Essential norm of weighted composition operators from H^{∞} to the Zygmund space

Qinghua $\mathrm{Hu}^{\text {a }}$, Xiangling Zhu ${ }^{\mathrm{b}, *}$
${ }^{2}$ Department of Mathematics, Shantou University, 515063, Shantou, Guangdong, China.
${ }^{b}$ Department of Mathematics, Jiaying University, 514015, Meizhou, Guangdong, China.

Communicated by R. Saadati

Abstract

Let φ be an analytic self-map of the unit disk \mathbb{D} and $u \in H(\mathbb{D})$, the space of analytic functions on \mathbb{D}. The weighted composition operator, denoted by $u C_{\varphi}$, is defined by $\left(u C_{\varphi} f\right)(z)=u(z) f(\varphi(z)), f \in H(\mathbb{D}), z \in \mathbb{D}$. In this paper, we give three different estimates for the essential norm of the operator $u C_{\varphi}$ from H^{∞} into the Zygmund space, denoted by \mathcal{Z}. In particular, we show that $\left\|u C_{\varphi}\right\|_{e, H^{\infty} \rightarrow \mathcal{Z}} \approx \lim \sup _{n \rightarrow \infty}\left\|u \varphi^{n}\right\|_{\mathcal{Z}}$. © 2016 All rights reserved.

Keywords: Zygmund space, essential norm, weighted composition operator.
2010 MSC: 30H30, 47B38.

1. Introduction and preliminaries

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} and $H(\mathbb{D})$ be the space of analytic functions on \mathbb{D}. Let H^{∞} denote the bounded analytic function space, i.e.,

$$
H^{\infty}=\left\{f \in H(\mathbb{D}): \sup _{z \in \mathbb{D}}|f(z)|<\infty\right\} .
$$

The Bloch space, denoted by \mathcal{B}, is the space of all functions $f \in H(\mathbb{D})$ such that

$$
\|f\|_{\mathcal{B}}=|f(0)|+\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty .
$$

For more details of the Bloch space we refer the reader to [21].

[^0]Let \mathcal{Z} denote the set of all functions $f \in H(\mathbb{D}) \cap C(\overline{\mathbb{D}})$ such that

$$
\|f\|=\sup \frac{\left|f\left(e^{i(\theta+h)}\right)+f\left(e^{i(\theta-h)}\right)-2 f\left(e^{i \theta}\right)\right|}{h}<\infty
$$

where the supremum is taken over all $\theta \in \mathbb{R}$ and $h>0$. By Theorem 5.3 of [3], we see that $f \in \mathcal{Z}$ if and only if $\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime \prime}(z)\right|<\infty . \mathcal{Z}$, called the Zygmund space, a Banach space with the norm defined by

$$
\|f\|_{\mathcal{Z}}=|f(0)|+\left|f^{\prime}(0)\right|+\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime \prime}(z)\right| .
$$

See [1, 3, 6] for more details on the space \mathcal{Z}.
Let φ be an analytic self-map of \mathbb{D}. The composition operator C_{φ} is defined by

$$
\left(C_{\varphi} f\right)(z)=f(\varphi(z)), \quad f \in H(\mathbb{D})
$$

Let $u \in H(\mathbb{D})$. The weighted composition operator, denoted by $u C_{\varphi}$, is defined by

$$
\left(u C_{\varphi} f\right)(z)=u(z) f(\varphi(z)), \quad f \in H(\mathbb{D}), \quad z \in \mathbb{D}
$$

Let X, Y be Banach spaces and $\|\cdot\|_{X \rightarrow Y}$ denotes the operator norm. Recall that the essential norm of a bounded linear operator $T: X \rightarrow Y$ is its distance to the set of compact operators K mapping X into Y, that is,

$$
\|T\|_{e, X \rightarrow Y}=\inf \left\{\|T-K\|_{X \rightarrow Y}: K \text { is a compact operator }\right\}
$$

It is well-known that $\|T\|_{e, X \rightarrow Y}=0$ if and only if $T: X \rightarrow Y$ is compact.
The composition operator $C_{\varphi}: \mathcal{B} \rightarrow \mathcal{B}$ is bounded for any φ by the Schwarz-Pick Lemma. Madigan and Matheson studied the compactness of the operator $C_{\varphi}: \mathcal{B} \rightarrow \mathcal{B}$ in [11]. Montes-Rodrieguez [12] studied the essential norm of the operator $C_{\varphi}: \mathcal{B} \rightarrow \mathcal{B}$ and got the exact value for it, i.e.,

$$
\left\|C_{\varphi}\right\|_{e, \mathcal{B} \rightarrow \mathcal{B}}=\lim _{s \rightarrow 1} \sup _{|\varphi(z)|>s} \frac{\left(1-|z|^{2}\right)\left|\varphi^{\prime}(z)\right|}{1-|\varphi(z)|^{2}} .
$$

Tjani [16] proved that $C_{\varphi}: \mathcal{B} \rightarrow \mathcal{B}$ is compact if and only if $\lim _{|a| \rightarrow 1}\left\|C_{\varphi} \sigma_{a}\right\|_{\mathcal{B}}=0$, where $\sigma_{a}(z)=\frac{a-z}{1-\bar{a} z}$. Wulan et al. 17] proved that $C_{\varphi}: \mathcal{B} \rightarrow \mathcal{B}$ is compact if and only if $\lim _{j \rightarrow \infty}\left\|\varphi^{j}\right\|_{\mathcal{B}}=0$. In [20], Zhao obtained that

$$
\left\|C_{\varphi}\right\|_{e, \mathcal{B} \rightarrow \mathcal{B}}=\frac{e}{2} \limsup _{n \rightarrow \infty}\left\|\varphi^{n}\right\|_{\mathcal{B}}
$$

The boundedness and compactness of the operator $u C_{\varphi}: \mathcal{B} \rightarrow \mathcal{B}$ were studied in 13 . The essential norm of the operator $u C_{\varphi}: \mathcal{B} \rightarrow \mathcal{B}$ was studied in [5, 10].

