Research Article

Journal of Nonlinear Science and Applications Print: ISSN 2008-1898 Online: ISSN 2008-1901

Hybrid method for the equilibrium problem and a family of generalized nonexpansive mappings in Banach spaces

Chakkrid Klin-eam^{a,b,*}, Prondanai Kaskasem^a, Suthep Suantai^c

^aDepartment of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand.

^bResearch Center for Academic Excellence in Mathematics, Naresuan University, Phitsanulok, 65000, Thailand.

^cDepartment of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.

Communicated by Y. J. Cho

Abstract

We introduce a hybrid method for finding a common element of the set of solutions of an equilibrium problem defined on the dual space of a Banach space and the set of common fixed points of a family of generalized nonexpansive mappings and prove strong convergence theorems by using the new hybrid method. Using our main results, we obtain some new strong convergence theorems for finding a solution of an equilibrium problem and a fixed point of a family of generalized nonexpansive mappings in a Banach space. ©2016 All rights reserved.

Keywords: Hybrid method, generalized nonexpansive mapping, NST-condition, equilibrium problem, fixed point problem, Banach space. *2010 MSC:* 47H05, 47H10, 47J25.

1. Introduction

Let E be a real Banach space, E^* the dual space of E and C a closed subset of E such that JC is a closed and convex subset of E^* , where J is the duality mapping on E. Let f be a bifunction from $JC \times JC$ to \mathbb{R} , where \mathbb{R} is the set of real numbers. The equilibrium problem is to find

 $\hat{x} \in C$ such that $f(J\hat{x}, Jy) \ge 0, \ \forall y \in C$.

 * Corresponding author

Email addresses: chakkridk@nu.ac.th (Chakkrid Klin-eam), prondanaik@hotmail.com (Prondanai Kaskasem), scmti005@chiangmai.ac.th (Suthep Suantai)

The set of such solutions \hat{x} is denoted by EP(f). A mapping T of C into itself is called *nonexpansive* if $||Tx - Ty|| \leq ||x - y||$ for all $x, y \in C$. We use F(T) to denote the set of fixed points of T, that is, $F(T) = \{x \in C : x = Tx\}$. A mapping T of C into itself is called *quasi-nonexpansive* if F(T) is nonempty and $||Tx - y|| \leq ||x - y||$ for all $x \in C$ and $y \in F(T)$. It is easy to see that if T is nonexpansive with $F(T) \neq \emptyset$, then it is quasi-nonexpansive.

Numerous problems in physics, optimization and economics reduce to find a solution of the equilibrium problem. Some methods have been proposed to solve the equilibrium problem in a Hilbert space, see for instance, Blum and Oettli [1], and Combettes and Hirstoaga [2]. On the other hand, Ibaraki and Takahashi [3] introduced a new resolvent of a maximal monotone operator in a Banach space and the concept of a generalized nonexpansive mapping in a Banach space. Ibaraki and Takahashi [3], and Kohsaka and Takahashi [5] also studied some properties for generalized nonexpansive retractions in Banach spaces. Recently, Takahashi and Zembayashi [12] considered the following equilibrium problem with a bifunction defined on the dual space of a Banach space. Moreover, they proved a strong convergence theorem for finding a solution of the equilibrium problem which generalized the result of Combettes and Hirstoaga [2].

Construction of fixed point iteration of nonlinear mappings is an important subject in the theory of nonlinear mappings and has been widely studied by many mathematicians. In 1953, Mann [6] introduced an algorithm which is used to approximate a fixed point of a nonlinear mapping $T: C \to C$. Mann's iterative process is defined as follows: $x_0 \in C$

$$x_{n+1} = \alpha_n x_0 + (1 - \alpha_n) T x_n, \quad n \ge 0,$$

where $\{\alpha_n\}$ is a real sequence in [0, 1]. However, Mann's algorithm have only weak convergence. For example, Reich [9] proved that if $T: C \to C$ is a nonexpansive mapping with a fixed point in a closed and convex subset of a uniformly convex Banach space with a Frechét differentiable norm and $\{\alpha_n\}$ is chosen such that $\sum_{n=0}^{\infty} \alpha_n (1 - \alpha_n) = \infty$, then the Mann's iteration converges weakly to a fixed point of T. Later, Nakajo and Takahashi [8] attempted to modify the Mann's iteration in order to guarantee strong convergence by using the hybrid method in mathematical programming, called normal hybrid method. For a nonexpansive mapping T in a Hilbert space, it is as follows:

$$\begin{cases} x_1 = x \in C, C_0 = C, \\ u_n = \alpha_n x_n + (1 - \alpha_n) T x_n, \\ C_n = \{ z \in C : ||z - u_n|| \le ||z - x_n|| \}, \\ Q_n = \{ z \in C : \langle x_n - z, x - x_n \rangle \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n} x \end{cases}$$
(1.1)

for all $n \in \mathbb{N}$ where $\alpha_n \subset [0, a]$ for $a \in [0, 1)$, then sequence $\{x_n\}$ generated by (1.1), converges strongly to $P_{F(T)}x$ which is the metric projection from C onto F(T). Construction the sets C_n and Q_n is difficult to obtain because it has complicated condition. For this reason, Takahashi et al. [11] introduced another hybrid method and proposed the following modification iteration method different from Nakajo and Takahashi 's hybrid method [8]. We call such a method the *shrinking projection method*:

$$\begin{cases} x_1 = x \in C, C_0 = C, \\ u_n = \alpha_n x_n + (1 - \alpha_n) T x_n, \\ C_{n+1} = \{ z \in C_n : \| z - u_n \| \le \| z - x_n \| \}, \\ x_{n+1} = P_{C_n} x \end{cases}$$
(1.2)

for all $n \in \mathbb{N}$, where $\{\alpha_n\} \subset [0, 1]$. They proved strong convergence of the sequence $\{x_n\}$ generated by (1.2) under an appropriate control condition on the sequence $\{\alpha_n\}$.

In this paper, motivated by Takahashi et al. [11], we introduce a new hybrid method by using the shrinking projection method and Takahashi and Zambayashi [12] for finding a common element of the set

of solutions of equilibrium problem and the set of common fixed points of a countable family of generalized nonexpansive mappings in a Banach space and prove strong convergence theorems in a Banach space. Using this results, we obtain some new strong convergence results for finding a solution of an equilibrium problem and a fixed point of a generalized nonexpansive mapping or a family of generalized nonexpansive mappings in a Banach space.

