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30203–Cartagena, Spain.
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Abstract

We analyze the set of periods of a class of maps φd,κ : Z∆ → Z∆ defined by φd,κ(x) = dx+ κ, d, κ ∈ Z∆,
where ∆ is an integer greater than 1. This study is important to characterize completely the period sets of
alternated systems f, g, f, g, . . . , where f, g : S1 → S1 are affine circle maps that commute, and to solve the
converse problem of constructing commuting affine circle maps having a prescribed set of periods. c©2016
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1. Introduction

In general, a non autonomous discrete dynamical system (X, (f)n) is a pair where X is a topological
space, called phase space, N = {1, 2, . . . } is the set of natural numbers and (fn)n∈N is a sequence of continuous
functions fn : X → X. By C(X) we denote the set of continuous maps from X into itself. Write (X, (f)n) ≡
(X, f1,∞). The main goal when dealing with non-autonomous dynamical systems is to analyze, for any x ∈ X,
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the asymptotic behavior of the orbits
Orbf1,∞(x) := {x0, x1, x2, . . . , xn, . . .},

where x0 = x and xn = fn(xn−1) = fn ◦ . . . ◦ f1(x) =: fn1 (x) for n ≥ 1, or equivalently to study how the
orbits of the system behave when n goes to infinity. When fn = f for any n ∈ N, then we denote the system
(X, f1,∞) by (X, f) and we receive the classical notion of (autonomous) dynamical system.

The easiest asymptotical behavior occurs when x is a periodic point of period p ∈ N, that is, fp1,∞(x) = x
and fn1,∞(x) 6= x for any 0 < n < p (when a point x ∈ X has finite, but not periodic, orbit we say that x
is eventually periodic). In the case of autonomous discrete systems the above conditions read as fp(x) = x
and fn(x) 6= x for any 0 < n < p, being f0 the identity map and fm = f ◦ fm−1,m ≥ 1. Observe that for
p = 1 we obtain the definition of fixed point.

An interesting problem is to compute its periods set, that is,

Per(f1,∞) = {n ∈ N : there exists a periodic point x ∈ (X, f1,∞) of period n}.

This problem has a long tradition in the setting of autonomous dynamical systems: when X = I := [0, 1]
and fn = f is continuous, n ∈ N, the result which describes the set Per(f) is the celebrated Sharkovsky’s
theorem (see [7–9]). A lot of works in this direction has appeared in the literature by changing the phase
space or by considering non-autonomous dynamical systems, a wide review on this subject was made in
[6]. A remarkable case consists of studying the periodicity of systems (X, f) when X = S1 is the circle
(see [1, Ch. 3]). In addition, when we consider non-autonomous dynamical systems on X = I and (fn)n =
(f, g, f, g, f, g, . . . ), this system is called alternated system and is represented by [f, g]. In [4] the set Per[f, g]
is completely characterized. So, it is a natural question to extend the results from [4] for alternated systems
[f, g], where f and g are continuous circle maps. However, as we pointed out in [5], this problem for arbitrary
continuous circle maps seems to be quite difficult. Then, we started by analyzing the particular case of affine
circle maps. Before explaining it, we recall some basic notations on circle maps.

Let e : R → S1 be the standard universal covering given by e(x) = e2πix. If f ∈ C(S1), we find a
(non-unique) map F : [0, 1]→ R such that the diagram

[0, 1]
F−→ R

e ↓ ↓ e
S1 f−→ S1

commutes. We call F a lifting of f. Notice that e(0) = e(1) = 1 and then e(F (1)) = f(e(1)) = f(e(0)) =
e(F (0)), which implies that d := F (1) − F (0) ∈ Z. The integer d is said to be the degree of f, denoted
by deg(f). Moreover, it is possible to extend the lifting F from [0, 1] to R by considering F̃ : R → R as
F̃ (x) = F (x− [x]) + [x] deg(f), where [·] is the entire part of a real number x. To simplify the notation we
denote F̃ by F .

In [5], the present authors have studied alternated systems [f, g] for affine circle maps, that is, continuous
circle maps whose liftings F,G : R → R are of the form F (x) = d1x + α and G(x) = d2x + β. The
main difficulty in characterizing the set Per[f, g] is to show the existence of odd periods, that is, the set
Λ = Per[f, g] ∩ O, where O denotes the set of odd non-negative integers. We proved that f and g must
commute to have Λ 6= ∅, see [5, Theorems A-B]. In addition, Λ is finite and characterized by the set of
periods of an affine map defined on a commutative finite group as follows.

As usual, given integers a, b and m, we write a|b if a divides b, the congruence a ≡ bmod (m) means that
a− b is an integer multiple of m; also bmod (m) (when it is not in a congruence) denotes the remainder of
the Euclidean division between b and m, thus bmod (m) ∈ Zm = {0, 1, . . . ,m − 1}. Let ∆ = |d1 − d2| and
κ = β(d1 − 1) − α(d2 − 1). The affine circle maps f and g commute if and only if κ ∈ Z. Then, we define
φdi,κ : Z∆ → Z∆, i ∈ {1, 2}, by

φdi,κ(m) := (dim+ κ) mod (∆). (1.1)

Since d1 ≡ d2 mod (∆), we have
φd1,κ = φd2,κ =: φ

and the following result connects Λ and Per(φ).
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Theorem 1.1 ([5]). Let f, g ∈ C(S1) be with associate liftings F (x) = d1x + α and G(x) = d2x + β and
d1 6= d2. If κ 6∈ Z, then Λ = ∅, otherwise, κ ∈ Z and Λ = Per(φ) ∩O.

Additionally, for the case κ ∈ Z, d1 6= d2, d1 ∈ {−1, 0, 1}, Λ is either empty or a singleton, Λ = {N},
see [5, Theorem C-(1)], and it is possible to construct affine maps having the desired set of periods, see [5,
Table 4, Proposition 32 and Corollary 33].

However, in the case κ ∈ Z, d1 6= d2, {d1, d2} ∩ {−1, 0, 1} = ∅, for which Per[f, g] = 2N∪Λ ([5, Theorem
C-(2)]), again in [5, Section 7] we mention that given a finite set Ω ⊂ N of odd numbers, “it would be
interesting to analyze if it is possible to find affine circle maps, f and g, with liftings F (x) = d1x + α and
G(x) = d2x + β in such a way that Per[f, g] = 2N ∪ Ω” and we affirm that “to this end, it is necessary to
improve the knowledge of the set Per(φ)∩O, which is our main objective for the near future”. The present
work answers this question (consult Proposition 4.10 and Theorem D) via the analysis of the periodic
structure of φ.

Although the map φ is quite natural, its periodic structure is unknown, probably due to finite sets
cannot exhibit any complicated dynamic behavior (in fact, only periodic and eventually periodic points can
appear). Our main goal in this paper is to establish such characterization, which allows us to finish the
study of the periodic structure of affine circle maps started in [5]. It is worth pointing out that our present
study on the set Per(φ) will rely on a combinatorial approach based on elementary number theory, and no
topological structure on the phase space X = Z∆ is needed.

Recall that gcd is the (positive) greatest common divisor of two positive integer numbers, additionally, it
is assumed gcd(0, a) = a for any a ∈ N. By lcm(n1, . . . , nk) we denote the least common multiple of natural
numbers n1, . . . , nk for k ≥ 2. Two natural numbers p, s and the following are given:

σ(p, s) :=

{
1 if p is odd or p = 2 and s = 2,
2 otherwise.

We characterize the periods of φ = φd,κ by the following two main theorems, jointly with Theorems C and D
(stated in Sections 4 and 5, respectively), where the reader can find a more precise description of the set of
periods, which is too technical for an introduction.

Theorem A. Let ∆ = ps where p is a prime and s ≥ 1 and let φd,κ : Z∆ → Z∆ be defined by φd,κ(x) = dx+κ,
d, κ ∈ Z∆. Then Per(φd,κ) is one of the following sets:

(A-1) {1} ∪ {Npj}`j=0 where N is a divisor of p− 1 and ` ∈ {0, 1, . . . , s− σ(p, s)};
(A-2) {p`} for some ` ∈ {0, 1, . . . , s}.

Conversely, let p be a prime, ∆ = ps with s ≥ 1, and A be one of the above sets, then there exists
φd,κ : Z∆ → Z∆ such that Per(φd,κ) = A.

As a consequence of this theorem and a technical result we obtain the set of periods for the general case.

Theorem B. Let ∆ = ps11 p
s2
2 ...p

sk
k be a decomposition into prime factors. Then, n ∈ Per(φd,κ) if and only

if n = lcm(n1, n2, ..., nk) for some ni ∈ Per(φd,κi).