The composition operators, weighted composition operators and related operators on the Zygmund space were studied in [1, 2, 4, 6 9, 14, 15, 18, 19]. In [2], the authors studied the operator $u C_{\varphi}: H^{\infty} \rightarrow \mathcal{Z}$. Among others, they showed that $u C_{\varphi}: H^{\infty} \rightarrow \mathcal{Z}$ is compact if and only if $\lim _{n \rightarrow \infty}\left\|u \varphi^{n}\right\|_{\mathcal{Z}}=0$. In fact, from the proof of Theorem 2 in [2], or [14, 19], we find that they obtained the following result.

Theorem $1.1([2,14,19])$. Let $u \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} such that the operator $u C_{\varphi}: H^{\infty} \rightarrow \mathcal{Z}$ is bounded. Then the following statements are equivalent:
(a) The operator $u C_{\varphi}: H^{\infty} \rightarrow \mathcal{Z}$ is compact.
(b) $\lim _{n \rightarrow \infty}\left\|u \varphi^{n}\right\|_{\mathcal{Z}}=0$.
(c)

$$
\limsup _{|\varphi(w)| \rightarrow 1}\left\|u C_{\varphi} f_{\varphi(w)}\right\|_{\mathcal{Z}}=\limsup _{|\varphi(w)| \rightarrow 1}\left\|u C_{\varphi} g_{\varphi(w)}\right\|_{\mathcal{Z}}=\limsup _{|\varphi(w)| \rightarrow 1}\left\|u C_{\varphi} h_{\varphi(w)}\right\|_{\mathcal{Z}}=0
$$

where

$$
f_{a}(z)=\frac{1-|a|^{2}}{1-\bar{a} z}, g_{a}(z)=\frac{\left(1-|a|^{2}\right)^{2}}{(1-\bar{a} z)^{2}}, h_{a}(z)=\frac{\left(1-|a|^{2}\right)^{3}}{(1-\bar{a} z)^{3}}, a \in \mathbb{D}
$$

(d)

$$
\begin{aligned}
\lim _{|\varphi(z)| \rightarrow 1}\left(1-|z|^{2}\right)\left|u^{\prime \prime}(z)\right| & =\lim _{|\varphi(z)| \rightarrow 1} \frac{\left(1-|z|^{2}\right)|u(z)|\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2}} \\
& =\lim _{|\varphi(z)| \rightarrow 1} \frac{\left(1-|z|^{2}\right)\left|2 u^{\prime}(z) \varphi^{\prime}(z)+u(z) \varphi^{\prime \prime}(z)\right|}{1-|\varphi(z)|^{2}}=0
\end{aligned}
$$

Motivated by the above result, in this paper, we completely characterize the essential norm of the operator $u C_{\varphi}$ from H^{∞} to the Zygmund space.

Throughout this paper, we say that $A \lesssim B$ if there exists a constant C such that $A \leq C B$. The symbol $A \approx B$ means that $A \lesssim B \lesssim A$.

2. Main results and proofs

In this section, we give some estimates of the essential norm for the operator $u C_{\varphi}: H^{\infty} \rightarrow \mathcal{Z}$. For this purpose, we need to state a lemma.

Lemma 2.1 ([16). Let X, Y be two Banach spaces of analytic functions on \mathbb{D}. Suppose that
(1) the point evaluation functionals on Y are continuous,
(2) the closed unit ball of X is a compact subset of X in the topology of uniform convergence on compact sets,
(3) $T: X \rightarrow Y$ is continuous when X and Y are given the topology of uniform convergence on compact sets.

Then, T is a compact operator if and only if given a bounded sequence $\left\{f_{n}\right\}$ in X such that $f_{n} \rightarrow 0$ uniformly on compact sets, then the sequence $\left\{T f_{n}\right\}$ converges to zero in the norm of Y.

