + φ(RF (T )∩EP (f)x,w) ≤ φ(x,w).

Since xn+1 = RCn+1x and w ∈ F (T ) ∩ EP (f) ⊂ Cn, we get from Lemma 2.3 (ii) that

φ(x, xn+1) + φ(xn+1, RF (T )∩EP (f)x) ≤ φ(x,RF (T )∩EP (f)x). (3.5)

Since xn → w, it follows by definition of φ that φ(x, xn+1)→ φ(x,w). This implies by (3.5) that φ(x,w) ≤
φ(x,RF (T ∩EP (f))x). But since φ(x,w) ≥ φ(x,RF (T )∩EP (f)x), we obtain φ(x,w) = φ(x,RF (T )∩EP (f)x).
Therefore, it follows from the uniqueness of RF (T )∩EP (f)x that w = RF (T )∩EP (f)x. This completes the
proof.

Corollary 3.4. Let E be a uniformly smooth and uniformly convex Banach space and let C be a nonempty
closed subset of E such that JC is closed and convex. Let f be a bifunction from JC × JC to R satisfying
(A1)-(A4). Let {xn} be the sequence generated by x0 = x ∈ C,C0 = C and

un ∈ C, such that f(Jun, Jy) + 1
rn
〈un − xn, Jy − Jun〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(un, z) ≤ φ(xn, z)},
xn+1 = RCn+1x

for all n ∈ N ∪ {0}, where J is the duality mapping on E and {rn} ⊂ [a,∞) for some a > 0. Then, {xn}
converges strongly to REP (f)x, where REP (f) is the sunny generalized nonexpansive retraction from E onto
EP (f).

Proof. Putting Tn = I for all n ∈ N ∪ {0} in Theorem 3.3, we obtain the desired result.

Corollary 3.5. Let E be a uniformly smooth and uniformly convex Banach space and let C be a nonempty
closed subset of E such that JC is closed and convex. Let {Tn} be a countable family of generalized nonex-
pansive mappings from C into E and, let T be a family of closed generalized nonexpansive mappings from
C into E such that

⋂∞
n=1 F (Tn) = F (T ) 6= ∅. Suppose that {Tn} satisfies the NST-condition with T . Let

{xn} be the sequence generated by x0 = x ∈ C,C0 = C and
un = αnxn + (1− αn)Tnxn,

Cn+1 = {z ∈ Cn : φ(un, z) ≤ φ(xn, z)},
xn+1 = RCn+1x

for all n ∈ N ∪ {0}, where J is the duality mapping on E and {αn} ⊂ [0, 1] satisfies lim inf
n→∞

αn(1− αn) > 0.

Then, {xn} converges strongly to RF (T )x, where RF (T ) is the sunny generalized nonexpansive retraction
from E onto F (T ).

Proof. Putting f(Jx, Jy) = 0 for all x, y ∈ C and rn = 1 for all n ∈ N ∪ {0} in Theorem 3.3, we obtain the
desired result.
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4. Deduced results

In this section, using Theorem 3.3, we obtain some new convergence theorems for finding a common
element of the set of solutions of an equilibrium problem and the set of fixed points of one and two of
generalized nonexpansive mappings in a Banach space.

Theorem 4.1. Let E be a uniformly smooth and uniformly convex Banach space and let C be a nonempty
closed subset of E such that JC is closed and convex. Let f be a bifunction from JC × JC to R satisfying
(A1)-(A4) and T be a closed generalized nonexpansive mapping from C into E such that F (T )∩EP (f) 6= ∅.
Let {xn} be the sequence generated by x0 = x ∈ C,C0 = C and

yn = αnxn + (1− αn)Txn,

un ∈ C, such that f(Jun, Jy) + 1
rn
〈un − yn, Jy − Jun〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(un, z) ≤ φ(xn, z)},
xn+1 = RCn+1x

for all n ∈ N ∪ {0}, where J is the duality mapping on E and {αn} ⊂ [0, 1] satisfies lim inf
n→∞

αn(1− αn) > 0

and {rn} ⊂ [a,∞) for some a > 0. Then, {xn} converges strongly to RF (T )∩EP (f)x, where RF (T )∩EP (f) is
the sunny generalized nonexpansive retraction from E onto F (T ) ∩ EP (f).

Proof. Put Tn = T for all n ∈ N. It is obvious that {Tn} satisfies the NST-condition with T , so we obtain
the desired result by using Theorem 3.3.

Theorem 4.2. Let E be a uniformly smooth and uniformly convex Banach space and let C be a nonempty
closed subset of E such that JC is closed and convex. Let f be a bifunction from JC × JC to R satisfying
(A1)-(A4) and T be a closed generalized nonexpansive mapping from C into E such that F (T )∩EP (f) 6= ∅.
Let {xn} be the sequence generated by x0 = x ∈ C,C0 = C and

yn = αnxn + (1− αn)(βnxn + (1− βn)Txn),

un ∈ C, such that f(Jun, Jy) + 1
rn
〈un − yn, Jy − Jun〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(un, z) ≤ φ(xn, z)},
xn+1 = RCn+1x

for all n ∈ N, where J is the duality mapping on E and {αn} and {βn} are sequences in [0, 1] satisfying
lim inf
n→∞

αn(1− αn) > 0 and lim inf
n→∞

βn(1− βn) > 0 and {rn} ⊂ [a,∞) for some a > 0. Then, {xn} converges

strongly to RF (T )∩EP (f)x, where RF (T )∩EP (f) is the sunny generalized nonexpansive retraction from E onto
F (T ) ∩ EP (f).