2. Preliminaries

Throughout this paper, we assume that all linear spaces are real. Let \mathbb{N} and \mathbb{R} be the sets of all positive integers and real numbers, respectively. Let E be a Banach space and let E^* be the dual space of E. For a sequence $\{x_n\}$ of E and a point $x \in E$, the *weak* convergence of $\{x_n\}$ to x and the *strong* convergence of $\{x_n\}$ to x are denoted by $x_n \to x$ and $x_n \to x$, respectively. The duality mapping J from E into 2^{E^*} is defined by

$$Jx = \{x^* \in E^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}, \ \forall x \in E.$$

Let S(E) be the unit sphere centered at the origin of E. Then the space E is said to be *smooth* if the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists for all $x, y \in S(E)$. It is also said to be *uniformly smooth* if the limit exists uniformly in $x, y \in S(E)$. A Banach space E is said to be *strictly convex* if $\|\frac{x+y}{2}\| < 1$ whenever $x, y \in S(E)$ and $x \neq y$. It is said to be *uniformly convex* if for each $\epsilon \in (0, 2]$, there exists $\delta > 0$ such that $\|\frac{x+y}{2}\| < 1 - \delta$ whenever $x, y \in S(E)$ and $\|x - y\| \ge \epsilon$. We know the following (see [10]):

- (i) if E is smooth, then J is single-valued;
- (ii) if E is reflexive, then J is onto;
- (iii) if E is strictly convex, then J is one-to-one;
- (iv) if E is strictly convex, then J is strictly monotone;
- (v) if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E.

Let E be a smooth, strictly convex and reflexive Banach space and let C be a closed convex subset of E. Throughout this paper, define the function $\phi: E \times E \to \mathbb{R}$ by

$$\phi(y,x) = \|y\|^2 - 2\langle y, Jx \rangle + \|x\|^2, \ \forall y, x \in E.$$
(2.1)

Observe that, in a Hilbert space H, (2.1) reduces to $\phi(x, y) = ||x - y||^2$, for all $x, y \in H$. It is obvious from the definition of the function ϕ that for all $x, y \in E$,

- (P1) $(||x|| ||y||)^2 \le \phi(x, y) \le (||x|| + ||y||)^2$,
- (P2) $\phi(x,y) = \phi(x,z) + \phi(z,y) + 2\langle x z, Jz Jy \rangle,$
- (P3) $\phi(x,y) = \langle x, Jx Jy \rangle + \langle y x, Jy \rangle \le ||x|| ||Jx Jy|| + ||y x|| ||y||.$

Let C be a closed convex subset of a Banach space E, and let T be a mapping from C into itself. Recall that a self-mapping $T: C \to C$ is generalized nonexpansive if $F(T) \neq \emptyset$ and $\phi(Tx, u) \leq \phi(x, u)$ for all $x \in C$ and $u \in F(T)$. Let R be a mapping from E onto C. Then R is said to be a retraction if $R^2 = R$. The mapping R from E onto C is said to be sunny if R(Rx + t(x - Rx)) = Rx for all $x \in E$ and $t \geq 0$.

A nonempty closed subset C of a smooth Banach space E is said to be a sunny generalized nonexpansive retract of E if there exists a sunny generalized nonexpansive retraction R from E onto C. We know the following lemmas for sunny generalized nonexpansive retractions.

Lemma 2.1 ([3]). Let C be a nonempty closed subset of a smooth and strictly convex Banach space E and let R be a retraction from E onto C. Then the following assertions are equivalent:

- (i) R is sunny generalized nonexpansive;
- (ii) $\langle x Rx, Jy JRx \rangle \le 0, \quad \forall x \in E, y \in C.$

Lemma 2.2 ([3]). Let C be a nonempty closed sunny generalized nonexpansive retract of a smooth and strictly convex Banach space E. Then the sunny generalized nonexpansive retraction from E onto C is uniquely determined.

Lemma 2.3 ([3]). Let C be a nonempty closed subset of a smooth and strictly convex Banach space E such that there exists a sunny generalized nonexpansive retraction R from E onto C, let $x \in E$ and $z \in C$. Then the following assertions hold:

- (i) z = Rx if and only if $\langle x z, Jy Jz \rangle \leq 0$ for all $y \in C$;
- (ii) $\phi(x, Rx) + \phi(Rx, z) \le \phi(x, z)$.

Lemma 2.4 ([5]). Let C be a nonempty closed subset of a smooth, strictly convex and reflexive Banach space E. Then the following items are equivalent:

- (i) C is a sunny generalized nonexpansive retract of E;
- (ii) JC is closed and convex.

Lemma 2.5 ([5]). Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed sunny generalized nonexpansive retract of E. Let R be the sunny generalized nonexpansive retraction from E onto C, let $x \in E$ and $z \in C$. Then the following assertions are equivalent:

- (i) z = Rx;
- (ii) $\phi(x, z) = \min_{y \in C} \phi(x, y).$

Let C be a nonempty closed subset of a smooth, strictly convex and reflexive Banach space E such that JC is closed and convex. To solve the equilibrium problem, let us assume that a bifunction $f: JC \times JC \to \mathbb{R}$ satisfies the following conditions:

- (A1) $f(x^*, x^*) = 0$ for all $x^* \in JC$;
- (A2) f is monotone, i.e., $f(x^*, y^*) + f(y^*, x^*) \le 0$ for all $x^*, y^* \in JC$;
- (A3) for all $x^*, y^*, z^* \in JC$, $\limsup_{t \downarrow 0} f(tz^* + (1-t)x^*, y^*) \le f(x^*, y^*);$
- (A4) for all $x^* \in JC$, $f(x^*, \cdot)$ is convex and lower semicontinuous.

Lemma 2.6 ([1]). Let C be a nonempty closed subset of a smooth, strictly convex and reflexive Banach space E such that JC is closed and convex, and let f be a bifunction from $JC \times JC$ to \mathbb{R} satisfying (A1)-(A4). Then, for r > 0 and $x \in E$, there exists $z \in C$ such that

$$f(Jz, Jy) + \frac{1}{r} \langle z - x, Jy - Jz \rangle \ge 0, \quad \forall y \in C.$$

Lemma 2.7 ([12]). Let C be a nonempty closed subset of a uniformly smooth, strictly convex and reflexive Banach space E such that JC is closed and convex, let f be a bifunction from $JC \times JC$ to \mathbb{R} satisfying (A1)-(A4). For r > 0 and $x \in E$, define a mapping $T_r : E \to C$ as follows:

$$T_r(x) = \{ z \in C : f(Jz, Jy) + \frac{1}{r} \langle z - x, Jy - Jz \rangle \ge 0, \ \forall y \in C \}.$$

Then the following statements hold:

(i) T_r is single-valued;

(ii) for all
$$x, y \in E$$
, $\langle T_r x - T_r y, J T_r x - J T_r y \rangle \leq \langle x - y, J T_r x - J T_r y \rangle$;

- (iii) $F(T_r) = EP(f);$
- (iv) JEP(f) is closed and convex.