Theorem 2.2. Let $u \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} such that $u C_{\varphi}: H^{\infty} \rightarrow \mathcal{Z}$ is bounded. Then

$$
\left\|u C_{\varphi}\right\|_{e, H^{\infty} \rightarrow \mathcal{Z}} \approx \max \{A, B, C\} \approx \max \{E, F, G\}
$$

where

$$
\begin{aligned}
& A:=\limsup _{|a| \rightarrow 1}\left\|u C_{\varphi} f_{a}\right\|_{\mathcal{Z}}, \quad B:=\limsup _{|a| \rightarrow 1}\left\|u C_{\varphi} g_{a}\right\|_{\mathcal{Z}}, \quad C:=\limsup _{|a| \rightarrow 1}\left\|u C_{\varphi} h_{a}\right\|_{\mathcal{Z}}, \\
& E:=\limsup _{|\varphi(z)| \rightarrow 1} \frac{\left(1-|z|^{2}\right)\left|2 u^{\prime}(z) \varphi^{\prime}(z)+u(z) \varphi^{\prime \prime}(z)\right|}{1-|\varphi(z)|^{2}}, \quad F:=\limsup _{|\varphi(z)| \rightarrow 1}\left(1-|z|^{2}\right)\left|u^{\prime \prime}(z)\right|
\end{aligned}
$$

and

$$
G:=\limsup _{|\varphi(z)| \rightarrow 1} \frac{\left(1-|z|^{2}\right)|u(z)|\left|\varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2}}
$$

Proof. First, we prove that $\max \{A, B, C\} \lesssim\left\|u C_{\varphi}\right\|_{e, H^{\infty} \rightarrow \mathcal{Z}}$. Let $a \in \mathbb{D}$. It is easy to see that $f_{a}, g_{a}, h_{a} \in H^{\infty}$ and f_{a}, g_{a}, h_{a} converge to 0 uniformly on compact subsets of \mathbb{D}. Thus, for any compact operator $K: H^{\infty} \rightarrow$ \mathcal{Z}, by Lemma 2.1 we have

$$
\lim _{|a| \rightarrow 1}\left\|K f_{a}\right\|_{\mathcal{Z}}=0, \quad \lim _{|a| \rightarrow 1}\left\|K g_{a}\right\|_{\mathcal{Z}}=0, \quad \lim _{|a| \rightarrow 1}\left\|K h_{a}\right\|_{\mathcal{Z}}=0
$$

Hence

$$
\left\|u C_{\varphi}-K\right\|_{H^{\infty} \rightarrow \mathcal{Z}} \gtrsim \limsup _{|a| \rightarrow 1}\left\|\left(u C_{\varphi}-K\right) f_{a}\right\|_{\mathcal{Z}}
$$

$$
\begin{aligned}
& \geq \limsup _{|a| \rightarrow 1}\left\|u C_{\varphi} f_{a}\right\|_{\mathcal{Z}}-\underset{|a| \rightarrow 1}{\limsup }\left\|K f_{a}\right\|_{\mathcal{Z}}=A, \\
\left\|u C_{\varphi}-K\right\|_{H^{\infty} \rightarrow \mathcal{Z}} & \gtrsim \underset{|a| \rightarrow 1}{\limsup \left\|\left(u C_{\varphi}-K\right) g_{a}\right\|_{\mathcal{Z}}} \\
& \geq \operatorname{iimsup}_{|a| \rightarrow 1}\left\|u C_{\varphi} g_{a}\right\|_{\mathcal{Z}}-\underset{|a| \rightarrow 1}{\limsup }\left\|K g_{a}\right\|_{\mathcal{Z}}=B,
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|u C_{\varphi}-K\right\|_{H^{\infty} \rightarrow \mathcal{Z}} & \gtrsim \underset{|a| \rightarrow 1}{\limsup }\left\|\left(u C_{\varphi}-K\right) h_{a}\right\|_{\mathcal{Z}} \\
& \geq \underset{|a| \rightarrow 1}{\lim \sup _{1}}\left\|u C_{\varphi} h_{a}\right\|_{\mathcal{Z}}-\underset{|a| \rightarrow 1}{\limsup }\left\|K h_{a}\right\|_{\mathcal{Z}}=C .
\end{aligned}
$$

Therefore, we obtain

$$
\left\|u C_{\varphi}\right\|_{e, H^{\infty} \rightarrow \mathcal{Z}}=\inf _{K}\left\|u C_{\varphi}-K\right\|_{H^{\infty} \rightarrow \mathcal{Z}} \gtrsim \max \{A, B, C\} .
$$

Next, we will prove that $\left\|u C_{\varphi}\right\|_{e, H^{\infty} \rightarrow \mathcal{Z}} \gtrsim \max \{E, F, G\}$. Let $\left\{z_{j}\right\}_{j \in \mathbb{N}}$ be a sequence in \mathbb{D} such that $\left|\varphi\left(z_{j}\right)\right| \rightarrow 1$ as $j \rightarrow \infty$. Define

$$
\begin{aligned}
& k_{j}(z)=\frac{1-\left|\varphi\left(z_{j}\right)\right|^{2}}{\left(1-\overline{\varphi\left(z_{j}\right)} z\right)}-\frac{5}{3} \frac{\left(1-\left|\varphi\left(z_{j}\right)\right|^{2}\right)^{2}}{\left(1-\overline{\varphi\left(z_{j}\right)} z\right)^{2}}+\frac{2}{3} \frac{\left(1-\left|\varphi\left(z_{j}\right)\right|^{2}\right)^{3}}{\left(1-\overline{\varphi\left(z_{j}\right) z}\right)^{3}}, \\
& p_{j}(z)=\frac{1-\left|\varphi\left(z_{j}\right)\right|^{2}}{\left(1-\overline{\varphi\left(z_{j}\right)} z\right)}-\frac{\left(1-\left|\varphi\left(z_{j}\right)\right|^{2}\right)^{2}}{\left(1-\overline{\left.\varphi\left(z_{j}\right) z\right)^{2}}\right.}+\frac{1}{3} \frac{\left(1-\left|\varphi\left(z_{j}\right)\right|^{2}\right)^{3}}{\left(1-\overline{\varphi\left(z_{j}\right) z}\right)^{3}},
\end{aligned}
$$

and

$$
q_{j}(z)=\frac{1-\left|\varphi\left(z_{j}\right)\right|^{2}}{\left(1-\overline{\varphi\left(z_{j}\right)} z\right)}-2 \frac{\left(1-\left|\varphi\left(z_{j}\right)\right|^{2}\right)^{2}}{\left(1-\overline{\varphi\left(z_{j}\right)} z\right)^{2}}+\frac{\left(1-\left|\varphi\left(z_{j}\right)\right|^{2}\right)^{3}}{\left(1-\overline{\varphi\left(z_{j}\right)} z\right)^{3}} .
$$