The paper is organized as follows: In Section 2 we present some basic facts about number theory and
prove a characterization for the periodic points of φd,κ. In Section 3 we describe the sets of periods for the
case d ∈ {0, 1,∆− 1}. The case ∆ = ps with p prime, s ≥ 1, is analyzed in Section 4. Here, we distinguish
two subsections devoted to the cases gcd(d,∆) > 1 and gcd(d,∆) = 1. In this last subsection it is also
necessary to study separately the cases gcd(d − 1,∆) = 1 and gcd(d − 1,∆) > 1. Sections 3 and 4 are
summarized in Theorem C, from which we derive the proof of Theorem A. Finally, in Section 5 we consider
the general case with ∆ an arbitrary positive integer, and prove Theorems B and D.

2. Preliminaries

For a given set A ⊂ R and n ∈ N, by nA we denote the set {na : a ∈ A} and CardA denotes the
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cardinality of A. In what follows, ϕ : N → N indicates the Euler function, that is, ϕ(n) is Card{m ∈ N :
1 ≤ m ≤ n, gcd(m,n) = 1}. In particular, ϕ(ps) = ps−1(p − 1) if p is prime, s ≥ 1, and ϕ(ab) = ϕ(a)ϕ(b)
whenever gcd(a, b) = 1 (see [2]).

As usual, given a positive integer ∆, Z∆ = {amod (∆) : a ∈ Z} is the ring of the residues modulo ∆
and Z∗∆ = {amod (∆) : a ∈ Z and gcd(a,∆) = 1} is the Abelian multiplicative group of residues modulo
∆. Recall that (Z∆,+, ·) is a commutative ring with ∆ elements (+ and · refer the sum and the product
of integers modulo ∆, respectively). Moreover, (Z∗∆, ·) is an Abelian group with Card(Z∗∆) = ϕ(∆) (in the
literature, it is also called Euler group, see [3, 10]). The following well–known result can be found in [2,
Theorem 5.17].

Lemma 2.1 (Euler’s Theorem). Let a,m be integers with gcd(a,m) = 1. Then

aϕ(m) ≡ 1 mod (m).

The following elementary results will be fruitful in our study.

Lemma 2.2. Let p, q ∈ Z \ {0}. Then gcd(q, p) = 1 if and only if

qn ≡ 1 mod(p)

for some n ∈ N.

Proof. Let d = gcd(q, p). The condition qn ≡ 1 mod(p) for some positive integer n (or qn − 1 = up for some
n ∈ N and some u ∈ Z) is equivalent to have qn

d −
up
d = 1

d for some n ∈ N and some u ∈ Z. Being qn

d −
up
d ∈ Z

the initial condition is equivalent to have d = 1.

Remark 2.3. From the above result, if gcd(q, p) = 1 we define the order of qmodulo p as the smallest positive
integer s satisfying qs ≡ 1 mod(p). Notice that if N is this order, and we have qn ≡ 1 mod(p), then necessarily
N |n ([2, Theorem 10.1]). In particular, N |ϕ(p) by Lemma 2.1. �

Lemma 2.4. Let a, b be positive integers. For any non-negative integer κ,

Card {(ja+ κ) mod(b) : j = 0, 1, . . . , b− 1} =
b

gcd(a, b)
. (2.1)

In particular, this cardinal is b whenever gcd(a, b) = 1.

Proof. Let i, j ∈ {0, . . . , b − 1}, with i ≥ j. Since ja + κ ≡ ia + κmod(b) is equivalent to have (i −
j) a

gcd(a,b) = u b
gcd(a,b) for some non-negative integer u, we deduce that the first congruence holds if and only

if i ≡ jmod( b
gcd(a,b)) as a consequence of b

gcd(a,b) and a
gcd(a,b) being coprime. Additionally, by a similar

reasoning we have that all the elements κ, a+ κ, . . . ,
(

b
gcd(a,b) − 1

)
a+ κ are pairwise distinct and Eq. (2.1)

follows.

If (Z∗∆, ·) is a cyclic group, we say that g ∈ Z∗∆ is a generator whenever {gnmod(∆) : n ≥ 1} = Z∗∆.
Necessarily, the order of a generator g modulo ∆ is equal to ϕ(∆). In [2], a generator g is also called a
primitive root.

Next result establishes when (Z∗∆, ·) is cyclic.

Theorem 2.5 ([2]). (Z∗∆, ·) is a cyclic group if and only if ∆ ∈ {ps : p is an odd prime and s ∈ N} ∪ {2ps :
p is an odd prime and s ∈ N} ∪ {1, 2, 4}.

It is well-known that the number of generators of these cyclic groups is given by ϕ(ϕ(∆)). We will
be interested in the search of primitive roots g for (Z∗ps , ·), with p ≥ 3 prime, s ≥ 1, such that they also
generate the cyclic group (Z∗p, ·). To this end, we need the following result whose proof can be consulted in
[2, Theorem 10.6].



J. S. Cánovas Peña, A. Linero Bas, G. Soler López, J. Nonlinear Sci. Appl. 9 (2016), 5041–5060 5045

Theorem 2.6. Let p be an odd prime. Then:

(a) If g is a primitive root mod p then g is also a primitive root mod ps for all s ≥ 1, if and only if,
gp−1 6≡ 1 mod(p2).

(b) There is at least one primitive root gmod p which satisfies the above condition, hence there exists at
least one primitive root mod ps if s ≥ 2.

The next significant property in our study relates the orders of d modulo pj , j ≥ 1, in the following way.

Lemma 2.7. Let p, d be positive integers, with gcd(p, d) = 1, p prime and d 6= 1. Denote the order of d
modulo pj by δj, j ≥ 1. If dδ1 − 1 = pα · q, for some positive integers α ≥ 1 and q, with gcd(p, q) = 1, then
for p ≥ 3 or p = 2 and α ≥ 2 we have that

δ1 = δj for j ∈ {1, . . . , α}

and
δr+1 = p · δr for r ≥ α.

Proof. From gcd(d, p) = 1, Lemma 2.2 yields the existence of δj for all j ≥ 1. Assume that dδ1 = 1+pα·q, with
gcd(p, q) = 1 and α ≥ 1. To establish δ1 = δj , for all j ∈ {1, . . . , α}, take into account that dδ1−1 = pjpα−jq
and simply use the definition of the order as the smallest positive integer n satisfying the congruence
dn ≡ 1 mod(pj).

We now prove that δα+1 = p · δα. Since dδα+1 − 1 is a multiple of pα+1, at the same time pα divides
dδα+1 − 1, so by the definition of order and its properties (see Remark 2.3) we obtain

δα < δα+1 and δα|δα+1 (2.2)

(notice that the inequality is strict because dδα−1 6≡ 0 mod(pα+1)). On the other hand, from dδα ≡ 1 mod(pα)
we deduce the existence of some non-negative integer u (in fact, u = q) such that (dδα)p = (pα · u+ 1)p, and
by the binomial formula we find(

dδα
)p

= (pα · u+ 1)p

= 1 + p · pα · u+
p(p− 1)

2
p2α · u2 + . . .+ p · p(p−1)α · up−1 + ppα · up

= 1 + pα+1 · u
(

1 +
(p− 1)

2
pα · u+ . . .+ p(p−2)α · up−2 + p(p−1)α · up−1

)
= 1 + pα+1 · u · (1 + pα · r) = 1 + pα+1 · u · s

for suitable positive integers r, s (realize that αp > α + 1 in the cases p ≥ 3 or p = 2, α ≥ 2). Notice that
s = 1 + pαr is coprime with p, so we can write

dpδα − 1 = pα+1 · q1

for some positive integer q1 holding gcd(p, q1) = 1. Then dpδα ≡ 1 mod (pα+1) and consequently

δα+1 ≤ pδα with δα+1|pδα. (2.3)

Since p is prime, by (2.2) and (2.3) we conclude that δα+1 = pδα. Additionally, we observed that dδα+1−1 =
pα+1q1, with gcd(p, q1) = 1.

To finish the proof, we proceed by the induction. Suppose that δα+j = pjδα and dδα+j − 1 = pα+jqj with
gcd(p, qj) = 1 for all j ∈ {1, . . . , j0}, and prove that δα+j0+1 = pj0+1δα and dδα+j0+1 − 1 = pα+j0+1qj0+1 for
some positive integer qj0+1 such that gcd(p, qj0+1) = 1.
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A similar reasoning to that given at the beginning of the first step of the induction leads us to
δα+j0 |δα+j0+1 and δα+j0+1|pδα+j0 . Consequently, since p is prime, either δα+j0+1 = δα+j0 or δα+j0+1 =
pδα+j0 .