Lemma 2.8 ([12]). Let C be a nonempty closed subset of a smooth, strictly convex and reflexive Banach space E such that JC is closed and convex, let f be a bifunction from $JC \times JC$ to \mathbb{R} satisfying (A1)-(A4) and let r > 0. Then, for $x \in E$ and $p \in F(T_r)$,

$$\phi(x, T_r x) + \phi(T_r x, p) \le \phi(x, p).$$

The following lemmas are also needed for the proof of our main results.

Lemma 2.9 ([4]). Let E be a uniformly convex and smooth Banach space and let $\{x_n\}$ and $\{y_n\}$ be two sequences in E such that either $\{x_n\}$ or $\{y_n\}$ is bounded. If $\lim_{n\to\infty} \phi(x_n, y_n) = 0$, then $\lim_{n\to\infty} \|x_n - y_n\| = 0$.

Lemma 2.10 ([5]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive Banach space E and let T be a generalized nonexpansive mapping from C into itself. Then F(T) is closed and JF(T) is closed and JF(T) is closed and convex.

Lemma 2.11 ([5]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive Banach space E and let T be a generalized nonexpansive mapping from C into itself. Then F(T) is a sunny generalized nonexpansive retract of E.

Lemma 2.12 ([4]). Let E be a uniformly convex and smooth Banach space and let r > 0. Then there exists a strictly increasing, continuous and convex function $g : [0, \infty) \to [0, \infty)$ such that g(0) = 0 and

$$g(\|x - y\|) \le \phi(x, y)$$

for all $x, y \in B_r(0)$, where $B_r(0) = \{z \in E : ||z|| \le r\}$.

Lemma 2.13 ([13]). Let E be a uniformly convex Banach space and let r > 0. Then there exists a strictly increasing, continuous and convex function $g: [0, \infty) \to [0, \infty)$ such that g(0) = 0 and

$$||tx + (1-t)y||^2 \le t||x||^2 + (1-t)||y||^2 - t(1-t)g(||x-y||)$$

for all $x, y \in B_r(0)$ and $t \in [0, 1]$, where $B_r(0) = \{z \in E : ||z|| \le r\}$.

Lemma 2.14 ([4]). Let E be a smooth and strictly convex Banach space, $z \in E$, and $\{t_i\}_{i=1}^m \subset (0,1)$ with $\sum_{i=1}^m t_i = 1$. If $\{x_i\}_{i=1}^m$ is a finite sequence in E such that

$$\phi\Big(\sum_{i=1}^m t_i x_i, z\Big) = \sum_{i=1}^m t_i \phi(x_i, z),$$

then $x_1 = x_2 = \dots = x_m$.

Next, we recall some lemmas for NST-condition.

Let E be a real Banach space and C be a closed convex subset of E. Motivated by Nakajo et al. [7], we give the following definition: Let $\{T_n\}$ and \mathcal{T} be two families of generalized nonexpansive mappings of C into E such that $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) \neq \emptyset$, where $F(T_n)$ is the set of all fixed points of T_n and $F(\mathcal{T})$ is the set of all common fixed points of \mathcal{T} . Then, $\{T_n\}$ is said to satisfy the *NST-condition* with \mathcal{T} if for each bounded sequence $\{x_n\} \subset C$,

$$\lim_{n \to \infty} \|x_n - T_n x_n\| = 0 \Rightarrow \lim_{n \to \infty} \|x_n - T x_n\| = 0, \text{ for all } T \in \mathcal{T}.$$

In particular, if $\mathcal{T} = \{T\}$, i.e., \mathcal{T} consists of one mapping T, then $\{T_n\}$ is said to satisfy the NST-condition with T. It is obvious that $\{T_n\}$ with $T_n = T$ for all $n \in \mathbb{N}$ satisfies NST-condition with $\mathcal{T} = \{T\}$.

Lemma 2.15. Let C be a closed subset of a uniformly smooth and uniformly convex Banach space E and let T be a generalized nonexpansive mapping from C into E with $F(T) \neq \emptyset$. Let $\{\beta_n\} \subset [0,1]$ satisfies $\liminf_{n \to \infty} \beta_n(1 - \beta_n) > 0$. For $n \in \mathbb{N}$, define the mapping T_n from C into E by

$$T_n x = \beta_n x + (1 - \beta_n) T x$$

for all $x \in C$. Then, $\{T_n\}$ is a countable family of generalized nonexpansive mappings satisfying the NSTcondition with T.

Lemma 2.16. Let C be a closed subset of a uniformly smooth and uniformly convex Banach space E and let S and T be generalized nonexpansive mappings from C into E with $F(S) \cap F(T) \neq \emptyset$. Let $\{\beta_n\} \subset [0,1]$ satisfies $\liminf_{n \to \infty} \beta_n(1 - \beta_n) > 0$. For $n \in \mathbb{N}$, define the mapping T_n from C into E by

$$T_n x = \beta_n S x + (1 - \beta_n) T x$$

for all $x \in C$. Then, $\{T_n\}$ is a countable family of generalized nonexpansive mappings satisfying the NSTcondition with $\mathcal{T} = \{S, T\}$.

3. Strong convergence theorems

In this section, we introduce and prove a strong convergence theorem of a new hybrid method for finding a common element of the set of solutions of an equilibrium problem and the set of common fixed points of a family of generalized nonexpansive mappings in a Banach space. Recall that an operator T in a Banach space is call *closed*, if $x_n \to x$ and $Tx_n \to y$, then Tx = y.

Before proving our main result, we give the following lemma for non-self generalized nonexpansive mappings in a Banach space.

Lemma 3.1. Let E be a smooth, strictly convex and reflexive Banach space and let C be a closed subset of E such that JC is closed and convex. Let T be a generalized nonexpansive mapping from C into E such that $F(T) \neq \emptyset$, then F(T) is closed and JF(T) is closed and convex.

Proof. We first prove that F(T) is closed. Let $\{x_n\} \subset F(T)$ with $x_n \to x$. Since T is generalized nonexpansive, then we have

$$\phi(Tx, x_n) \le \phi(x, x_n)$$

for each $n \in \mathbb{N}$. This implies

$$\phi(Tx,x) = \lim_{n \to \infty} \phi(Tx,x_n) \le \lim_{n \to \infty} \phi(x,x_n) = \phi(x,x) = 0.$$

Therefore, we have $\phi(Tx, x) = 0$ and hence $x \in F(T)$.