It is easy to see that all k_{j}, p_{j} and q_{j} belong to H^{∞} and converge to 0 uniformly on compact subsets of \mathbb{D}. Moreover,

$$
\begin{aligned}
k_{j}\left(\varphi\left(z_{j}\right)\right)=0, & k_{j}^{\prime \prime}\left(\varphi\left(z_{j}\right)\right)=0, \\
p_{j}^{\prime}\left(\varphi\left(z_{j}\right)\right)=0, & p_{j}^{\prime \prime}\left(\varphi\left(z_{j}^{\prime}\right)\right) \left\lvert\,=\frac{1}{3} \frac{\left|\varphi\left(z_{j}\right)\right|}{\left(1-\left|\varphi\left(z_{j}\right)\right|^{2}\right)}\right., \\
q_{j}\left(\varphi\left(z_{j}\right)\right)=0, & \quad q_{j}^{\prime}\left(\varphi\left(z_{j}\right)\right) \left\lvert\,=\frac{1}{3}\right., \\
\left.\left.q_{j}\right)\right)=0, & \left|q_{j}^{\prime \prime}\left(\varphi\left(z_{j}\right)\right)\right|=\frac{2\left|\varphi\left(z_{j}\right)\right|^{2}}{\left(1-\left|\varphi\left(z_{j}\right)\right|^{2}\right)^{2}} .
\end{aligned}
$$

Then for any compact operator $K: H^{\infty} \rightarrow \mathcal{Z}$, by Lemma 2.1 we obtain

$$
\begin{aligned}
\left\|u C_{\varphi}-K\right\|_{H^{\infty} \rightarrow \mathcal{Z}} & \gtrsim \limsup _{j \rightarrow \infty}\left\|u C_{\varphi}\left(k_{j}\right)\right\|_{\mathcal{Z}}-\underset{j \rightarrow \infty}{\limsup }\left\|K\left(k_{j}\right)\right\| \mathcal{Z} \\
& \gtrsim \limsup _{j \rightarrow \infty} \frac{\left(1-\left|z_{j}\right|^{2}\right)\left|2 u^{\prime}\left(z_{j}\right) \varphi^{\prime}\left(z_{j}\right)+u\left(z_{j}\right) \varphi^{\prime \prime}\left(z_{j}\right) \| \varphi\left(z_{j}\right)\right|}{1-\left|\varphi\left(z_{j}\right)\right|^{2}}, \\
\left\|u C_{\varphi}-K\right\|_{H^{\infty} \rightarrow \mathcal{Z}} & \gtrsim \limsup _{j \rightarrow \infty}\left\|u C_{\varphi}\left(p_{j}\right)\right\|_{\mathcal{Z}}-\limsup _{j \rightarrow \infty}\left\|K\left(p_{j}\right)\right\|_{\mathcal{Z}} \\
& \gtrsim \limsup _{j \rightarrow \infty}\left(1-\left|z_{j}\right|^{2}\right)\left|u^{\prime \prime}\left(z_{j}\right)\right|,
\end{aligned}
$$

and

$$
\left\|u C_{\varphi}-K\right\|_{H^{\infty} \rightarrow \mathcal{Z}} \gtrsim \limsup _{j \rightarrow \infty}\left\|u C_{\varphi}\left(q_{j}\right)\right\|_{\mathcal{Z}}-\underset{j \rightarrow \infty}{\limsup }\left\|K\left(q_{j}\right)\right\|_{\mathcal{Z}}
$$

$$
\gtrsim \limsup _{j \rightarrow \infty} \frac{\left(1-\left|z_{j}\right|^{2}\right)\left|u\left(z_{j}\right)\right|\left|\varphi^{\prime}\left(z_{j}\right)\right|^{2}\left|\varphi\left(z_{j}\right)\right|^{2}}{\left(1-\mid \varphi\left(\left.z_{j}\right|^{2}\right)^{2}\right.}
$$