If δα+j0+1 = δα+j0 , we would obtain dδα+j0+1 = 1 + pα+j0+1q̃, for some integer q̃, and on the other
hand dδα+j0 = 1 + pα+j0qj0 . Thus, qj0 = pq̃, which contradicts that qj0 and p are coprime. Therefore,
δα+j0+1 = pδα+j0 . To establish that dδα+j0+1 − 1 = pα+j0+1w for some integer w coprime with p, develop
(dδα+j0 )p = (1 + qj0p

α+j0)p as in the case of δα+1.

Remark 2.8. The above result does not work if p = 2 and α = 1. For instance, take d = 3. In this case
d − 1 = 2 and α = 1. Here, δ2 = 2 but δ3 = 2. Nevertheless, notice that δ4 = 22, δ5 = 23, and in general,
δn = 2n−2 if n ≥ 3. �

The particular case p = 2 and α = 1 requires to be analyzed separately.

Lemma 2.9. Let d = 2q + 1, with gcd(2, q) = 1, q ≥ 1, and let δj be the order of d modulo 2j. Then

δ1 = 1, δ2 = δ3 = 2. (2.4)

Moreover, if d2 − 1 = 2γq2 with q2 odd (by force γ ≥ 3),

δj = 2 for all j = 2, . . . , γ, (2.5)

δγ+i = 2i+1 for all i ≥ 1. (2.6)

Proof. By definition of order, it is immediate to see that δ1 = 1. To obtain δ2 = 2, notice that d − 1 6≡
0 mod(22) and that d2− 1 = (d− 1)(d+ 1) is the product of two even natural numbers. Moreover, note that
(d−1)2 = d2−2d+1 = 4q2, then d2−1 = 4q(q+1) with q+1 even and we obtain δ3 = 2. This proves (2.4).

To obtain (2.5), simply use that d2 − 1 = 2γq2 with γ ≥ 3 and q2 odd, and apply the definition of order
of d modulo 2j .

Finally, the proof of (2.6) proceeds by the induction in an analogous way to that done at the proof of
Lemma 2.7 (realize that now γ ≥ 3, hence γp > γ + 1), so we will omit it.

Since Z∆ is finite, the dynamics of φd,κ is simple: any point x ∈ Z∆ is either periodic or eventually
periodic. Moreover, the following result is immediate.

Lemma 2.10. Let φd,κ : Z∆ → Z∆ be defined by (1.1).

(a) If ∆ = 1, Per(φd,κ) = {1}.
(b) If ∆ = 2, Per(φ0,κ) = {1} for κ ∈ {0, 1}, Per(φ1,0) = {1},Per(φ1,1) = {2}.

So, in the sequel we assume that ∆ ≥ 3.
To analyze the set of periods of φd,κ, notice that by the induction it is easily seen that

φnd,κ(x) =

(
dnx+ κ

dn − 1

d− 1

)
mod(∆) for all n ≥ 1, if d 6= 1 (2.7)

and
φn1,κ(x) = (x+ nκ) mod(∆) for all n ≥ 1, if d = 1. (2.8)

Next, we distinguish between periodic and eventually periodic points.

Proposition 2.11. Let x, d, κ ∈ Z∆, d 6∈ {0, 1}. The following statements are equivalent.

(a) x is a periodic point of φd,κ;

(b) gcd(d, (d−1)∆
gcd(∆,(d−1)x+κ)) = 1.

Additionally, if x is periodic, its period N is exactly the order of d modulo (d−1)∆
gcd(∆,(d−1)x+κ) .

Proof. (a)⇒ (b). Assume that x ∈ Z∆ is a periodic point of order N . If N = 1 (so (d−1)x+κ ≡ 0 mod(∆))
the result follows directly from the facts gcd(∆, (d − 1)x + κ) = ∆ and gcd(d, d − 1) = 1. So, we suppose
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that N ≥ 2. According to (2.7) we find

φNd,κ(x) =

(
dNx+ κ

dN − 1

d− 1

)
≡ xmod(∆) (2.9)

and

φid,κ(x) =

(
dix+ κ

di − 1

d− 1

)
6≡ xmod(∆) for all 0 < i < N. (2.10)

From (2.9) we have

dN − 1

d− 1

((d− 1)x+ κ)

gcd(∆, (d− 1)x+ κ)
= w

∆

gcd(∆, (d− 1)x+ κ)
for some w ∈ Z.

Since ∆
gcd(∆,(d−1)x+κ) and (d−1)x+κ

gcd(∆,(d−1)x+κ) are coprime, we obtain

dN − 1

d− 1
≡ 0 mod

(
∆

gcd(∆, (d− 1)x+ κ)

)
,

or

dN ≡ 1 mod

(
(d− 1)∆

gcd(∆, (d− 1)x+ κ)

)
. (2.11)

By Lemma 2.2 we deduce that gcd(d, (d−1)∆
gcd(∆,(d−1)x+κ)) = 1. This ends the proof of (a) ⇒ (b).

Additionally, notice that if x is N -periodic, from (2.10) we obtain

di 6≡ 1 mod

(
(d− 1)∆

gcd(∆, (d− 1)x+ κ)

)
for 0 < i < N. (2.12)

Thus, by (2.11) and (2.12) N is the order of d modulo (d−1)∆
gcd(∆,(d−1)x+κ) .

(b) ⇒ (a). By Lemma 2.2, there exists the order, say N , of d modulo (d−1)∆
gcd(∆,(d−1)x+κ) . We claim that

x is then periodic of period N . Reasoning in a similar way that done in the previous implication, from

dN ≡ 1 mod
(

(d−1)∆
gcd(∆,(d−1)x+κ)

)
we obtain (2.9), and di 6≡ 1 mod

(
(d−1)∆

gcd(∆,(d−1)x+κ)

)
(0 < i < N) leads to

(2.10). Therefore, x is a periodic point of φd,κ of period N .

3. The dynamics for d ∈ {0, 1,∆− 1}

The set of periods of φd,κ(x) in these cases is obtained in the following result.

Proposition 3.1. Let ∆ be a positive integer and let φd,κ be defined as in (1.1).

(i) Per(φ0,κ) = {1} for all κ;

(ii) Per(φ1,κ) = { ∆
gcd(∆,κ)} for all κ (remember that we take gcd(∆, 0) = ∆);

(iii) when ∆ ≥ 3 is even, then Per(φ∆−1,κ) = {1, 2} if κ is even, and Per(φ∆−1,κ) = {2} if κ is odd;

(iv) when ∆ ≥ 3 is odd, then Per(φ∆−1,κ) = {1, 2} for all κ.

Proof.

(i). Note that φ0,κ(x) = κ for all x ∈ Z∆. Then the unique periodic point of φ0,κ is κ, a fixed point, i.e., a
periodic point of period 1.

(ii). Let x ∈ Z∆ and ∆ ≥ 3. By (2.8), φn1,κ(x) = x + nκmod(∆) for all n ≥ 1, and φn1,κ(x) = x if and only
if nκ ≡ 0 mod(∆), that is, nκ = s∆ for some integer s. If κ = 0 then φ1,κ(x) = x for all x ∈ Z∆ and
Per(φ1,κ) = {1}.
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Assume that κ 6= 0. We claim that ∆
gcd(∆,κ) is the smallest positive integer n such that nκ ≡ 0 mod(∆).

It is obvious that ∆
gcd(∆,κ)κ ≡ 0 mod(∆). Let s ≤ ∆

gcd(∆,κ) be a positive integer satisfying sκ ≡ 0 mod(∆),

that is, sκ = q∆ for some (positive) integer q. Then s κ
gcd(∆,κ) = q ∆

gcd(∆,κ) and ∆
gcd(∆,κ) divides s κ

gcd(∆,κ) .

Since κ
gcd(∆,κ) and ∆

gcd(∆,κ) are coprime, we deduce that ∆
gcd(∆,κ) divides s and consequently s = ∆

gcd(∆,κ) ,

which ends the claim. Hence, it is easily seen that Per(φ1,κ) = { ∆
gcd(∆,κ)}. The case ∆ ≤ 2 follows from

Lemma 2.10.

(iii)-(iv). Suppose that d = ∆ − 1 and ∆ ≥ 3. Note that φ2
∆−1,κ(x) = x for all x ∈ Z∆ and since φ∆−1,κ is

not the identity, we have 2 ∈ Per(φ∆−1,κ). Now, let x ∈ Z∆ be such that φ∆−1,κ(x) = x, which is equivalent
to 2x ≡ κ mod (∆). This equation has solution if and only if gcd(∆, 2) divides κ. Now, if ∆ is odd, then
gcd(∆, 2) = 1, which obviously divides κ and hence 1 ∈ Per(φ∆−1,κ) and Part (iv) is proved. Assume that ∆
is even. Then, gcd(∆, 2) = 2, which divides κ if and only if it is even. Then, we have that 1 ∈ Per(φ∆−1,κ)
if and only if κ is even, which proves Part (iii) and finishes the proof.