We next show that JF(T) is closed. Let $\{x_n^*\} \subset JF(T)$ such that $x_n^* \to x^*$ for some $x^* \in E^*$. Note that since JC is closed and convex, we have $x^* \in JC$. Then, there exist $x \in C$ and $\{x_n\} \subset F(T)$ such that $x^* = Jx$ and $x_n^* = Jx_n$ for all $n \in \mathbb{N}$. Thus

$$\begin{split} \phi(Tx, x_n) &\leq \phi(x, x_n) \\ &= \|x\|^2 - 2\langle x, x_n^* \rangle + \|x_n^*\|^2 \\ &\to \|x\|^2 - 2\langle x, x^* \rangle + \|x^*\|^2 = 0. \end{split}$$

Hence, $\lim_{n \to \infty} \phi(Tx, x_n) = 0$. Since

$$0 = \lim_{n \to \infty} \phi(Tx, x_n) = \lim_{n \to \infty} (\|Tx\|^2 - 2\langle Tx, x_n^* \rangle + \|x_n^*\|^2)$$

= $\|Tx\|^2 - 2\langle Tx, x^* \rangle + \|x^*\|^2 = \phi(Tx, x),$

we have $\phi(Tx, x) = 0$ and hence x = Tx. This implies $x^* = Jx \in JF(T)$.

We finally show that JF(T) is convex. Let $x^*, y^* \in JF(T)$ and let $\alpha \in (0, 1)$ and $\beta = 1 - \alpha$. Then we have $x, y \in F(T)$ such that $x^* = Jx$ and $y^* = Jy$. Thus, we have

$$\begin{split} \phi(TJ^{-1}(\alpha Jx + \beta Jy), J^{-1}(\alpha Jx + \beta Jy)) \\ &= \|TJ^{-1}(\alpha Jx + \beta Jy)\|^2 - 2\langle TJ^{-1}(\alpha Jx + \beta Jy), \alpha Jx + \beta Jy \rangle + \|J^{-1}(\alpha Jx + \beta Jy)\|^2 \\ &+ \alpha \|x\|^2 + \beta \|y\|^2 - (\alpha \|x\|^2 + \beta \|y\|^2) \\ &= \alpha \phi(TJ^{-1}(\alpha Jx + \beta Jy), x) + \beta \phi(TJ^{-1}(\alpha Jx + \beta Jy), y) + \|\alpha Jx + \beta Jy\|^2 - (\alpha \|x\|^2 + \beta \|y\|^2). \end{split}$$

Since $x, y \in F(T)$ and T is generalized nonexpansive, we have

$$\begin{aligned} \alpha\phi(TJ^{-1}(\alpha Jx + \beta Jy), x) &+ \beta\phi(TJ^{-1}(\alpha Jx + \beta Jy), y) + \|\alpha Jx + \beta Jy\|^2 - (\alpha \|x\|^2 + \beta \|y\|^2) \\ &\leq &\alpha\phi(J^{-1}(\alpha Jx + \beta Jy), x) + \beta\phi(J^{-1}(\alpha Jx + \beta Jy), y) + \|\alpha Jx + \beta Jy\|^2 - (\alpha \|x\|^2 + \beta \|y\|^2) \\ &= &\alpha\{\|\alpha Jx + \beta Jy\|^2 - 2\langle J^{-1}(\alpha Jx + \beta Jy), Jx \rangle + \|x\|^2\} \\ &+ &\beta\{\|\alpha Jx + \beta Jy\|^2 - 2\langle J^{-1}(\alpha Jx + \beta Jy), Jy \rangle + \|y\|^2\} \\ &+ &\|\alpha Jx + \beta Jy\|^2 - (\alpha \|x\|^2 + \beta \|y\|^2) \\ &= &2\|\alpha Jx + \beta Jy\|^2 - 2\langle J^{-1}(\alpha Jx + \beta Jy), \alpha Jx + \beta Jy \rangle \\ &= &2\|\alpha Jx + \beta Jy\|^2 - 2\|\alpha Jx + \beta Jy\|^2 = 0. \end{aligned}$$

Then we have $TJ^{-1}(\alpha Jx + \beta Jy) = J^{-1}(\alpha Jx + \beta Jy)$ and hence $J^{-1}(\alpha Jx + \beta Jy) \in JF(T)$. This implies that $\alpha Jx + \beta Jy \in JF(T)$. Therefore, JF(T) is convex and the proof is complete.

Using Lemmas 2.4 and 3.1, we obtain the following lemma.

Lemma 3.2. Let E be a smooth, strictly convex and reflexive Banach space and C be a closed subset of E such that JC is closed and convex. Let T be a generalized nonexpansive mapping from C into E such that $F(T) \neq \emptyset$, then F(T) is a sunny generalized nonexpansive retract of E.

Theorem 3.3. Let E be a uniformly smooth and uniformly convex Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. Let f be a bifunction from $JC \times JC$ to \mathbb{R} satisfying (A1)-(A4) and $\{T_n\}$ be a countable family of generalized nonexpansive mappings from C into E, and let \mathcal{T} be a family of closed generalized nonexpansive mappings from C into E such that $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) \neq \emptyset$ and $F(\mathcal{T}) \cap EP(f) \neq \emptyset$. Suppose that $\{T_n\}$ satisfies the NST-condition with \mathcal{T} . Let $\{x_n\}$ be the sequence generated by $x_0 = x \in C, C_0 = C$ and

$$\begin{cases} y_n = \alpha_n x_n + (1 - \alpha_n) T_n x_n, \\ u_n \in C, \text{ such that } f(Ju_n, Jy) + \frac{1}{r_n} \langle u_n - y_n, Jy - Ju_n \rangle \ge 0, \ \forall y \in C, \\ C_{n+1} = \{ z \in C_n : \phi(u_n, z) \le \phi(x_n, z) \}, \\ x_{n+1} = R_{C_{n+1}} x \end{cases}$$

for all $n \in \mathbb{N} \cup \{0\}$, where J is the duality mapping on E and $\{\alpha_n\} \subset [0,1]$ satisfies $\liminf_{n \to \infty} \alpha_n(1-\alpha_n) > 0$ and $\{r_n\} \subset [a, \infty)$ for some a > 0. Then, $\{x_n\}$ converges strongly to $R_{F(\mathcal{T}) \cap EP(f)}x$, where $R_{F(\mathcal{T}) \cap EP(f)}$ is the sunny generalized nonexpansive retraction from E onto $F(\mathcal{T}) \cap EP(f)$.