From the definition of the essential norm, we obtain

$$
\begin{aligned}
\left\|u C_{\varphi}\right\|_{e, H^{\infty} \rightarrow z} & =\inf _{K}\left\|u C_{\varphi}-K\right\|_{H^{\infty} \rightarrow \mathcal{Z}} \\
& \gtrsim \limsup _{j \rightarrow \infty} \frac{\left(1-\left|z_{j}\right|^{2}\right)\left|2 u^{\prime}\left(z_{j}\right) \varphi^{\prime}\left(z_{j}\right)+u\left(z_{j}\right) \varphi^{\prime \prime}\left(z_{j}\right) \| \varphi\left(z_{j}\right)\right|}{1-\left|\varphi\left(z_{j}\right)\right|^{2}} \\
& =\limsup _{|\varphi(z)| \rightarrow 1} \frac{\left(1-|z|^{2}\right)\left|2 u^{\prime}(z) \varphi^{\prime}(z)+u(z) \varphi^{\prime \prime}(z)\right|}{1-|\varphi(z)|^{2}}=E, \\
\left\|u C_{\varphi}\right\|_{e, H^{\infty} \rightarrow \mathcal{Z}} & =\inf _{K}\left\|u C_{\varphi}-K\right\|_{H^{\infty} \rightarrow \mathcal{Z}} \gtrsim \limsup _{j \rightarrow \infty}\left(1-\left|z_{j}\right|^{2}\right)\left|u^{\prime \prime}\left(z_{j}\right)\right| \\
& =\limsup _{|\varphi(z)| \rightarrow 1}\left(1-|z|^{2}\right)\left|u^{\prime \prime}(z)\right|=F,
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|u C_{\varphi}\right\|_{e, H^{\infty} \rightarrow \mathcal{Z}} & =\inf _{K}\left\|u C_{\varphi}-K\right\|_{H^{\infty} \rightarrow \mathcal{Z}} \\
& \gtrsim \limsup _{j \rightarrow \infty} \frac{\left.\left(1-\left|z_{j}\right|^{2}\right)\left|u\left(z_{j}\right)\right| \varphi^{\prime}\left(z_{j}\right)\right|^{2}\left|\varphi\left(z_{j}\right)\right|^{2}}{\left(1-\left|\varphi\left(z_{j}\right)\right|^{2}\right)^{2}} \\
& =\limsup _{|\varphi(z)| \rightarrow 1} \frac{\left(1-|z|^{2}\right)\left|u(z) \| \varphi^{\prime}(z)\right|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2}}=G .
\end{aligned}
$$

Hence,

$$
\left\|u C_{\varphi}\right\|_{e, H^{\infty} \rightarrow \mathcal{Z}} \gtrsim \max \{E, F, G\} .
$$

Finally, we prove that

$$
\left\|u C_{\varphi}\right\|_{e, H^{\infty} \rightarrow \mathcal{Z}} \lesssim \max \{A, B, C\} \quad \text { and } \quad\left\|u C_{\varphi}\right\|_{e, H^{\infty} \rightarrow \mathcal{Z}} \lesssim \max \{E, F, G\} .
$$

For $r \in[0,1)$, set $K_{r}: H(\mathbb{D}) \rightarrow H(\mathbb{D})$ by

$$
\left(K_{r} f\right)(z)=f_{r}(z)=f(r z), \quad f \in H(\mathbb{D}) .
$$

It is obvious that $f_{r} \rightarrow f$ uniformly on compact subsets of \mathbb{D} as $r \rightarrow 1$. Moreover, the operator K_{r} is compact on H^{∞} and $\left\|K_{r}\right\|_{H^{\infty} \rightarrow H^{\infty}} \leq 1$. Let $\left\{r_{j}\right\} \subset(0,1)$ be a sequence such that $r_{j} \rightarrow 1$ as $j \rightarrow \infty$. Then for all positive integers j, the operator $u C_{\varphi} K_{r_{j}}: H^{\infty} \rightarrow \mathcal{Z}$ is compact. By the definition of the essential norm, we get

$$
\begin{equation*}
\left\|u C_{\varphi}\right\|_{e, H^{\infty} \rightarrow \mathcal{Z}} \leq \limsup _{j \rightarrow \infty}\left\|u C_{\varphi}-u C_{\varphi} K_{r_{j}}\right\|_{H^{\infty} \rightarrow \mathcal{Z}} . \tag{2.1}
\end{equation*}
$$

Therefore, we only need to prove that

$$
\limsup _{j \rightarrow \infty}\left\|u C_{\varphi}-u C_{\varphi} K_{r_{j}}\right\|_{H^{\infty} \rightarrow \mathcal{Z}} \lesssim \max \{A, B, C\}
$$

and

$$
\underset{j \rightarrow \infty}{\limsup }\left\|u C_{\varphi}-u C_{\varphi} K_{r_{j}}\right\|_{H^{\infty} \rightarrow \mathcal{Z}} \lesssim \max \{E, F, G\} .
$$

For any $f \in H^{\infty}$ such that $\|f\|_{\infty} \leq 1$, consider

$$
\begin{align*}
\left\|\left(u C_{\varphi}-u C_{\varphi} K_{r_{j}}\right) f\right\|_{\mathcal{Z}}= & \left|u(0) f(\varphi(0))-u(0) f\left(r_{j} \varphi(0)\right)\right|+\left\|u\left(f-f_{r_{j}}\right) \circ \varphi\right\|_{* *} \tag{2.2}\\
& +\left|u^{\prime}(0)\left(f-f_{r_{j}}\right)(\varphi(0))+u(0)\left(f-f_{r_{j}}\right)^{\prime}(\varphi(0)) \varphi^{\prime}(0)\right| .
\end{align*}
$$

Here $\|g\|_{* *}=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|g^{\prime \prime}(z)\right|$. It is obvious that