4. The case ∆ = ps, with p prime, s ≥ 1

According to the previous section, besides ∆ ≥ 3, we assume that d /∈ {0, 1,∆− 1}. In this section, we
are going to obtain the different sets of periods of φd,κ when ∆ = ps is a power of a prime number p, with
s ≥ 1.

If κ = 0, then φd,0 : Z∆ → Z∆, φd,0(x) = dx, is a group homomorphism. As φd,0(0) = 0, we have
1 ∈ Per(φd,0). Recall that the kernel of φd,0 is defined as Ker(φd,0) = {x ∈ Z∆ : dx = 0}. It is well–known
that Ker(φ) is a subgroup of Z∆. On the other hand, since Z∆ is finite, any point x ∈ Z∆ is either periodic
or eventually periodic. The kernel of φd,0 allows us to characterize when eventually periodic points do exist.
By P(·) we denote the set of periodic points of a map.

Lemma 4.1. Let φd,0 : Z∆ → Z∆, φd,0(x) = dx. Suppose that d 6= 0. Then, the following statements are
equivalent:

(a) P(φd,0) = Z∆;

(b) Ker(φd,0) = {0};

(c) gcd(d,∆) = 1.

In this case, the period of any point x 6= 0 divides the order of d modulo ∆.

Proof. (a) ⇒ (b). Suppose that P(φd,0) = Z∆. Let x ∈ Ker(φd,0). Then φd,0(x) = 0. Since φd,0(0) = 0 and
x is not eventually periodic, we deduce that x = 0, so Ker(φd,0) = {0}.

(b) ⇒ (c). Put δ := gcd(d,∆). Then φd,0(∆
δ ) = d∆

δ = d
δ∆ ≡ 0 mod(∆). Since Ker(φd,0) = {0}, we have

∆
δ ≡ 0 mod(∆) and hence δ = 1.

(c) ⇒ (a). If gcd(d,∆) = 1, by Lemma 2.2 dn ≡ 1 mod(∆) for some positive integers n. In this case, we
obtain φnd,0(x) = dnx ≡ xmod(∆) for all x ∈ Z∆, and consequently, P(φd,0) = Z∆. Notice that the period
of x divides the order of d modulo ∆.

For instance, if ∆ = 15 and d = 8, it is immediate to check that the set of periods of φd,0 is {1,2,4}. In
this case, the order of d = 8 modulo ∆ = 15 is 4. Recall that the period of a periodic point x is given by
the order of d modulo (d−1)∆

gcd(∆,(d−1)x+κ) (see Proposition 2.11).

However, if ∆ is prime and gcd(d,∆) = 1, we guarantee that aside from the fixed point x = 0, all non-zero
elements of Z∆ are periodic of the same period, namely, the order N of d modulo ∆. Indeed, by Lemma 4.1
we already know that the period of x 6= 0, say qx, divides N . On the other hand, Proposition 2.11 yields
dqx ≡ 1 mod( (d−1)∆

gcd(∆,(d−1)x)), or dqx ≡ 1 mod((d− 1)∆) since ∆ and (d− 1)x are coprime. Consequently, also

dqx ≡ 1 mod(∆) and by the definition of order (see Remark 2.3), we obtain N |qx and hence qx = N . Thus,
we obtain the following:
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Lemma 4.2. Assume that ∆ is prime. Let d ∈ Z∆, d 6= 0. Then Per(φd,0) = {1, N}, where N is the order
of d modulo ∆, that is, the smallest positive integer n satisfying dn ≡ 1 mod(∆).

In the following two subsections, we assume that ∆ = ps, with p prime and s ≥ 1, ∆ ≥ 3.

4.1. The case gcd(d,∆) > 1

Let κ ∈ {0, 1, ...,∆ − 1} and fix d 6= 0 such that gcd(d,∆) > 1, that is, d = pγq with γ ≥ 1 and
gcd(p, q) = 1.

Proposition 4.3. Consider ∆ = ps ≥ 3, p prime, s ≥ 1, and d 6= 1 such that gcd(d,∆) > 1. Then,
Per(φd,κ) = {1} for all κ.

Proof. Let x ∈ Z∆ be a periodic point of φd,κ of period N , so φNd,κ(x) = x. Since d 6= 1, by (2.7) we deduce

dN − 1

d− 1
((d− 1)x+ κ) ≡ 0 mod(∆)

or
(1 + d+ . . .+ dN−1)((d− 1)x+ κ) ≡ 0 mod(∆).

Taking into account that gcd(1+d+. . .+dN−1, p) = gcd(1+d+. . .+dN−1,∆) = 1 because 1+d+. . .+dN−1 =
1+p·u for some integer u, the last congruence holds only if ((d−1)x+κ) ≡ 0 mod(∆), or φd,κ(x) ≡ xmod(∆).
Hence, N = 1 and φd,κ has only fixed points.

4.2. The case gcd(d, p) = 1

Let κ ∈ {0, 1, ...,∆− 1} and fix d such that gcd(d,∆) = 1 and d /∈ {0, 1,∆− 1} (realize that the sets of
periods Per(φd,κ) with d = 0, 1,∆ − 1, have been obtained in Proposition 3.1). In turn we distinguish two
cases:

a) If gcd(d− 1, p) = 1.

b) If gcd(d− 1, p) > 1.

4.2.1. The case gcd(d− 1, p) = 1

Recall that by δj we denote the order of d modulo pj , j ∈ {1, . . . , s}. Realize that, necessarily, it must
be p ≥ 3.

Theorem 4.4. Let ∆ = ps ≥ 3, with p prime and s ≥ 1. Let d /∈ {0, 1}, with gcd(d, p) = gcd(d− 1, p) = 1.
Then

Per(φd,κ) = {1} ∪ {δj}sj=1 = {1} ∪
{
δ1p

j
}max{0,s−α}
j=0

for all κ ∈ {0, 1, 2, ...,∆− 1}, where dδ1 − 1 = pαqd with gcd(p, qd) = 1, and δj is the order of d modulo pj ,
j = 1, . . . , s.

Proof. Firstly, notice that all the elements of Z∆ are periodic points of φd,κ, since gcd
(
d, (d−1)∆

gcd(∆,(d−1)x+κ)

)
= 1

and Proposition 2.11 applies.
Next, use Lemma 2.4 to deduce that the cardinality of the set {(d − 1)x + κmod(∆) : x ∈ Z∆} is ∆.

Consequently,
{gcd(∆, (d− 1)x+ κ) : x ∈ Z∆} = {1, p, . . . , ps}.

Let xj ∈ Z∆ satisfy gcd(∆, (d − 1)x + κ) = pj , j = 0, 1, . . . , s, and denote by Nj , j = 0, 1, . . . , s − 1, s, the

order of d modulo (d−1)∆
gcd(∆,(d−1)xj+κ) = (d− 1)ps−j . Again Proposition 2.11 jointly with the above observation

lead to
Per(φd,κ) = {Nj : j = 0, 1, . . . , s}.

For j = s we obtain Ns = 1, because d ≡ 1 mod(d− 1).
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On the other hand, denote by δi, i = 1, . . . , s the order of d modulo pi. We claim that Nr = δs−r for
r = 0, 1, . . . , s − 1. Since dNr ≡ 1 mod((d − 1)ps−r), we deduce that also dNr ≡ 1 mod(ps−r). Therefore,
δs−r|Nr by Remark 2.3. To finish the claim, again the definition of order gives dδs−r ≡ 1 mod(ps−r), and since
d−1 and p are coprime and dδs−r−1 = (d−1)(1+d+. . .+dδs−r−1) we deduce that ps−r|(1+d+. . .+dδs−r−1),
and also ps−r|(dδs−r − 1), which implies dδs−r ≡ 1 mod((d− 1)ps−r), and Nr|δs−r, thus the claim is proved.

Finally, by Lemma 2.7 (it holds for p ≥ 3), we have δ1 = . . . = δα, and δα+i = piδα = piδ1, for
i = 1, . . . , s− α.

Corollary 4.5. Let ∆ = p ≥ 3 be a prime integer. Let d /∈ {0, 1,∆ − 1}. Then Per(φd,κ) = {1, N} for all
κ ∈ {0, 1, 2, ...,∆− 1}, where N is the order of d modulo ∆.

Notice that the above result extends Lemma 4.2 to arbitrary values of κ.
Next, we characterize the periods of φd,κ when ∆ is a prime number and d /∈ {0, 1}.

Theorem 4.6. Let ∆ be prime and ∆ ≥ 3. Let n 6= 1 be a divisor of ∆ − 1 = ϕ(∆). Then, there exists
d ∈ {2, . . . ,∆− 1} such that Per(φd,κ) = {1, n} for all κ ∈ {0, 1, ...,∆− 1}. In fact,⋃

d∈{2,...,∆−1}

Per(φd,0) = {divisors of ϕ(∆)}.

