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Abstract

Let E be a real uniformly smooth Banach space. Let K be a nonempty bounded closed and convex
subset of E. Let T : K → K be a strictly pseudo-contractive map and f be a contraction on K. Assume
F (T ) := {x ∈ K : Tx = x} 6= ∅. Consider the following iterative algorithm in K given by

xn+1 = αnf(xn) + βnxn + γnSnxn,

where Sn : K → K is a mapping defined by Snx := (1− δn)x+ δnTx. It is proved that the sequence {xn}
generated by the above iterative algorithm converges strongly to a fixed point of T . Our results mainly
extend and improve the results of [C. O. Chidume, G. De Souza, Nonlinear Anal., 69 (2008), 2286–2292]
and [J. Balooee, Y. J. Cho, M. Roohi, Numer. Funct. Anal. Optim., 37 (2016), 284–303]. c©2016 All rights
reserved.
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1. Introduction

Let E be a real normed space and E∗ be its dual space, K be a nonempty subset of a real normed space
E, and J denotes the normalized duality mapping from E to 2E

∗
, which is defined by

J(x) := {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}.
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Recall that T : K → K is called to be nonexpansive, if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ K.

T is called to be pseudo-contractive if there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2, ∀x, y ∈ K.

It is trivial to see from this, that nonexpansive mappings are pseudo-contractive mappings; numerous papers
have been written on the approximation of fixed points of pseudo-contractive mappings (see, [3, 6, 8, 14, 28,
29]).

A mapping T is said to be k-strictly pseudo-contractive if there exists j(x−y) ∈ J(x−y) and a constant
k ∈ (0, 1) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − k‖(I − T )x− (I − T )y‖2, ∀x, y ∈ K. (1.1)

It is easy to see that such mappings are Lipschitz with Lipschitz constant L = k+1
k . In 1953, Mann [10]

proposed the normal Mann’s iterative algorithm defined by a fixed x0 ∈ K and the sequence {xn} is given
by

xn+1 = αnxn + (1− αn)Txn, n ≥ 0,

where {αn} is a real sequence in [0,1] satisfying the following conditions:

(i) lim
n→∞

αn = 0;

(ii)
∑∞

n=1 αn =∞,

where T is a mapping of K into itself. Since then, construction for nonexpansive mappings and k-strictly
pseudo-contractive via the normal Mann’s iterative algorithm has been extensively studied [2, 7, 10–12, 15].
In 2013, Yao et al. [26] presented the Ishikawa algorithms with hybrid techniques for finding the fixed points
of a Lipschitzian pseudocontractive mapping. Also there are many other algorithms about the convergence
analysis of fixed point theory [22, 23, 27].

In 1967, Browder and Petryshyn [2] firstly introduced the conception of strict pseudo-contraction in a
real Hilbert space H. Let K be a nonempty subset of a real Hilbert space. A mapping T : K → K is called
strict pseudo-contraction if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, ∀x, y ∈ K, (1.2)

holds for some 0 < k < 1. It is easy to see that in real Hilbert spaces, (1.1) and (1.2) are equivalent. They
also firstly proved the weak and strong convergence theorems for k-strict pseudo-contraction by using the
following algorithm

xn+1 = (1− γ)xn + γTxn, n ∈ N.

Another iteration process, so called Halpern iteration has been found to be successful for the approximation
of a nonexpansive. Let K be a nonempty closed and convex subset of a Hilbert space H and T : K → K
be a nonexpansive mapping. Assume F (T ) 6= ∅. Halpern [5] studied the following iteration formula to
approximate a fixed point of T :

For all u ∈ K, let the sequence {xn} in K be defined by x0 ∈ K, and

xn+1 = αnu+ (1− αn)Txn, n ≥ 0. (1.3)

As αn is under certain conditions, Halpern studied the special case of (1.3) in which αn = n−σ, σ ∈ (0, 1)
and u = 0, and proved that {xn} converges strongly to a fixed point of T . Under a different restriction
on {αn}, in 1977, Lions [9] improved the result of Halpern, still in Hilbert spaces. He investigated strong
convergence of the sequence {xn}, where αn satisfies
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(i) lim
n→∞

αn = 0;

(ii)
∑∞

n=1 αn =∞;

(iii) lim
n→∞

|αn−αn−1|
α2
n

= 0.

Reich [16] studied the result of Halpern in the uniformly smooth Banach scheme. It was observed that
both Halpern’s and Lion’s conditions on αn excluded the choice αn = 1

n+1 . This was overcome in 1992
by Wittman [18], who proved the strong convergence of {xn} still in Hilbert spaces if {αn} satisfies the
conditions:

(i) lim
n→∞

αn = 0;

(ii)
∑∞

n=1 αn =∞;

(iii)
∑∞

n=1 |αn − αn−1| <∞.