Proof. Since the proof of Theorem 3.3 is very long, so we divide it into 5 steps.

Step1 : We begin by proving that $\{x_n\}$ is well-defined. Putting $u_n = T_{r_n}y_n$ for all $n \in \mathbb{N} \cup \{0\}$, we have from Lemma 2.8 that T_{r_n} is generalized nonexpansive. We first show that $F(\mathcal{T}) \cap EP(f)$ is a sunny generalized nonexpansive retract of E and JC_n is closed and convex. From Lemmas 2.7 and 3.1, we have JEP(f) and JF(T) are closed and convex, respectively. Since E is uniformly convex, J is injective and hence

$$J(F(T) \cap JEP(f)) = JF(T) \cap JEP(f),$$

which is also closed and convex. Using Lemma 2.4, we have $F(T) \cap EP(f)$ is a sunny generalized nonexpansive retract of E. It is obvious that JC_0 is closed and convex. Since $\phi(u_n, z) \leq \phi(x_n, z)$ is equivalent to

$$0 \le ||x_n||^2 - ||u_n||^2 - 2\langle x_n - u_n, Jz \rangle$$

which is affine in Jz, hence JC_n is closed and convex. Next, we show by the induction that $F(\mathcal{T}) \cap EP(f) \subset C_n$ for all $n \in \mathbb{N} \cup \{0\}$. From $C_0 = C$, we have $F(\mathcal{T}) \cap EP(f) \subset C_0$. Suppose that $F(\mathcal{T}) \cap EP(f) \subset C_k$ for some $k \in \mathbb{N} \cup \{0\}$. Since T_{r_k} and T_n are generalized nonexpansive, we have

$$\begin{aligned}
\phi(u_k, u) &= \phi(T_{r_k} y_k, u) \leq \phi(y_k, u) \\
&= \phi(\alpha_k x_k + (1 - \alpha_k) T_k x_k, u) \\
&= \|\alpha_k x_k + (1 - \alpha_k) T_k x_k\|^2 - 2\langle \alpha_k x_k + (1 - \alpha_k) T_k x_k, J u \rangle + \|u\|^2 \\
&\leq \alpha_k \|x_k\|^2 + (1 - \alpha_k) \|T_k x_k\|^2 - 2\alpha_n \langle x_k, J u \rangle - 2(1 - \alpha_k) \langle T_k x_k, J u \rangle + \|u\|^2 \\
&= \alpha_k \phi(x_k, u) + (1 - \alpha_k) \phi(T_k x_k, u) \\
&\leq \alpha_k \phi(x_k, u) + (1 - \alpha_k) \phi(x_k, u) = \phi(x_k, u).
\end{aligned}$$
(3.1)

Hence, we have $u \in C_{k+1}$. This implies that $F(\mathcal{T}) \cap EP(f) \subset C_n$ for all $n \in \mathbb{N} \cup \{0\}$. So, $\{x_n\}$ is well-defined. Step2: We will show that $\lim_{n\to\infty} ||x_n - u_n|| = 0$. It follows from Lemma 2.3 (ii) and $x_n = R_{C_n} x$ that

$$\phi(x, x_n) = \phi(x, R_{C_n} x) \le \phi(x, u) - \phi(R_{C_n} x, u) \le \phi(x, u)$$

for all $u \in F(\mathcal{T}) \cap EP(f) \subset C_n$. Then, $\{\phi(x, x_n)\}$ is bounded. Moreover, by definition of ϕ , we have that $\{x_n\}$ is bounded. From $C_{n+1} \subset C_n$ and $x_n = R_{C_n}x$, we have

$$\phi(x, x_n) \le \phi(x, x_{n+1}), \ n \ge 0.$$

So, the limit of $\{\phi(x, x_n)\}$ exists. From $x_n = R_{C_n}x$, and for any positive integer k, we have

$$\phi(x_n, x_{n+k}) = \phi(R_{C_n} x, x_{n+k}) \le \phi(x, x_{n+k}) - \phi(x, R_{C_n} x) = \phi(x, x_{n+k}) - \phi(x, x_n).$$

This implies that $\lim_{n\to\infty} \phi(x_n, x_{n+k}) = 0$. Using Lemma 2.12, we have that, for $m, n \in \mathbb{N}$ with m > n,

$$g(||x_n - x_m||) \le \phi(x_n, x_m) \le \phi(x, x_m) - \phi(x, x_n),$$

where $g: [0, \infty) \to [0, \infty)$ is a continuous, strictly increasing and convex function with g(0) = 0. Then the property of the function g yields that $\{x_n\}$ is a Cauchy sequence in C, so there exists $w \in C$ such that $x_n \to w$. In view of $x_{n+1} = R_{C_{n+1}}x \in C_{n+1}$ and definition of C_{n+1} , we also have

$$\phi(u_n, x_{n+1}) \le \phi(x_n, x_{n+1}).$$

It follows that $\lim_{n\to\infty} \phi(u_n, x_{n+1}) = \lim_{n\to\infty} \phi(x_n, x_{n+1}) = 0$. Since *E* is uniformly convex and smooth, we have from Lemma 2.9 that

$$\lim_{n \to \infty} \|x_n - x_{n+1}\| = \lim_{n \to \infty} \|u_n - x_{n+1}\| = 0.$$

So, we have

$$\lim_{n \to \infty} \|x_n - u_n\| = 0.$$
(3.2)

Step3: We will prove that $\lim_{n\to\infty} ||x_n - T_n x_n|| = 0$. Put $r = \max\{\sup_n ||x_n||, \sup_n ||Tx_n||\}$. Since E is a uniformly convex Banach space, there exists a continuous, strictly increasing and convex function g with g(0) = 0 such that

$$||tx + (1-t)y||^2 \le t||x||^2 + (1-t)||y||^2 - t(1-t)g(||x-y||)$$

for all $x, y \in B_r(0)$ and $t \in [0, 1]$. So, we have that for $u \in \Omega$,

$$\begin{split} \phi(u_n, u) &= \phi(T_{r_n} y_n, u) \leq \phi(y_n, u) \\ &= \phi(\alpha_n x_n + (1 - \alpha_n) T_n x_n, u) \\ &= \|\alpha_n x_n + (1 - \alpha_n) T_n x_n\|^2 - 2\langle \alpha_n x_n + (1 - \alpha_n) T_n x_n, Ju \rangle + \|u\|^2 \\ &\leq \alpha_n \|x_n\|^2 + (1 - \alpha_n) \|T_n x_n\|^2 - 2\alpha_n \langle x_n, Ju \rangle - 2(1 - \alpha_n) \langle T_n x_n, Ju \rangle + \|u\|^2 \\ &- \alpha_n (1 - \alpha_n) g(\|x_n - T_n x_n\|) \\ &= \alpha_n \phi(x_n, u) + (1 - \alpha_n) \phi(T_n x_n, u) - \alpha_n (1 - \alpha_n) g(\|x_n - T_n x_n\|) \\ &\leq \alpha_n \phi(x_n, u) + (1 - \alpha_k) \phi(x_n, u) - \alpha_n (1 - \alpha_n) g(\|x_n - T_n x_n\|) \\ &= \phi(x_n, u) - \alpha_n (1 - \alpha_n) g(\|x_n - T_n x_n\|). \end{split}$$