Proof. By Theorem 4.4, it suffices to prove the result for κ = 0. Let Z∗∆ = Z∆ \ {0} be the Abelian
multiplicative group with generator δ of order ∆− 1, that is, ∆− 1 is the smallest positive integer such that

δ∆−1 ≡ 1 mod(∆). Take n 6= 1 dividing ∆− 1 and let d = δ
∆−1
n . Then, the order of d is n, that is, n is the

smallest positive integer such that dn ≡ 1 mod(∆). Take φd,0. By Theorem 4.4, we have Per(φd,0) = {1, n}.
To finish, notice that the reasoning can be applied to all divisors of ϕ(∆) = ∆− 1.

Table 1 shows the periods for several prime numbers ∆ when d ∈ {2, 3, ...,∆ − 1}. We take κ = 0 and
write Pd,0 := Per(φd,0).

Table 1: Set of periods of φd,κ when gcd(d,∆) = 1 and gcd(d− 1,∆) = 1.

∆ 5 7

d 2 3 4 2 3 4 5 6

elements in
Pd,0

1,4 1,4 1,2 1,3 1,6 1,3 1,6 1,2

∆ 11

d 2 3 4 5 6 7 8 9 10

elements in
Pd,0

1,10 1,5 1,5 1,5 1,10 1,10 1,10 1,5 1,2

∆ 33

d 2 5 8 11 14 17 20 23 26

elements in 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
Pd,0 6,18 6,18 6 6,18 6,18 6 6,18 6,18 1,2

∆ 52

d 2 3 4 7 8 9 12 13 14 17 18 19 22 23 24

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Pd,0 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2
20 20 10 20 10 20 20 10 20 10 20 20
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4.2.2. The case gcd(d− 1, p) > 1

Now, we assume that
d− 1 = pαqd

for some positive integer α, s− 1 ≥ α, and an integer qd coprime with p. Recall that we use the notation δj
to denote the order of d modulo pj , j ≥ 1. By Lemma 2.7, we have

δ1 = . . . = δα = 1 and δα+r = prδ1 = pr for r ≥ 1 (4.1)

if either p ≥ 3 or p = 2, α ≥ 2, whereas Lemma 2.9 gives

δ1 = 1, δ2 = . . . = δγ = 2 and δγ+i = 2i+1 for i ≥ 1, (4.2)

whenever p = 2, α = 1 and d2 − 1 = 2γq2, with gcd(2, q2) = 1.
In this new setting we cannot guarantee the existence of fixed points, it will be depended on the corre-

sponding value of κ.

Lemma 4.7. Let ∆ = ps, s ≥ 1 and d ∈ {2, . . . ,∆ − 1} with gcd(∆, d) = 1 and gcd(d − 1,∆) = pα,
1 ≤ α ≤ s− 1. Take κ ∈ {1, . . . ,∆}. Then 1 ∈ Per(φd,κ) if and only if pα|κ.

Proof. Suppose that x ∈ Z∆ is a fixed point of φd,κ. Using Proposition 2.11 gives

d ≡ 1 mod

(
(d− 1)∆

gcd(∆, (d− 1)x+ κ)

)
.

Hence,

(d− 1) = q
(d− 1)∆

gcd(∆, (d− 1)x+ κ)
= q

∆

gcd(∆, (d− 1)x+ κ)
(d− 1)

for some integers q. Since the previous three factors are positive integers we deduce that q = 1 and
gcd(∆, (d− 1)x+ κ) = ∆, which means (d− 1)x+ κ = psu for some integer u ≥ 1. Now it is immediate to
establish that pα divides κ.

Conversely, suppose that pα|κ, that is, κ = psh for some h ≥ 1. Since gcd(p, qd) = 1 (recall that d− 1 =
pαqd), by Lemma 2.4 there exists x ∈ Z∆ such that qdx+h ≡ ps−α mod(∆), so qdx+h = ps−α+ω∆ for some
integer ω. In this case, (d−1)x+κ = (pαqd)x+(hpα) = pα(qdx+h) = ps+ω∆pα, and (d−1)x+κ ≡ 0 mod(∆).
Therefore, x is a fixed point of φd,κ.

Lemma 4.8. Let ∆ = ps and s ≥ 1 and d ∈ {2, . . . ,∆ − 1} with gcd(∆, d) = 1 and gcd(d − 1,∆) = pα,
d − 1 = pαqd, and 1 ≤ α ≤ s − 1. Let κ ∈ {1, . . . ,∆}. Suppose that x ∈ Z∆ is a periodic point of φd,κ of
period N , with gcd(∆, (d− 1)x+ κ) = pj for some 0 ≤ j ≤ s. Then

N = δs+α−j ,

the order of d modulo ps+α−j . In particular:

(a) N = ps−j if p ≥ 3 or p = 2, α ≥ 2;

(b) If p = 2, α = 1 and d2 − 1 = pγq2, with gcd(2, q2) = 1 (by force γ ≥ 3), in turn:

(b.1) N = 1 if j = s;

(b.2) N = 2 if 1 ≤ s− j ≤ γ − 1;

(b.3) N = 2s−j−γ+2 if s− j ≥ γ − 1.
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Proof. By Proposition 2.11, N is the order of d modulo (d−1)∆
gcd(∆,(d−1)x+κ) =ps+α−jqd. So, dN ≡1 mod(ps+α−jqd)

and also
dN ≡ 1 mod(ps+α−j).

Therefore, by the definition of order
δs+α−j |N.

To short the notation, write δ := δs+α−j . Next, we proceed to show that φδd,κ(x) = x, and according to the
definition of period N we will obtain N |δ, and thus N = δ = δs+α−j .

By (2.7), φδd,κ(x) − x = dδ−1
d−1 ((d− 1)x+ κ) = pα+s−ju

pαqd
pjqj , where we have used the definition of δ, so

dδ − 1 = pα+s−ju for some integer u, and that gcd(∆, (d − 1)x + κ) = pj , so (d − 1)x + κ = pjqj for some
integer qj . Then φδd,κ(x)−x = ps

uqj
qd
, and taking into account φδd,κ(x)−x ∈ Z and gcd(qd, p) = 1, we deduce

that φδd,κ(x)− x ≡ 0 mod(∆), hence N |δ.
By using Lemmas 2.7 and 2.9, we obtain the descriptions for N in cases (a) and (b), respectively.

Theorem 4.9. Let ∆ = ps ≥ 3, with p prime and s ≥ 1. Let d ∈ {2, . . . ,∆ − 1} verify gcd(d, p) = 1 and
d − 1 = pαqd with 1 ≤ α < s and gcd(p, qd) = 1. Put κ = pβqk, 0 ≤ κ < ps, with gcd(p, qk) = 1 and
0 ≤ β < s. Then:

(a) If β < α,

(a.1) If p ≥ 3 or p = 2, α ≥ 2,
Per(φd,κ) = {ps−β}.

(a.2) If p = 2, α = 1 (thus, β = 0), with d2 − 1 = 2γq2, γ ≥ 3 and q2 odd,

Per(φd,κ) = {2max{1,s−γ+2}}.

(b) If β ≥ α, Per(φd,κ) = {δα, δα+1, . . . , δs−1, δs}, where δα+j is the order of d modulo pα+j, j = 0, 1, . . . , s−
α. In particular:

(b.1) If p ≥ 3 or p = 2, α ≥ 2,
Per(φd,κ) = {1, p, . . . , ps−α}.

(b.2) If p = 2 and α = 1, with d2 − 1 = 2γq2, γ ≥ 3 and q2 odd,

Per(φd,κ) = {2j : j = 0, 1, . . . ,max{1, s− γ + 1}}.

Proof.

(a) Let x be an arbitrary periodic point of φd,κ. Then

(d− 1)x+ κ = pαqdx+ pβqk = pβ
(
qk + pα−βqdx

)
with α−β ≥ 1 and gcd(p, qk +pα−βqdx) = 1. Consequently, gcd(∆, (d−1)x+κ) = pβ for any periodic point
x ∈ Z and part-(a) follows directly from Lemma 4.8 (notice that case-(b.1) of Lemma 4.8 is not admissible
because s+ α− β > 1).