In 2002, Xu [19] improved the result of Lions [9]. More precisely, he weakened the condition (iii) by removing
the square in the denominator so that the choice of αn = 1

n+1 is possible.
Chidume and De Souza [4] established a strong convergence theorem for strictly pseudo-contraction in

Banach space scheme, the result is as follows:

Theorem CG. Let E be a real reflexive Banach space with uniformly Gâteaux differentiable norm. Let
K be a nonempty bounded closed and convex subset of E. Let T : K → K be a strictly pseudo-contractive
map. Assume F (T ) 6= ∅ and let z ∈ F (T ). Fix δ ∈ (0, 1) and let δ∗ be such that δ∗ := δL ∈ (0, 1). Define
Sn := (1 − δn)x + δnTx for all x ∈ K, where δn ∈ (0, 1) and lim

n→∞
δn = 0. Let {αn} be a real sequence in

(0, 1) which satisfies the conditions (i), (ii). For arbitrary x0, u ∈ K, define a sequence {xn} ∈ K by

xn+1 = αnu+ (1− αn)Snxn, n ≥ 0.

Then, {xn} converges strongly to a fixed point of T .

Very recently, Yao et al. [25] studied the iterative algorithms for finding the fixed points of asymptotically
pseudo-contractive mappings in Hilbert spaces. In 2016, Balooee et al. [1] presented the weak convergence
of the sequence {xn} generated by Mann’s iterative scheme to a fixed point of a uniformly Lipschitzian and
pointwise asymptotically 01-strict pseudo-contractive mapping T in a Hilbert space. In 2014, [24] introduced
another new iterative algorithm and got the strong convergence results in Hilbert spaces.

Motivated by the results of Chidume and De Souza [4] and the above other works, in this paper, we
establish a new iteration process in Banach space scheme as follows:

xn+1 = αnf(xn) + βnxn + γnSnxn, (1.4)

where Snx := (1−δn)xn+δnTxn, T : K → K is k-strictly pseudo-contraction and f : K → K is a contraction
with the contractive coefficient α (0 < α < 1), and the real sequences {αn}, {βn}, {δn} satisfying appropriate
conditions. We will prove the sequence {xn} defined by (1.4) strongly converges to a fixed point of T in a
real Banach space.

2. Preliminaries

In the sequel we shall make use of the following lemmas.

Lemma 2.1 ([13]). Let E be a real smooth Banach space. Suppose one of the followings holds:

(1) j is uniformly continuous on any bounded subset of E.
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(2) 〈x− y, j(x)− j(y)〉 ≤ ‖x− y‖2, ∀x, y ∈ K.

(3) For any bounded subset D of E there is a c such that

〈x− y, j(x)− j(y)〉 ≤ c(‖x− y‖), ∀x, y ∈ D,

where c satisfies lim
t→0+

c(t)/t = 0.

Then, for any ε > 0 and any bounded subset C there is δ > 0 such that

‖tx+ (1− t)y‖2 ≤ 2t〈x, j(y)〉+ 2tε+ (1− 2t)‖y‖2

for any x, y ∈ C and t ∈ [0, δ).

Lemma 2.2 ([17]). Let {xn} and {zn} be bounded sequences in a Banach space E and let {τn} be a sequence
in [0, 1] with 0 < lim inf

n→∞
τn ≤ lim sup

n→∞
τn < 1. Suppose xn+1 = τnzn + (1 − τn)xn for all integers n ≥ 0 and

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. Then, lim
n→∞

‖zn − xn‖ = 0.

Lemma 2.3 ([19, 20]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− bn)an + cn,

where bn is a sequence in (0, 1) and {cn} is a sequence such that

(i)
∑∞

n=1 bn =∞;

(ii) lim sup
n→∞

cn/bn ≤ 0 or
∑∞

n=1 |cn| <∞.

Then lim
n→∞

an = 0.

Lemma 2.4 ([21]). Let E be a uniformly smooth Banach space, K be a nonempty closed convex subset of E,
S : K → K be a nonexpansive mapping with F (S) 6= ∅, and f : K → K be a contraction with the coefficient
α(0 < α < 1). If zt is defined by

zt = tf(zt) + (1− t)Szt,

then zt converges strongly to a point z ∈ F (S), which solves the variational inequality

〈(I − f)z, j(z − p)〉 ≥ 0, ∀p ∈ F (S).