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left|u(0) f(\varphi(0))-u(0) f\left(r_{j} \varphi(0)\right)\right|=0 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left|u^{\prime}(0)\left(f-f_{r_{j}}\right)(\varphi(0))+u(0)\left(f-f_{r_{j}}\right)^{\prime}(\varphi(0)) \varphi^{\prime}(0)\right|=0 . \tag{2.4}
\end{equation*}
$$

Now, we consider

$$
\begin{equation*}
\underset{j \rightarrow \infty}{\limsup }\left\|u \cdot\left(f-f_{r_{j}}\right) \circ \varphi\right\|_{* *} \leq Q_{1}+Q_{2}+Q_{3}+Q_{4}+Q_{5}+Q_{6} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& Q_{1}:=\limsup _{j \rightarrow \infty} \sup _{|\varphi(z)| \leq r_{N}}\left(1-|z|^{2}\right)\left|\left(f-f_{r_{j}}\right)^{\prime}(\varphi(z))\right|\left|2 u^{\prime}(z) \varphi^{\prime}(z)+u(z) \varphi^{\prime \prime}(z)\right|, \\
& Q_{2}:=\limsup _{j \rightarrow \infty} \sup _{|\varphi(z)|>r_{N}}\left(1-|z|^{2}\right)\left|\left(f-f_{r_{j}}\right)^{\prime}(\varphi(z))\right|\left|2 u^{\prime}(z) \varphi^{\prime}(z)+u(z) \varphi^{\prime \prime}(z)\right|, \\
& Q_{3}:=\limsup _{j \rightarrow \infty} \sup _{|\varphi(z)| \leq r_{N}}\left(1-|z|^{2}\right)\left|\left(f-f_{r_{j}}\right)(\varphi(z)) \| u^{\prime \prime}(z)\right|, \\
& Q_{4}:=\limsup _{j \rightarrow \infty} \sup _{|\varphi(z)|>r_{N}}\left(1-|z|^{2}\right)\left|\left(f-f_{r_{j}}\right)(\varphi(z)) \| u^{\prime \prime}(z)\right|, \\
& Q_{5}:=\underset{j \rightarrow \infty}{\limsup } \sup _{|\varphi(z)| \leq r_{N}}\left(1-|z|^{2}\right)\left|\left(f-f_{r_{j}}\right)^{\prime \prime}(\varphi(z))\right|\left|\varphi^{\prime}(z)\right|^{2}|u(z)|, \\
& Q_{6}:=\limsup _{j \rightarrow \infty} \sup _{|\varphi(z)|>r_{N}}\left(1-|z|^{2}\right)\left|\left(f-f_{r_{j}}\right)^{\prime \prime}(\varphi(z))\right|\left|\varphi^{\prime}(z)\right|^{2}|u(z)|,
\end{aligned}
$$

and $N \in \mathbb{N}$ is large enough such that $r_{j} \geq \frac{1}{2}$ for all $j \geq N$. Since $u C_{\varphi}: H^{\infty} \rightarrow \mathcal{Z}$ is bounded, from the proof of Theorem 1 in [2], we see that $u \in \mathcal{Z}$,

$$
\widetilde{J}_{1}:=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|2 u^{\prime}(z) \varphi^{\prime}(z)+u(z) \varphi^{\prime \prime}(z)\right|<\infty
$$

and

$$
\widetilde{J}_{2}:=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|\varphi^{\prime}(z)\right|^{2}|u(z)|<\infty .
$$

Since $r_{j} f_{r_{j}}^{\prime} \rightarrow f^{\prime}$, as well as $r_{j}^{2} f_{r_{j}}^{\prime \prime} \rightarrow f^{\prime \prime}$ uniformly on compact subsets of \mathbb{D} as $j \rightarrow \infty$, we have

$$
\begin{align*}
& Q_{1} \leq \widetilde{J}_{1} \limsup _{j \rightarrow \infty} \sup _{|w| \leq r_{N}}\left|f^{\prime}(w)-r_{j} f^{\prime}\left(r_{j} w\right)\right|=0, \tag{2.6}\\
& Q_{5} \leq \widetilde{J}_{2} \limsup _{j \rightarrow \infty} \sup _{|w| \leq r_{N}}\left|f^{\prime \prime}(w)-r_{j}^{2} f^{\prime \prime}\left(r_{j} w\right)\right|=0, \tag{2.7}
\end{align*}
$$

and

$$
\begin{equation*}
Q_{3} \leq\|u\|_{\mathcal{Z}} \limsup _{j \rightarrow \infty} \sup _{|w| \leq r_{N}}\left|f(w)-f\left(r_{j} w\right)\right|=0 . \tag{2.8}
\end{equation*}
$$

Next, we consider Q_{2}. We have $Q_{2} \leq \lim \sup _{j \rightarrow \infty}\left(S_{1}+S_{2}\right)$, where

$$
S_{1}:=\sup _{|\varphi(z)|>r_{N}}\left(1-|z|^{2}\right)\left|f^{\prime}(\varphi(z))\right|\left|2 u^{\prime}(z) \varphi^{\prime}(z)+u(z) \varphi^{\prime \prime}(z)\right|
$$

and

$$
S_{2}:=\sup _{|\varphi(z)|>r_{N}}\left(1-|z|^{2}\right) r_{j}\left|f^{\prime}\left(r_{j} \varphi(z)\right)\right|\left|2 u^{\prime}(z) \varphi^{\prime}(z)+u(z) \varphi^{\prime \prime}(z)\right| .
$$