(b) First, since (d− 1)x+ κ = pα
(
pβ−αqk + qdx

)
and gcd(qd, p) = 1, use Lemma 2.4 to state that

Card
(
{(pβ−αqk + qdx)mod(∆) : x ∈ Z∆}

)
= ∆.
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From here, we deduce that there exist xj ∈ Z∆ so that

(d− 1)xj + κ = pα(pβ−αqk + qdxj) = pα
(
pj + ωjp

s
)

= pα+j + ω̃jp
s (4.3)

for some integers ωj , ω̃j = pαωj , 0 ≤ j ≤ s−α. If j = s−α, it is obvious that gcd((d− 1)xs−α + κ,∆) = ps,
and it is a simple matter to see that gcd((d− 1)xj + κ,∆) = pα+j if 0 ≤ j < s− α. The point xj is either
periodic or eventually periodic, j = 0, 1, . . . , s− α.

If xj is a periodic point of φd,κ of period Nj , being gcd(∆, (d − 1)xj + κ) = pα+j , Lemma 4.8 ensures
that Nj = δs−j , being δs−j the order of d modulo ps−j .

If xj is eventually periodic, not periodic, we observe that also φd,κ(xj) verifies the property gcd(∆, (d−
1)φd,κ(xj) + κ) = pα+j . Indeed, by (4.3),

(d− 1)φd,κ(xj) + κ = κ+ (d− 1)(κ+ dxj) = κ+ (d− 1)[xj + κ+ (d− 1)xj ]

= κ+ (d− 1)[xj + pα+j + ω̃jp
s]

= [κ+ (d− 1)xj ] + (d− 1)pα+j + (d− 1)ω̃jp
s

= pα+j + ω̃jp
s + (d− 1)pα+j + (d− 1)ω̃jp

s

= dpα+j + dω̃jp
s = d(pα+j + ω̃jp

s),

thus gcd(∆, (d−1)φd,κ(xj) +κ) = pα+j , because gcd(d,∆) = 1. Similarly, by the induction on n (we assume
that (d− 1)φnd,κ(xj) + κ = dn(pα+j + ω̃jp

s), with gcd(∆, (d− 1)φnd,κ(xj) + κ) = pα+j) we find

(d− 1)φn+1
d,κ (xj) + κ = κ+ (d− 1)(κ+ dφnd,κ(xj))

= κ+ (d− 1)[φnd,κ(xj) + dn(pα+j + ω̃jp
s)]

= [κ+ (d− 1)φnd,κ(xj)] + (d− 1)dn(pα+j + ω̃jp
s)

= dn(pα+j + ω̃jp
s) + (d− 1)dn(pα+j + ω̃jp

s)

= dn+1(pα+j + ω̃jp
s)

with gcd(∆, (d−1)φn+1
d,κ (xj)+κ) = pα+j . Following this process and taking into account that xj is eventually

periodic, for some m we finally obtain a periodic point x̃j = φmd,κ(xj) such that gcd(∆, (d−1)x̃j +κ) = pα+j ,
and by Lemma 4.8 its period is δs−j .

Being j an arbitrary value, 0 ≤ j ≤ s − α, we have proved that {δs, δs−1, . . . , δα} ⊆ Per(φd,κ). To
finish, realize that if x is periodic of period N , being β ≥ α we find gcd(∆, (d − 1)x + κ) = pα+j for some
0 ≤ j ≤ s− α, and Lemma 4.8 yields N = δs−j . Therefore, Per(φd,κ) = {δs, δs−1, . . . , δα}.

In particular:

(b.1) if p = 3 or p = 2, α ≥ 2, by Lemma 2.7 or (4.1), we obtain δα+i = pi for i ≥ 0. Therefore,

Per(φd,κ) = {1, p, . . . , ps−α};

(b.2) if p = 2 and α = 1, then Per(φd,κ) = {δs, δs−1, . . . , δα}. If γ ≥ s, by Lemma 2.9 (or (4.2)),

Per(φd,κ) = {1, 2}.

If γ < s, again Lemma 2.9 yields δ1 = 1, δ2 = . . . = δγ = 2, δγ+1 = 22, . . . , δs = δγ+(s−γ) = 2s−γ+1, so

Per(φd,κ) = {1, 2, 22, . . . , 2s−γ+1}.

In Table 2 we show some examples of the set of periods for different values of d, p and s.
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Table 2: Set of periods of φd,κ when gcd(d,∆) = 1 and gcd(d− 1,∆) > 1.

∆ 23

d 3 5

κ 2|κ 2 - κ 4|κ 2|κ, 4 - κ 2 - κ
elements in
Per(φd,0) 1,2 4 1,2 4 8

∆ 32 33

d 4, 7 4, 7, 13, 16, 22, 25 10, 19

κ 3|κ 3 - κ 3|κ 3 - κ 9|κ 3|κ, 9 - κ 3 - κ
elements in
Per(φd,0) 1,3 9 1,3,9 27 1,3 9 27

4.3. Converse result

When ∆ = ps for a prime p we characterize the set of periods for a given map φd,κ : Z∆ → Z∆. We now
investigate what fixed sets can be obtained as the periods of a map φd,κ : Z∆ → Z∆.

Proposition 4.10. Let p be a prime number, s ∈ N and ∆ = ps ≥ 3, then it holds:

1. Let N be a divisor of p−1 and either M ∈ {0, 1, . . . , s−1} if p 6= 2 or ∆ = 22, or M ∈ {0, 1, . . . , s−2}
if ∆ = 2m,m ≥ 3. Then there exist d, κ ∈ Z∆ such that {1} ∪ {Npj}Mj=0 = Per(φd,κ).

2. Let M ∈ {0, 1, 2, . . . , s} then there exist d, κ ∈ Z∆ such that {pM} = Per(φd,κ).

Proof. We prove the first item of the result for N 6= 1, N |(p − 1). In this case, by force p 6= 2 and
Theorem 2.5 we can choose a generator, g, of the multiplicative group Z∗∆. Moreover, g can be chosen
in the set of generators of Z∗p by Theorem 2.6. Recall that Card(Z∗∆) = ϕ(∆) = ps−1(p − 1) and then

gp
s−1(p−1) ≡ 1 mod (∆). Let, as in Lemma 2.7, δj be the order of g modulo pj , j ∈ {1, 2, . . . , s}, and observe

that g is a generator of Z∗p, so δ1 = p− 1 and by Lemma 2.7 δj = (p− 1)pj−1 for any j ∈ {2, . . . , s}.
If M = 0, Theorem 4.6 ends the proof of the first item. If M ≥ 1, consider u = s−M, so 1 ≤ u ≤ s− 1.

Since N divides p − 1, take the natural t for which tN = p − 1, then tNpu−1 = (p − 1)pu−1 = δu. Take
d := gtp

u−1
and observe that

dN = gNtp
u−1

= gδu ≡ 1 mod (pu). (4.4)

Since g is a generator then gcd(g,∆) = 1 and gcd(d,∆) = 1. Also d = gtp
u−1 6≡ 1 mod (pn) for any

n ∈ {1, 2, . . . , s− 1}, otherwise by Remark 2.3 we have δn = pn−1(p− 1)|tpu−1, so tpu−1 = hpn−1(p− 1) for
some h ∈ Z, or pu−n = hp−1

t which implies t = p − 1 (taking into account that gcd(p, p − 1) and u ≥ n),
that is, N = 1, a contradiction. Therefore, gcd(d− 1,∆) = 1.

In order to apply Theorem 4.4 we show that the order of d modulo p, say δ̃1, is N . From (4.4) and

Remark 2.3 we have δ̃1|N . On the other hand, dδ̃1 = gtδ̃1p
u−1 ≡ 1 mod (p), again by Remark 2.3 δ1 =

p − 1|tδ̃1p
u−1 and then p − 1|tδ̃1 since gcd(p, p − 1) = 1. Considering that p − 1 = tN we obtain N |δ̃1 and

therefore δ̃1 = N .
Additionally, it is easy to check that dN 6≡ 1 mod (pu+1) and then dN − 1 = puqd with gcd(p, qd) = 1.

Finally, we apply Theorem 4.4 to obtain {1} ∪N{pj}s−uj=0 = {1} ∪N{pj}Mj=0 = Per(φd,κ) for any κ ∈ Z∆ and
we are done.

If N = 1 in case (1) we define d = ps−M + 1, κ = ps−M and then α = β = s −M in Theorem 4.9.
If p ≥ 3 or p = 2, s − M ≥ 2, that is, p ≥ 3 or p = 2,M ≤ s − 2, use Theorem 4.9 (b) to obtain

Per(φd,κ) = {pj}s−(s−M)
j=0 = {pj}Mj=0. To complete case (1) with N = 1, it remains to analyze p = 2, s−M = 1

and ∆ = 22 (if ∆ = 2m, m ≥ 3, the above reasoning covers the range for M ∈ {0, 1, . . . , s−2}). Now, s = 2,
M = 1, d = 3, κ = 2 and it is direct to check that Per(φ3,2) = {1, 2} in Z4.
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For the proof of the second item, simply apply Proposition 3.1 (i) to obtain Per(φ1,ps−α) =
{

ps

ps−α

}
=

{pα}.