Therefore, we have

$$\alpha_n(1-\alpha_n)g(\|x_n-T_nx_n\|) \le \phi(x_n,u) - \phi(u_n,u), \ \forall n \in \mathbb{N} \cup \{0\}.$$

Since

$$\begin{split} \phi(x_n, u) - \phi(u_n, u) &= \|x_n\|^2 - \|u_n\|^2 - 2\langle x_n - u_n, Ju \rangle \\ &\leq |\|x_n\|^2 - \|u_n\|^2 |+ 2|\langle x_n - u_n, Ju \rangle| \\ &\leq |\|x_n\| - \|u_n\||(\|x_n\| + \|u_n\|) + 2\|x_n - u_n\|\|Ju\| \\ &\leq \|x_n - u_n\||(\|x_n\| + \|u_n\|) + 2\|x_n - u_n\|\|Ju\|, \end{split}$$

it follows that

$$\lim_{n \to \infty} \left(\phi(x_n, u) - \phi(u_n, u) \right) = 0$$

From $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$, we have $\lim_{n\to\infty} g(||x_n - T_n x_n||) = 0$. By properties of the function g, we have $\lim_{n\to\infty} ||x_n - T_n x_n|| = 0$.

Step4 : We will show that $w \in F(T) \cap EP(f)$. Since $\{T_n\}$ satisfies the NST-condition with \mathcal{T} , we have that

$$\lim_{n \to \infty} \|x_n - Tx_n\| = 0, \text{ for all } T \in \mathcal{T}.$$

Since $x_n \to w$ and T is closed, it follows that w is a fixed point of T, that is, $w \in F(\mathcal{T})$ and by (3.2), we have that $u_n \to w$. On the other hand, from $u_n = T_{r_n} y_n$, Lemma 2.8 and (3.1) we have that

$$\begin{split} \phi(y_n, u_n) &= \phi(y_n, T_{r_n} y_n) \\ &\leq \phi(y_n, u) - \phi(T_{r_n} y_n, u) \\ &\leq \phi(x_n, u) - \phi(T_{r_n} y_n, u) \\ &= \phi(x_n, u) - \phi(u_n, u). \end{split}$$

Since $\lim_{n\to\infty} (\phi(x_n, u) - \phi(u_n, u)) = 0$, we have that $\lim_{n\to\infty} \phi(y_n, u_n) = 0$. Since *E* is uniformly convex and smooth, we have from Lemma 2.9 that $\lim_{n\to\infty} ||y_n - u_n|| = 0$. From $r_n \ge a$, we have

$$\lim_{n \to \infty} \frac{\|y_n - u_n\|}{r_n} = 0.$$
(3.3)

By $u_n = T_{r_n} y_n$, we have

$$f(Ju_n, Jy) + \frac{1}{r_n} \langle u_n - y_n, Jy - Ju_n \rangle \ge 0, \ \forall y \in C.$$

By (A2), we have that

$$\frac{1}{r_n}\langle u_n - y_n, Jy - Ju_n \rangle \ge -f(Ju_n, Jy) \ge f(Jy, Ju_n), \ \forall y \in C.$$
(3.4)

Since $f(x, \cdot)$ is convex and lower semicontinuous and $u_n \to w$, it follows from (3.3) and (3.4) that

$$f(Jy, Jw) \le 0, \ \forall y \in C.$$

For t with $0 < t \le 1$ and $y \in C$, let $y_t^* = tJy + (1-t)Jw$. Since JC is convex, we have $y_t^* \in JC$ and hence $f(y_t^*, Jw) \le 0$. So, from (A1) we have

$$0 = f(y_t^*, y_t^*) \le t f(y_t^*, Jy) + (1 - t) f(y_t^*, Jw) \le t f(y_t^*, Jy).$$

Hence

$$f(y_t^*, Jy) \ge 0, \ \forall y \in C.$$

Letting $t \downarrow 0$, from (A3) we have

$$f(Jw, Jy) \ge 0, \ \forall y \in C.$$

Therefore, we have $Jw \in JEP(f)$ that is $w \in EP(f)$.

Step5: We will show that x_n converges strongly to $R_{F(\mathcal{T})\cap EP(f)}x$ by proving $w = R_{F(\mathcal{T})\cap EP(f)}x$. From Lemma 2.3 (ii), we have

$$\phi(x, R_{F(\mathcal{T})\cap EP(f)}x) + \phi(R_{F(\mathcal{T})\cap EP(f)}x, w) \le \phi(x, w)$$

Since $x_{n+1} = R_{C_{n+1}}x$ and $w \in F(\mathcal{T}) \cap EP(f) \subset C_n$, we get from Lemma 2.3 (ii) that

$$\phi(x, x_{n+1}) + \phi(x_{n+1}, R_{F(\mathcal{T}) \cap EP(f)}x) \le \phi(x, R_{F(\mathcal{T}) \cap EP(f)}x).$$

$$(3.5)$$

Since $x_n \to w$, it follows by definition of ϕ that $\phi(x, x_{n+1}) \to \phi(x, w)$. This implies by (3.5) that $\phi(x, w) \leq \phi(x, R_{F(\mathcal{T} \cap EP(f))}x)$. But since $\phi(x, w) \geq \phi(x, R_{F(\mathcal{T}) \cap EP(f)}x)$, we obtain $\phi(x, w) = \phi(x, R_{F(\mathcal{T}) \cap EP(f)}x)$. Therefore, it follows from the uniqueness of $R_{F(\mathcal{T}) \cap EP(f)}x$ that $w = R_{F(\mathcal{T}) \cap EP(f)}x$. This completes the proof.