Proof. Define Tnx = βnx+(1−βn)Tx for all n ∈ N and x ∈ C. By Lemma 2.15, we know that {Tn} satisfies
the NST-condition with T , so we obtain the desired result by using Theorem 3.3.

Theorem 4.3. Let E be a uniformly smooth and uniformly convex Banach space and let C be a nonempty
closed subset of E such that JC is closed and convex. Let f be a bifunction from JC × JC to R satisfying
(A1)-(A4) and S, T be closed generalized nonexpansive mappings from C into E such that Ω = F (S) ∩
F (T ) ∩ EP (f) 6= ∅. Let {xn} be the sequence generated by x0 = x ∈ C,C0 = C and

yn = αnxn + (1− αn)(βnSxn + (1− βn)Txn),

un ∈ C, such that f(Jun, Jy) + 1
rn
〈un − yn, Jy − Jun〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(un, z) ≤ φ(xn, z)},
xn+1 = RCn+1x

for all n ∈ N, where J is the duality mapping on E and {αn} and {βn} are sequences in [0, 1] satisfying
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lim inf
n→∞

αn(1− αn) > 0 and lim inf
n→∞

βn(1− βn) > 0 and {rn} ⊂ [a,∞) for some a > 0. Then, {xn} converges

strongly to RΩx, where RΩ is the sunny generalized nonexpansive retraction from E onto Ω.

Proof. Define Tnx = βnSx + (1 − βn)Tx for all n ∈ N and x ∈ C. By Lemma 2.15, we know that {Tn}
satisfies the NST-condition with T . So, we obtain the desired result by using Theorem 3.3.

5. Applications

In this section, we give a strong convergence theorem for a countable family of nonexpansive mappings
in a Hilbert space. In a Hilbert space, we know that φ(x, y) = ‖x − y‖2 for all x, y ∈ H, J = I, where I
is an identity mapping and every nonexpansive mapping is closed generalized nonexpansive. The following
two lemmas are directly obtained by Lemmas 2.15 and 2.16, respectively.

Lemma 5.1 ([11, Lemma 2.1]). Let C be a closed and convex subset of a Hilbert space H and let T be a
nonexpansive mapping from C into itself with F (T ) 6= ∅. Let {βn} ⊂ [0, 1] satisfies lim inf

n→∞
βn(1 − βn) > 0.

For n ∈ N, define the mapping Tn of C into itself by

Tnx = βnx+ (1− βn)Tx

for all x ∈ C. Then, {Tn} is a countable family of nonexpansive mappings satisfying the NST-condition
with T .

Lemma 5.2 ([11, Lemma 2.3]). Let C be a closed and convex subset of a Hilbert space H and let S
and T be nonexpansive mappings from C into itself with F (S) ∩ F (T ) 6= ∅. Let {βn} ⊂ [0, 1] satisfies
lim inf
n→∞

βn(1− βn) > 0. For n ∈ N, define the mapping Tn of C into itself by

Tnx = βnSx+ (1− βn)Tx

for all x ∈ C. Then, {Tn} is a countable family of nonexpansive mappings satisfying the NST-condition
with {S, T}.

Theorem 5.3. Let H be a Hilbert space and let C be a nonempty closed and convex subset of H. Let f be
a bifunction from C × C to R satisfying (A1)-(A4). Let {Tn} and T be families of nonexpansive mappings
of C into itself such that

⋂∞
n=1 F (Tn) = F (T ) 6= ∅ and F (T ) ∩ EP (f) 6= ∅. Suppose that {Tn} satisfies the

NST-condition with T . Let {xn} be the sequence generated by x0 = x ∈ C,C0 = C and
yn = αnxn + (1− αn)Tnxn,

un ∈ C, such that f(un, y) + 1
rn
〈un − yn, y − un〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : ‖z − un‖ ≤ ‖z − xn‖},
xn+1 = PCn+1x

for all n ∈ N, where {αn} ⊂ [0, 1] satisfies lim inf
n→∞

αn(1 − αn) > 0 and {rn} ⊂ [a,∞) for some a > 0.

Then, {xn} converges strongly to PF (T )∩EP (f)x, where PF (T )∩EP (f) is the metric projection from C onto
F (T ) ∩ EP (f).

Proof. In a Hilbert space, we know that φ(x, y) = ‖x− y‖2 for all x, y ∈ H, J = I, where I is the identity
mapping. By using Theorem 3.3, we obtain the desired conclusion.
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