We summarize all the results of Sections 3 and 4 on the sets of periods of φd,κ in the next theorem.

Theorem C. Let ∆ be a positive integer, d, κ ∈ Z∆ and let φd,κ : Z∆ → Z∆ be defined by φd,κ(x)=dx+ κ.
Then we distinguish the following cases:

1. For any ∆ ∈ N we have Per(φ0,κ) = {1} and Per(φ1,κ) = { ∆
gcd(∆,κ)}.

2. When ∆ ≥ 3 is even, then Per(φ∆−1,κ) = {1, 2} if κ is even and Per(φ∆−1,κ) = {2} if κ is odd.

3. When ∆ ≥ 3 is odd, then Per(φ∆−1,κ) = {1, 2}.
4. For ∆ = ps and p prime, we have:

Conditions on d,∆, κ Per(φd,κ)

gcd(d,∆) = 1

gcd(d− 1,∆) = 1
dN ≡ 1 mod (pα), α ≥ 1
dN 6≡ 1 mod (pα+1)
N is the order of d modulo p

{1} ∪N · {pj}max{0,s−α}
j=0

gcd(d− 1,∆) > 1
d ≡ 1 mod (pα), d 6≡ 1 mod (pα+1)
κ ≡ 0 mod (pβ), κ 6≡ 0 mod (pβ+1)
1 ≤ α < s, 0 ≤ β < s,
If p = 2 this only works when α > 1

{pj}s−αj=0 if β ≥ α

{ps−β} if β < α
gcd(d,∆) > 1 {1}

5. For ∆ = 2s ≥ 3, the missing cases corresponding to p = 2, α = 1 are:

Conditions on d,∆, κ Per(φd,κ)
d ≡ 1 mod (2), d 6≡ 1 mod (22)
κ ≡ 0 mod (2β), κ 6≡ 0 mod (2β+1)
d2 ≡ 1 mod (2γ), d2 6≡ 1 mod (2γ+1)
0 ≤ β < s, γ ≥ 3

β = 0 {2} if s ≤ γ − 1

{2s−γ+2} if s > γ − 1

β ≥ 1 {2j}max{1,s−γ+1}
j=0

Conversely, let p be a prime and let ∆ = ps with s ≥ 1 then:

1. For any divisor N of p− 1 and any α ∈ {0, 1, 2 . . . , s− 1} if p 6= 2 or ∆ = 22, α ∈ {0, 1, 2 . . . , s− 2}
if p = 2, there exist d, κ ∈ Z∆ such that Per(φd,κ) = {1} ∪ {Npj}αj=0.

2. For any α ∈ {0, 1, 2 . . . , s} there exist d, κ ∈ Z∆ such that Per(φd,κ) = {pα}.

Proof. Apply Lemma 2.10, Propositions 3.1, 4.3, 4.10 and Theorems 4.4, 4.9.

As a consequence of this result we obtain Theorem A.

proof of Theorem A. Take ∆ = ps and φd,κ : Z∆ → Z∆, then Per(φd,κ) is provided by Theorem C.

• If Theorem C (1) is applied then Per(φd,κ) is either {1} or {pj} for some j ∈ {0, 1, . . . , s}; both sets
are of the type (A-2).
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• When Theorem C (2) holds, then p = 2 with s ≥ 2, and Per(φd,κ) is either {1, 2} or {2}, being {1, 2}
of type (A-1) (notice that α = 1 ≤ s− σ(2, s) for all s ≥ 2) and {2} is of type (A-2).

• In the case of Theorem C (3), p 6= 2 and we have Per(φd,κ) = {1, 2}, of type (A-1) for N = 2 (note
that it divides p− 1) and α = 0.

• The fourth item of Theorem C provides as period sets either

– {1} ∪N · {pj}max{0,s−α}
j=0 , of type (A-1) in Theorem A since α ≥ 1, 0 ≤ max{0, s− α} ≤ s− 1 =

s− σ(p, s); or

– {pj}s−αj=0 , of type (A-1) since 1 ≤ s− α ≤ s− 1 = s− σ(p, s); or

– {ps−β}, of type (A-2) because β < α < s, α ≥ 1, so 2 ≤ s− β ≤ s.
– To finish case (4), notice that {1} is type of both (A-1) and (A-2).

• The sets given by Theorem C (5) are {2}, {2s−γ+2} (both sets are of type (A-2) since s ≥ 2 and

2 ≤ s− γ + 2 ≤ s− 1, we apply here γ ≥ 3 and s > γ − 1) or {2j}max{1,s−γ+1}
j=0 (of type (A-1) because

1 ≤ max{1, s− γ + 1} ≤ s− 2 ≤ s− σ(p, s), we apply γ ≥ 3).

The converse follows directly from Proposition 4.10.

5. The general case and Theorems B and D

Let ∆ = ps11 p
s2
2 . . . pskk be a decomposition into prime factors and let φd,κ : Z∆ → Z∆ defined by

φd,κ(x) = dx+ κ. Our interest is to relate the set Per(φd,κ) with the sets Per(φdi,κi) analyzed before, where
φdi,κi : Zpsii → Zpsii . To perform this relation we need some technical results.

Lemma 5.1. Let ∆ = ps11 p
s2
2 . . . pskk be a decomposition into prime factors and let g : Z∆ →

∏k
i=1 Zpsii be

defined by g(x) = (xmod (psii ))i. Then g is a ring isomorphism.

Proof. It is straightforward to check that g is a homomorphism, that is, g preserves the sum, the product and
the unit elements. From the Chinese Remainder Theorem, (see [2, Th. 5.26]), the system of congruences x ≡
a1 mod ps11 , . . . , x ≡ ak mod pskk has exactly one solution z modulo the product ∆. Since g(z) = (a1, . . . , ak),
we obtain both the injectivity and the surjectivity of g and we are done.

Proof of Theorem B. Let us now take di = dmod (psii ), κi = κmod (psii ) and φdi,κi : Zpsii → Zpsii defined by

φdi,κi(x) = dix + κi for any i ∈ {1, 2, . . . , k}. Let
∏k
i=1 φdi,κi be the product map defined from

∏k
i=1 Zpsii

into itself by
k∏
i=1

φdi,κi ((xi)i) = (dixi + κi)
k
i=1 .

Then, taking into account that dx+ κ ≡ dix+ κi mod (psii ) for all x ∈ Z∆, it is a simple matter to verify

g ◦ φd,κ =
k∏
i=1

φdi,κi ◦ g, (5.1)

that is, the systems are topologically conjugate. As a direct consequence of Lemma 5.1, (5.1) and g ◦ φmd,κ =(∏k
i=1 φdi,κi

)m
◦ g for all m ≥ 1, we obtain

Per(φd,κ) = Per

(
k∏
i=1

φdi,κi

)
and then Theorem B follows.
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As a consequence of this theorem we will obtain the proof of the below Theorem D, a more precise
description of the set of periods in the general case. For given sets of natural numbers A1, A2, . . . Ak, we use
the following definition:

lcm{Ai}ki=1 = {lcm{ai}ki=1 : ai ∈ Ai}.

Let ∆ = ps11 p
s2
2 . . . pskk be a decomposition into prime numbers with si > 0 and gcd(pi, pj) = 1 for any

i 6= j, i, j ∈ {1, 2, . . . k}. Let Q be a set, a partition of Q which is a pair of subsets (R, T ) such that
Q = R ∪ T , R ∩ T = ∅ (eventually R or T can be the empty set). Fix a partition (R, T ) of {1, 2, . . . , k}.
Let N = {ni}i∈R be a (fixed) set of positive integers. Consider a subset E ∈ P(R) and the corresponding
subset {ni}i∈E ⊆ N . Then we define

DE,N := lcm{ni}i∈E
if E 6= ∅ and DE,N = 1 if E = ∅.

Write the decomposition of DE,N into prime factors as follows

DE,N = p
β1,E

1 · pβ2,E

2 · . . . · pβk,Ek · pβk+1,E

k+1 · . . . · pβωE,EωE ,

where βi,E ≥ 0 if 1 ≤ i ≤ k and βt,E > 0 whenever the prime pt, with t > k, appears in the decomposition
of DE,N .

Next, fix a set of natural numbers A = {αi}ki=1 and for the case R 6= ∅, T 6= ∅, define

PEN ,A :=

{
DE,N ·

∏
i∈E

p
max{0,ji−βi,E}
i ·

∏
i∈T

p
max{0,αi−βi,E}
i : 0 ≤ ji ≤ αi

}

and
P ∅N ,A :=

∏
i∈T

p
max{0,αi}
i .

If T = ∅ or R = ∅ we consider that the products
∏
i∈T p

max{0,αi−βi,E}
i and

∏
i∈E p

max{0,ji−βi,E}
i are equal to

1, respectively. We are now in a position to describe and prove the following main result.