Corollary 3.4. Let E be a uniformly smooth and uniformly convex Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. Let f be a bifunction from $JC \times JC$ to \mathbb{R} satisfying (A1)-(A4). Let $\{x_n\}$ be the sequence generated by $x_0 = x \in C, C_0 = C$ and

$$\begin{cases} u_n \in C, \text{ such that } f(Ju_n, Jy) + \frac{1}{r_n} \langle u_n - x_n, Jy - Ju_n \rangle \ge 0, \ \forall y \in C, \\ C_{n+1} = \{ z \in C_n : \phi(u_n, z) \le \phi(x_n, z) \}, \\ x_{n+1} = R_{C_{n+1}} x \end{cases}$$

for all $n \in \mathbb{N} \cup \{0\}$, where J is the duality mapping on E and $\{r_n\} \subset [a, \infty)$ for some a > 0. Then, $\{x_n\}$ converges strongly to $R_{EP(f)}x$, where $R_{EP(f)}$ is the sunny generalized nonexpansive retraction from E onto EP(f).

Proof. Putting $T_n = I$ for all $n \in \mathbb{N} \cup \{0\}$ in Theorem 3.3, we obtain the desired result.

Corollary 3.5. Let E be a uniformly smooth and uniformly convex Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. Let $\{T_n\}$ be a countable family of generalized nonexpansive mappings from C into E and, let \mathcal{T} be a family of closed generalized nonexpansive mappings from C into E such that $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) \neq \emptyset$. Suppose that $\{T_n\}$ satisfies the NST-condition with \mathcal{T} . Let $\{x_n\}$ be the sequence generated by $x_0 = x \in C, C_0 = C$ and

$$\begin{cases} u_n = \alpha_n x_n + (1 - \alpha_n) T_n x_n, \\ C_{n+1} = \{ z \in C_n : \phi(u_n, z) \le \phi(x_n, z) \}, \\ x_{n+1} = R_{C_{n+1}} x \end{cases}$$

for all $n \in \mathbb{N} \cup \{0\}$, where J is the duality mapping on E and $\{\alpha_n\} \subset [0,1]$ satisfies $\liminf_{n \to \infty} \alpha_n(1 - \alpha_n) > 0$. Then, $\{x_n\}$ converges strongly to $R_{F(\mathcal{T})}x$, where $R_{F(\mathcal{T})}$ is the sunny generalized nonexpansive retraction from E onto $F(\mathcal{T})$.

Proof. Putting f(Jx, Jy) = 0 for all $x, y \in C$ and $r_n = 1$ for all $n \in \mathbb{N} \cup \{0\}$ in Theorem 3.3, we obtain the desired result.

4. Deduced results

In this section, using Theorem 3.3, we obtain some new convergence theorems for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of one and two of generalized nonexpansive mappings in a Banach space.

Theorem 4.1. Let E be a uniformly smooth and uniformly convex Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. Let f be a bifunction from $JC \times JC$ to \mathbb{R} satisfying (A1)-(A4) and T be a closed generalized nonexpansive mapping from C into E such that $F(T) \cap EP(f) \neq \emptyset$. Let $\{x_n\}$ be the sequence generated by $x_0 = x \in C, C_0 = C$ and

 $\begin{cases} y_n = \alpha_n x_n + (1 - \alpha_n) T x_n, \\ u_n \in C, \text{ such that } f(J u_n, J y) + \frac{1}{r_n} \langle u_n - y_n, J y - J u_n \rangle \ge 0, \ \forall y \in C, \\ C_{n+1} = \{ z \in C_n : \phi(u_n, z) \le \phi(x_n, z) \}, \\ x_{n+1} = R_{C_{n+1}} x \end{cases}$

for all $n \in \mathbb{N} \cup \{0\}$, where J is the duality mapping on E and $\{\alpha_n\} \subset [0,1]$ satisfies $\liminf_{n \to \infty} \alpha_n(1-\alpha_n) > 0$ and $\{r_n\} \subset [a, \infty)$ for some a > 0. Then, $\{x_n\}$ converges strongly to $R_{F(T) \cap EP(f)}x$, where $R_{F(T) \cap EP(f)}$ is the sunny generalized nonexpansive retraction from E onto $F(T) \cap EP(f)$.

Proof. Put $T_n = T$ for all $n \in \mathbb{N}$. It is obvious that $\{T_n\}$ satisfies the NST-condition with T, so we obtain the desired result by using Theorem 3.3.

Theorem 4.2. Let E be a uniformly smooth and uniformly convex Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. Let f be a bifunction from $JC \times JC$ to \mathbb{R} satisfying (A1)-(A4) and T be a closed generalized nonexpansive mapping from C into E such that $F(T) \cap EP(f) \neq \emptyset$. Let $\{x_n\}$ be the sequence generated by $x_0 = x \in C, C_0 = C$ and

$$\begin{cases} y_n = \alpha_n x_n + (1 - \alpha_n)(\beta_n x_n + (1 - \beta_n)Tx_n), \\ u_n \in C, \text{ such that } f(Ju_n, Jy) + \frac{1}{r_n} \langle u_n - y_n, Jy - Ju_n \rangle \ge 0, \ \forall y \in C, \\ C_{n+1} = \{ z \in C_n : \phi(u_n, z) \le \phi(x_n, z) \}, \\ x_{n+1} = R_{C_{n+1}} x \end{cases}$$

for all $n \in \mathbb{N}$, where J is the duality mapping on E and $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in [0,1] satisfying $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$ and $\liminf_{n\to\infty} \beta_n(1-\beta_n) > 0$ and $\{r_n\} \subset [a,\infty)$ for some a > 0. Then, $\{x_n\}$ converges strongly to $R_{F(T)\cap EP(f)}x$, where $R_{F(T)\cap EP(f)}$ is the sunny generalized nonexpansive retraction from E onto $F(T) \cap EP(f)$.

Proof. Define $T_n x = \beta_n x + (1 - \beta_n) T x$ for all $n \in \mathbb{N}$ and $x \in C$. By Lemma 2.15, we know that $\{T_n\}$ satisfies the NST-condition with T, so we obtain the desired result by using Theorem 3.3.