3. Main results

Theorem 3.1. Let E be a real uniformly smooth Banach space and K be a nonempty bounded closed convex
subset of E. Let T : K → K be a strictly pseudo-contractive map such that F (T ) 6= ∅, and f : K → K be a
contraction with the coefficient α (0 < α < 1). Consider {xn} as a sequence in K generated in the following
manner:

xn+1 = αnf(xn) + βnxn + γnSnxn, (3.1)

where Snx := (1 − δn)x + δnTx, and assume that {zt} is defined by zt = tf(zt) + (1 − t)Snzt. If the real
sequences {αn}, {βn}, {γn}, {δn} are sequences in (0, 1) and αn + βn + γn = 1, which satisfy the following
conditions:

(i) lim
n→∞

αn = 0,
∑∞

n=1 αn =∞;

(ii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;
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(iii) |δn+1 − δn| → 0 as n→∞,

then the sequence {xn} converges strongly to a fixed point of T .

Proof. The proof will be split into four steps.

Step 1. We show Sn is a nonexpansive mapping. Indeed, for all x, y ∈ K, taking 0 < ε < k‖Tx−Ty−(x−y)‖,
by Lemma 2.1, we have

‖Snx− Sny‖2 = ‖(1− δn)x+ δnTx− (1− δn)y − δnTy‖2

= ‖δn(Tx− Ty) + (1− δn)(x− y)‖2

≤ 2δn〈Tx− Ty, j(x− y)〉+ 2εδn + (1− 2δn)‖x− y‖2

≤ (1− 2δn)‖x− y‖2 + 2δn(‖x− y‖2 − k‖Tx− Ty − (x− y)‖2) + 2εδn

≤ ‖x− y‖2 − 2δnk‖Tx− Ty − (x− y)‖2 + 2εδn

≤ ‖x− y‖2.

It is observed that for each n ∈ N , Snx = x if and only if Tx = x, and so F (Sn) = F (T ). By our assumption
F (T ) 6= ∅, then, F (Sn) 6= ∅.

Step 2 . ‖xn+1 − xn‖ → 0 and ‖xn − Snxn‖ → 0 as n→∞.
Since K is a nonempty bounded closed convex subset of E, then {xn}, {Snxn} are bounded. Hence there

exists M = sup{‖xn− Txn‖}. From Step 1, we know Sn is a nonexpansive mapping, thus by (3.1), we have

‖Snxn − Sn−1xn−1‖ = ‖Snxn − Snxn−1 + Snxn−1 − Sn−1xn−1‖
≤ ‖xn − xn−1‖+M‖δn − δn−1‖.

(3.2)

Now, we define zn := xn+1−βnxn
1−βn , then, zn = αnf(xn)+γnSnxn

1−βn . By (3.1) and (3.2), we have

‖zn+1 − zn‖ − ‖xn+1 − xn‖ = ‖αn+1f(xn+1) + γn+1Sn+1xn+1

1− βn+1
− αnf(xn) + γnSnxn

1− βn
‖ − ‖xn+1 − xn‖

= ‖αn+1(f(xn+1)− Snxn) + αn+1Snxn + γn+1Sn+1xn+1

1− βn+1

− αn(f(xn)− Snxn) + αnSnxn + γnSnxn
1− βn

‖ − ‖xn+1 − xn‖

= ‖αn+1(f(xn+1)− Snxn)

1− βn+1
− αn(f(xn)− Snxn)

1− βn

+
αn+1Snxn + γn+1Sn+1xn+1

1− βn+1
− snxn‖ − ‖xn+1 − xn‖

≤ αn+1

1− βn+1
‖f(xn+1)− Snxn‖+

αn
1− βn

‖f(xn)− Snxn‖

+
γn+1

1− βn+1
‖Sn+1xn+1 − Snxn‖ − ‖xn+1 − xn‖

≤ αn+1

1− βn+1
‖f(xn+1)− Snxn‖+

αn
1− βn

‖f(xn)− Snxn‖

+ ‖Sn+1xn+1 − Snxn‖ − ‖xn+1 − xn‖

≤ αn+1

1− βn+1
‖f(xn+1)− Snxn‖+

αn
1− βn

‖f(xn)− Snxn‖+M‖δn+1 − δn‖.

By the assumptions on {αn}, {βn}, {δn}, we have

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.



Q. W. Fan, X. Y. Wang, J. Nonlinear Sci. Appl. 9 (2016), 5021–5028 5026

By using Lemma 2.2, we have
‖zn − xn‖ → 0 as n→∞.