Theorem D. Let ∆ = ps11 p
s2
2 . . . pskk be a decomposition into prime factors with si > 0 and gcd(pi, pj) = 1

for any i 6= j, i, j ∈ {1, 2, . . . k}. Let d, κ ∈ Z∆. Then, there exist:

(a) a partition (R, T ) of {1, 2, . . . , k},

(b) a set of positive integers A = {αi}ki=1, with 0 ≤ αi ≤ si if i ∈ T and 0 ≤ αi ≤ si − σ(pi, si) whenever
i ∈ R,

(c) a set N = {ni}i∈R of positive integers satisfying ni|(pi − 1),

for which

Per(φd,κ) =
⋃

E∈P(R)

PEN ,A.

Conversely, let (R, T ) be a partition of {1, 2, . . . , k}, let {αi}ki=1 and {ni}i∈R be sets of naturals verifying
the conditions (b) and (c) mentioned before. Then there exist d, κ ∈ ∆ such that Per(φd,κ) =

⋃
E∈P(R) P

E
N ,A.

Proof. We begin with the proof of the direct part. By applying Theorem B we obtain:

Per(φd,κ) = lcm{Per(φdi,κi)}
k
i=1, where di ≡ dmod (psii ), κi ≡ κmod (psii ).

Now Theorem A is applied to compute each Per(φdi,κi). Let

R := {i : 1 ≤ i ≤ k, Per(φdi,κi) is of type (A-1)},
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T := {i : 1 ≤ i ≤ k, Per(φdi,κi) is of type (A-2)}.

Then if i ∈ R there exist ni|(pi − 1) and 0 ≤ αi ≤ si − σ(pi, si) such that Per(φdi,κi) = {1} ∪ {nipji}
αi
j=0. If

i ∈ T there exists 0 ≤ αi ≤ si such that Per(φdi,κi) = {pαii }. We are going to prove now that Per(φd,κ) =⋃
E∈P(R) P

E
N ,A where N = {ni}i∈R, A = {αi}ki=1 and

PEN ,A =

{
DE,N ·

∏
i∈E

p
max{0,ji−βi,E}
i ·

∏
i∈T

p
max{0,αi−βi,E}
i : 0 ≤ ji ≤ αi

}
.

Let t ∈ Per(φd,κ), then Theorem B gives t = lcm{mi}ki=1 for some mi ∈ Per(φdi,κi), 1 ≤ i ≤ k. Moreover,

if i ∈ T then mi = pαii , however, if i ∈ R we have two possibilities: either mi = 1 or mi = nip
ji
i with

0 ≤ ji ≤ αi. Let E = {i ∈ R : mi 6= 1}. If E = ∅, then t =
∏
i∈T p

αi
i ∈ P

∅
N ,A. If E 6= ∅, observe that if we

write lcm{ni}i∈E = p
β1,E

1 p
β2,E

2 . . . p
βk,E
k p

βk+1,E

k+1 . . . p
βuE,E
uE (the decomposition into prime factors with βi,E ≥ 0

if 1 ≤ i ≤ k and βi,E > 0 otherwise) then:

t = lcm{mi}ki=1

= lcm{pαrr , nip
ji
i : r ∈ T , i ∈ R}

= lcm{lcm{nl : l ∈ E}, pαrr , p
ji
i : r ∈ T , i ∈ E}

= lcm{pβ1,E

1 p
β2,E

2 . . . p
βk,E
k p

βk+1,E

k+1 . . . p
βuE,E
uE , pαrr , p

ji
i : r ∈ T , i ∈ E}

= p
β1,E

1 p
β2,E

2 . . . p
βk,E
k p

βk+1,E

k+1 . . . p
βuE,E
uE ·

∏
i∈E

p
max{ji−βi,E ,0}
i ·

∏
i∈T

p
max{αi−βi,E ,0}
i .

Then t ∈ PEN ,A and we have shown that Per(φd,κ) ⊆
⋃
E∈P(R) P

E
N ,A.

Let now t ∈
⋃
E∈P(R) P

E
N ,A, then there exists E ∈ P(R) and values 0 ≤ ji ≤ αi such that

t = DE,N ·
∏
i∈E

p
max{ji−βi,E ,0}
i ·

∏
i∈T

p
max{αi−βi,E ,0}
i

= p
β1,E

1 p
β2,E

2 . . . p
βk,E
k p

βk+1,E

k+1 . . . p
βuE,E
uE ·

∏
i∈E

p
max{ji−βi,E ,0}
i ·

∏
i∈T

p
max{αi−βi,E ,0}
i

= lcm{pβ1,E

1 p
β2,E

2 . . . p
βk,E
k p

βk+1,E

k+1 . . . p
βuE,E
uE , pαss , p

ji
i : s ∈ T , i ∈ E}

= lcm{lcm{nl : l ∈ E}, pαss , p
ji
i : s ∈ T , i ∈ E}

= lcm{pαss , nip
ji
i : s ∈ T , i ∈ E}.

For the indices r ∈ R \ E we know that mr := 1 ∈ Per(φdr,κr), because these sets of periods are of type
(A-1). Therefore,

t = lcm{pαss , nip
ji
i : s ∈ T , i ∈ E}

= lcm{pαss , nip
ji
i ,mr : s ∈ T , i ∈ R, r ∈ R \ E}

= lcm{m`}k`=1.

Thus
⋃
E∈P(R) P

E
N ,A = Per(φd,κ).

Let us now prove the converse. For any i ∈ R, apply Theorem A (A-1) to obtain φdi,κi : Zpisi → Zpisi
such that Per(φdi,κi) = {1} ∪ {nipj}αij=0. Apply now Theorem A (A-2), for any i ∈ T , to obtain φdi,κi :
Zpisi → Zpisi satisfying Per(φdi,κi) = {pαii }. Now we use Lemma 5.1 and (5.1) to obtain φd,κ : Z∆ → Z∆,

φd,κ =
∏k
i=1 φdi,κi , satisfying Per(φd,κ) = lcm{Per(φdi,κi)}ki=1 and finally repeating the argument of the

direct part we obtain

Per(φd,κ) =
⋃

E∈P(R)

PEN ,A.
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5.1. Examples

In the following table we show some examples of the set of periods in the general case.

∆ 10 15 45

d 3, 7 2 2

κ 2|κ 2 - κ any any

elements in
Per(φd,0) 1,4 2,4 1,2,4 1,2,4,6,12

We analyze now an example by using the converse part of Theorem D. Let ∆ = 32 · 5 · 31 · 29 with
(p1, p2, p3, p4) = (3, 5, 31, 29), (s1, s2, s3, s4) = (2, 1, 1, 1), R = {1, 2, 3, 4}, T = ∅,

N = {n1 = 2, n2 = 2, n3 = 15, n4 = 7}

and

A = {α1 = 1, α2 = 0, α3 = 0, α4 = 0}.

Then we obtain the existence of φd,κ : Z∆ → Z∆ satisfying

Per(φd,κ) =
⋃

E∈P(R)

PEN ,A = {1, 2, 6, 7, 14, 15, 30, 42, 105, 210}.

This set is obtained by applying the calculations of the following table:

E DE,N PEN ,A E DE,N PEN ,A
∅ 1 {1} {2, 3} 30 {30}
{1} 2 {2, 6} {2, 4} 14 {14}
{2} 2 {2} {3, 4} 105 {105}
{3} 15 {15} {1, 2, 3} 30 {30}
{4} 7 {7} {1, 2, 4} 14 {14, 42}
{1, 2} 2 {2, 6} {1, 3, 4} 210 {210}
{1, 3} 30 {30} {2, 3, 4} 210 {210}
{1, 4} 14 {14, 42} {1, 2, 3, 4} 210 {210}

Let us find d and κ. By applying Theorem B, Lemma 5.1 and (5.1) we need to find maps φdi,κi : Zpsii →
Zpsii satisfying Per(φd1,κ1) = {1, 2, 6}, Per(φd2,κ2) = {1, 2}, Per(φd3,κ3) = {1, 15} and Per(φd4,κ4) = {1, 7}.
Next, by applying Theorem C we need to find di ∈ Zpsii , 1 ≤ i ≤ 4, satisfying: (1) the order of di modulo pi

is ni d
ni
i ≡ 1(pi), (2) dnii 6≡ 1 mod (p2

i ). A solution of these relations is d1 = 2, d2 = 4, d3 = 7, d4 = 7 and
the Chinese Remainder Theorem provides a unique d = 20684 ∈ Z∆ satisfying d ≡ di mod (ps1i ). Moreover,
by Theorem C κi = 0, 1 ≤ i ≤ 4, and κ = 0. �
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