Theorem 4.3. Let E be a uniformly smooth and uniformly convex Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. Let f be a bifunction from $JC \times JC$ to \mathbb{R} satisfying (A1)-(A4) and S, T be closed generalized nonexpansive mappings from C into E such that $\Omega = F(S) \cap F(T) \cap EP(f) \neq \emptyset$. Let $\{x_n\}$ be the sequence generated by $x_0 = x \in C, C_0 = C$ and

$$\begin{cases} y_n = \alpha_n x_n + (1 - \alpha_n)(\beta_n S x_n + (1 - \beta_n) T x_n), \\ u_n \in C, \text{ such that } f(J u_n, J y) + \frac{1}{r_n} \langle u_n - y_n, J y - J u_n \rangle \ge 0, \ \forall y \in C, \\ C_{n+1} = \{ z \in C_n : \phi(u_n, z) \le \phi(x_n, z) \}, \\ x_{n+1} = R_{C_{n+1}} x \end{cases}$$

for all $n \in \mathbb{N}$, where J is the duality mapping on E and $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in [0,1] satisfying

 $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0 \text{ and } \liminf_{n\to\infty} \beta_n(1-\beta_n) > 0 \text{ and } \{r_n\} \subset [a,\infty) \text{ for some } a > 0. \text{ Then, } \{x_n\} \text{ converges strongly to } R_{\Omega}x, \text{ where } R_{\Omega} \text{ is the sunny generalized nonexpansive retraction from } E \text{ onto } \Omega.$

Proof. Define $T_n x = \beta_n S x + (1 - \beta_n) T x$ for all $n \in \mathbb{N}$ and $x \in C$. By Lemma 2.15, we know that $\{T_n\}$ satisfies the NST-condition with T. So, we obtain the desired result by using Theorem 3.3.

5. Applications

In this section, we give a strong convergence theorem for a countable family of nonexpansive mappings in a Hilbert space. In a Hilbert space, we know that $\phi(x, y) = ||x - y||^2$ for all $x, y \in H$, J = I, where Iis an identity mapping and every nonexpansive mapping is closed generalized nonexpansive. The following two lemmas are directly obtained by Lemmas 2.15 and 2.16, respectively.

Lemma 5.1 ([11, Lemma 2.1]). Let C be a closed and convex subset of a Hilbert space H and let T be a nonexpansive mapping from C into itself with $F(T) \neq \emptyset$. Let $\{\beta_n\} \subset [0,1]$ satisfies $\liminf_{n \to \infty} \beta_n(1 - \beta_n) > 0$. For $n \in \mathbb{N}$, define the mapping T_n of C into itself by

$$T_n x = \beta_n x + (1 - \beta_n) T x$$

for all $x \in C$. Then, $\{T_n\}$ is a countable family of nonexpansive mappings satisfying the NST-condition with T.

Lemma 5.2 ([11, Lemma 2.3]). Let C be a closed and convex subset of a Hilbert space H and let S and T be nonexpansive mappings from C into itself with $F(S) \cap F(T) \neq \emptyset$. Let $\{\beta_n\} \subset [0,1]$ satisfies $\liminf \beta_n(1-\beta_n) > 0$. For $n \in \mathbb{N}$, define the mapping T_n of C into itself by

$$T_n x = \beta_n S x + (1 - \beta_n) T x$$

for all $x \in C$. Then, $\{T_n\}$ is a countable family of nonexpansive mappings satisfying the NST-condition with $\{S, T\}$.

Theorem 5.3. Let H be a Hilbert space and let C be a nonempty closed and convex subset of H. Let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4). Let $\{T_n\}$ and \mathcal{T} be families of nonexpansive mappings of C into itself such that $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) \neq \emptyset$ and $F(\mathcal{T}) \cap EP(f) \neq \emptyset$. Suppose that $\{T_n\}$ satisfies the NST-condition with \mathcal{T} . Let $\{x_n\}$ be the sequence generated by $x_0 = x \in C, C_0 = C$ and

$$\begin{cases} y_n = \alpha_n x_n + (1 - \alpha_n) T_n x_n, \\ u_n \in C, \text{ such that } f(u_n, y) + \frac{1}{r_n} \langle u_n - y_n, y - u_n \rangle \ge 0, \ \forall y \in C, \\ C_{n+1} = \{ z \in C_n : \| z - u_n \| \le \| z - x_n \| \}, \\ x_{n+1} = P_{C_{n+1}} x \end{cases}$$

for all $n \in \mathbb{N}$, where $\{\alpha_n\} \subset [0,1]$ satisfies $\liminf_{n \to \infty} \alpha_n(1-\alpha_n) > 0$ and $\{r_n\} \subset [a,\infty)$ for some a > 0. Then, $\{x_n\}$ converges strongly to $P_{F(\mathcal{T})\cap EP(f)}x$, where $P_{F(\mathcal{T})\cap EP(f)}$ is the metric projection from C onto $F(\mathcal{T})\cap EP(f)$.

Proof. In a Hilbert space, we know that $\phi(x, y) = ||x - y||^2$ for all $x, y \in H$, J = I, where I is the identity mapping. By using Theorem 3.3, we obtain the desired conclusion.

Acknowledgment

The authors would like to thank the Thailand Research Fund under the project RTA5780007 and Science Achievement Scholarship of Thailand, which provides funding for research.

References

- E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123–145. 1, 2.6
- [2] P. L. Combettes, S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117–136. 1
- [3] T. Ibaraki, W. Takahashi, A new projection and convergence theorems for the projections in Banach spaces, J. Approx. Theory, **149** (2007), 1–14. 1, 2.1, 2.2, 2.3
- [4] S. Kamimura, W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim., 13 (2002), 938–945. 2.9, 2.12, 2.14
- [5] F. Kohsaka, W. Takahashi, Generalized nonexpansive retractions and a proximal-type algorithm in Banach spaces, J. Nonlinear Convex Anal., 8 (2007), 197–209. 1, 2.4, 2.5, 2.10, 2.11
- [6] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. 1
- [7] K. Nakajo, K. Shimoji, W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings in Banach spaces, J. Nonlinear Convex Anal., 8 (2007), 11–34. 2
- [8] K. Nakajo, W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279 (2003), 372–379. 1, 1
- [9] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 67 (1979), 247–276. 1
- [10] W. Takahashi, Nonlinear functional analysis, Fixed point theory and its applications, Yokohama Publ., Yokohama, (2000). 2
- [11] W. Takahashi, Y. Takeuchi, R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 341 (2008), 276–286. 1, 1, 5.1, 5.2
- [12] W. Takahashi, K. Zembayashi, A strong convergence theorem for the equilibrium problem with a bifunction defined on the dual space of a Banach space, Fixed point theory and its applications, Yokohama Publ., Yokohama, (2008), 197–209. 1, 1, 2.7, 2.8
- [13] C. Zălinescu, On uniformly convex functions, J. Math. Anal. Appl., 95 (1983), 344–374. 2.13