First we estimate S_{1}. Using the fact that $\|f\|_{\infty} \leq 1$, we have

$$
\begin{align*}
S_{1} & =\sup _{|\varphi(z)|>r_{N}}\left(1-|z|^{2}\right)\left|f^{\prime}(\varphi(z))\right|\left|2 u^{\prime}(z) \varphi^{\prime}(z)+u(z) \varphi^{\prime \prime}(z)\right| \frac{3\left(1-|\varphi(z)|^{2}\right)}{|\varphi(z)|} \frac{|\varphi(z)|}{3\left(1-|\varphi(z)|^{2}\right)} \\
& \lesssim \frac{\|f\|_{\infty}}{r_{N}} \sup _{|\varphi(z)|>r_{N}} \frac{\left(1-|z|^{2}\right)\left|2 u^{\prime}(z) \varphi^{\prime}(z)+u(z) \varphi^{\prime \prime}(z)\right||\varphi(z)|}{3\left(1-|\varphi(z)|^{2}\right)} \\
& \lesssim \sup _{|\varphi(z)|>r_{N}} \sup _{|a|>r_{N}} \frac{\left(1-|z|^{2}\right)\left|2 u^{\prime}(z) \varphi^{\prime}(z)+u(z) \varphi^{\prime \prime}(z)\right||\varphi(z)|}{3\left(1-|\varphi(z)|^{2}\right)} \tag{2.9}\\
& \lesssim \sup _{|a|>r_{N}}\left\|u C_{\varphi}\left(f_{a}-\frac{5}{3} g_{a}+\frac{2}{3} h_{a}\right)\right\| \mathcal{Z} \\
& \lesssim \sup _{|a|>r_{N}}\left\|u C_{\varphi}\left(f_{a}\right)\right\|_{\mathcal{Z}}+\frac{5}{3} \sup _{|a|>r_{N}}\left\|u C_{\varphi}\left(g_{a}\right)\right\|_{\mathcal{Z}}+\frac{2}{3} \sup _{|a|>r_{N}}\left\|u C_{\varphi}\left(h_{a}\right)\right\|_{\mathcal{Z}} .
\end{align*}
$$

Here we used the fact that $\sup _{w \in \mathbb{D}}\left(1-|w|^{2}\right)\left|f^{\prime}(w)\right| \lesssim\|f\|_{\infty}$ for any $f \in H^{\infty}$, since $H^{\infty} \subset \mathcal{B}$ and $\|f\|_{\mathcal{B}} \leq$ $\|f\|_{\infty}$. Taking limit as $N \rightarrow \infty$ we obtain

$$
\begin{aligned}
\limsup _{j \rightarrow \infty} S_{1} & \lesssim \limsup _{|a| \rightarrow 1}\left\|u C_{\varphi}\left(f_{a}\right)\right\|_{\mathcal{Z}}+\limsup _{|a| \rightarrow 1}\left\|u C_{\varphi}\left(g_{a}\right)\right\|_{\mathcal{Z}}+\limsup _{|a| \rightarrow 1}\left\|u C_{\varphi}\left(h_{a}\right)\right\|_{\mathcal{Z}} \\
& =A+B+C
\end{aligned}
$$

Similarly, we have $\lim \sup _{j \rightarrow \infty} S_{2} \lesssim A+B+C$, i.e., we get that

$$
\begin{equation*}
Q_{2} \lesssim A+B+C \lesssim \max \{A, B, C\} \tag{2.10}
\end{equation*}
$$

From 2.9), we see that

$$
\limsup _{j \rightarrow \infty} S_{1} \lesssim \limsup _{|\varphi(z)| \rightarrow 1} \frac{\left(1-|z|^{2}\right)\left|2 u^{\prime}(z) \varphi^{\prime}(z)+u(z) \varphi^{\prime \prime}(z)\right|}{1-|\varphi(z)|^{2}}=E
$$

Similarly, we have $\lim \sup _{j \rightarrow \infty} S_{2} \lesssim E$. Therefore,

$$
\begin{equation*}
Q_{2} \lesssim E \tag{2.11}
\end{equation*}
$$

Also for Q_{4}, we have $Q_{4} \leq \lim \sup _{j \rightarrow \infty}\left(S_{3}+S_{4}\right)$, where

$$
S_{3}:=\sup _{|\varphi(z)|>r_{N}}\left(1-|z|^{2}\right)\left|f(\varphi(z))\left\|u^{\prime \prime}(z)\left|, \quad S_{4}:=\sup _{|\varphi(z)|>r_{N}}\left(1-|z|^{2}\right)\right| f\left(r_{j} \varphi(z)\right)\right\| u^{\prime \prime}(z)\right|
$$