Applying
lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖zn − xn‖ = 0,

together with

xn − Snxn = xn − xn+1 + xn+1 − Snxn = xn − xn+1 + αn(f(xn)− Snxn) + βn(xn − Snxn),

we have

‖xn − Snxn‖ ≤
1

1− βn
‖xn − xn+1‖+

αn
1− βn

‖f(xn)− Snxn‖.

Hence
lim
n→∞

‖Snxn − xn‖ = 0.

Step 3. Claim: lim sup
n→∞

〈f(z)− z, j(xn − z)〉 ≤ 0.

It is observed that from Lemma 2.4, there exist zt satisfying zt = tf(zt) + (1− t)Snzt and zt converges
to a fixed point of Sn(F (T ) = F (Sn)). Let zt → z ∈ F (T ) = F (Sn), using equality

zt − xn = (1− t)(Snzt − xn) + t(f(zt)− xn),

and inequality
〈Snx− Sny, j(x− y)〉 ≤ ‖x− y‖2,

we get that

‖zt − xn‖2 = (1− t)〈Snzt − xn, j(zt − xn)〉+ t(〈f(zt)− xn, j(zt − xn)〉)
≤ (1− t)(〈Snzt − Snxn, j(zt − xn)〉+ 〈Snxn − xn, j(zt − xn)〉)

+ t(〈f(zt)− zt, j(zt − xn)〉) + t‖zt − xn‖2

≤ ‖zt − xn‖2 + ‖Snxn − xn‖‖j(zt − xn)‖+ t(〈f(zt)− zt, j(zt − xn)〉),

and hence

〈f(zt)− zt, j(xn − zt)〉 ≤
‖Snxn − xn‖

t
‖zt − xn‖. (3.3)

Since {zt}, {xn} and {Snxn} are bounded and ‖xn − Snxn‖ → 0, taking n→∞ in Eq. (3.3), we get

lim sup
n→∞

〈f(zt)− zt, j(xn − zt)〉 ≤ 0. (3.4)

Since zt converges strongly to z, as t → 0, and {zt − xn} is bounded, and in view of the fact that the
duality map j is norm-to-weak* uniformly continuous on bounded subsets of E, we get that

|〈f(z)− z, j(xn − z)〉 − 〈f(zt)− zt, j(xn − zt)〉| = |〈f(z)− z, j(xn − z)− j(xn − zt)〉
+ 〈(f(z)− z)− (f(zt)− zt), j(xn − zt)〉|
≤ |〈f(z)− z, j(xn − z)− j(xn − zt)〉|

+ ‖(f(z)− z)− (f(zt)− zt)‖‖xn − zt‖ → 0, as t→ 0.

Hence, for all ε > 0, there exists σ > 0 such that for all t ∈ (0, σ), and n ≥ 0, we have that

〈f(z)− z, j(xn − z)〉 < 〈f(zt)− zt, j(xn − zt)〉+ ε.
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By Eq. (3.4), we have that

lim sup
n→∞

〈f(z)− z, j(xn − z)〉 ≤ lim sup
n→∞

〈f(zt)− zt, j(xn − zt)〉+ ε

≤ ε.

Since ε is arbitrary, we get that
lim sup
n→∞

〈f(z)− z, j(xn − z)〉 ≤ 0.

Step 4. Show that xn → z. As a matter of fact, from (3.1), we have

‖xn+1 − z‖2 = αn〈f(xn)− z, j(xn+1 − z)〉+ βn〈xn − z, j(xn+1 − z)〉+ γn〈Snxn − z, j(xn+1 − z)〉
≤ αn〈f(xn)− f(z), j(xn+1 − z)〉+ αn〈f(z)− z, j(xn+1 − z)〉

+ βn‖xn − z‖‖xn+1 − z‖+ γn‖xn − z‖‖xn+1 − z‖
≤ (αnα+ βn + γn)‖xn − z‖‖xn+1 − z‖+ αn〈f(z)− z, j(xn+1 − z)〉

≤ [1− (1− α)αn][
1

2
‖xn − z‖2 +

1

2
‖xn+1 − z‖2] + αn〈f(z)− z, j(xn+1 − z)〉

≤ 1

2
‖xn+1 − z‖2 +

1− (1− α)αn
2

‖xn − z‖2 + αn〈f(z)− z, j(xn+1 − z)〉.

It follows that

‖xn+1 − z‖2 ≤ [1− (1− α)αn]‖xn − z‖2 + 2αn〈f(z)− z, j(xn+1 − z)〉. (3.5)

Using Lemma 2.3 onto (3.5) we conclude that xn → z. The proof is completed.
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