After a calculation, we have

$$
\begin{align*}
S_{3} & =\sup _{|\varphi(z)|>r_{N}}\left(1-|z|^{2}\right)\left|f(\varphi(z)) \| u^{\prime \prime}(z)\right| \\
& \lesssim\|f\|_{\infty} \sup _{|\varphi(z)|>r_{N}} \frac{1}{3}\left(1-|z|^{2}\right)\left|u^{\prime \prime}(z)\right| \\
& \lesssim \sup _{|\varphi(z)|>r_{N}} \sup _{|a|>r_{N}} \frac{1}{3}\left(1-|z|^{2}\right)\left|u^{\prime \prime}(z)\right| \tag{2.12}\\
& \lesssim \sup _{|a|>r_{N}}\left\|u C_{\varphi}\left(f_{a}\right)\right\|_{\mathcal{Z}}+\sup _{|a|>r_{N}}\left\|u C_{\varphi}\left(g_{a}\right)\right\|_{\mathcal{Z}}+\frac{1}{3} \sup _{|a|>r_{N}}\left\|u C_{\varphi}\left(h_{a}\right)\right\|_{\mathcal{Z}} \\
& \lesssim \sup _{|a|>r_{N}}\left\|u C_{\varphi}\left(f_{a}\right)\right\|_{\mathcal{Z}}+\sup _{|a|>r_{N}}\left\|u C_{\varphi}\left(g_{a}\right)\right\|_{\mathcal{Z}}+\sup _{|a|>r_{N}}\left\|u C_{\varphi}\left(h_{a}\right)\right\|_{\mathcal{Z}}
\end{align*}
$$

Taking limit as $N \rightarrow \infty$ we obtain

$$
\begin{aligned}
\limsup _{j \rightarrow \infty} S_{3} & \lesssim \limsup _{|a| \rightarrow 1}\left\|u C_{\varphi}\left(f_{a}\right)\right\|_{\mathcal{Z}}+\limsup _{|a| \rightarrow 1}\left\|u C_{\varphi}\left(g_{a}\right)\right\|_{\mathcal{Z}}+\limsup _{|a| \rightarrow 1}\left\|u C_{\varphi}\left(h_{a}\right)\right\|_{\mathcal{Z}} \\
& =A+B+C
\end{aligned}
$$

Similarly, we have $\lim \sup _{j \rightarrow \infty} S_{4} \lesssim A+B+C$, i.e., we get that

$$
\begin{equation*}
Q_{4} \lesssim A+B+C \lesssim \max \{A, B, C\} \tag{2.13}
\end{equation*}
$$

From (2.12), we see that

$$
\limsup _{j \rightarrow \infty} S_{3} \lesssim \limsup _{|\varphi(z)| \rightarrow 1}\left(1-|z|^{2}\right)\left|u^{\prime \prime}(z)\right|=F
$$

Similarly, we have that $\lim \sup _{j \rightarrow \infty} S_{4} \lesssim F$. Therefore,

$$
\begin{equation*}
Q_{4} \lesssim F \tag{2.14}
\end{equation*}
$$

Also, for Q_{6}, we have $Q_{6} \leq \lim \sup _{j \rightarrow \infty}\left(S_{5}+S_{6}\right)$, where

$$
S_{5}:=\sup _{|\varphi(z)|>r_{N}}\left(1-|z|^{2}\right)\left|f^{\prime \prime}(\varphi(z))\right|\left|\varphi^{\prime}(z)\right|^{2}|u(z)|, \quad S_{6}:=\sup _{|\varphi(z)|>r_{N}}\left(1-|z|^{2}\right) r_{j}^{2}\left|f^{\prime \prime}\left(r_{j} \varphi(z)\right)\right|\left|\varphi^{\prime}(z)\right|^{2}|u(z)|
$$

After a calculation, we have

$$
\begin{align*}
S_{5} & \lesssim\|f\|_{\infty} \sup _{|\varphi(z)|>r_{N}}\left(1-|z|^{2}\right)\left|\varphi^{\prime}(z)\right|^{2}|u(z)| \frac{2|\varphi(z)|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2}} \\
& \lesssim \sup _{|\varphi(z)|>r_{N}}\left(1-|z|^{2}\right)\left|\varphi^{\prime}(z)\right|^{2}|u(z)| \frac{2|\varphi(z)|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2}} \tag{2.15}\\
& \lesssim \sup _{|a|>r_{N}}\left\|u C_{\varphi}\left(f_{a}-2 g_{a}+h_{a}\right)\right\|_{\mathcal{Z}} \\
& \lesssim \sup _{|a|>r_{N}}\left(\left\|u C_{\varphi}\left(f_{a}\right)\right\|_{\mathcal{Z}}+\left\|u C_{\varphi}\left(g_{a}\right)\right\|_{\mathcal{Z}}+\left\|u C_{\varphi}\left(h_{a}\right)\right\|_{\mathcal{Z}}\right)
\end{align*}
$$

Taking limit as $N \rightarrow \infty$ we obtain

$$
\begin{aligned}
\limsup _{j \rightarrow \infty} S_{5} & \lesssim \limsup _{|a| \rightarrow 1}\left\|u C_{\varphi}\left(f_{a}\right)\right\|_{\mathcal{Z}}+\limsup _{|a| \rightarrow 1}\left\|u C_{\varphi}\left(g_{a}\right)\right\|_{\mathcal{Z}}+\limsup _{|a| \rightarrow 1}\left\|u C_{\varphi}\left(h_{a}\right)\right\|_{\mathcal{Z}} \\
& =A+B+C
\end{aligned}
$$

Similarly, we get $\lim \sup _{j \rightarrow \infty} S_{6} \lesssim A+B+C$, i.e., we have

$$
\begin{equation*}
Q_{6} \lesssim A+B+C \lesssim \max \{A, B, C\} \tag{2.16}
\end{equation*}
$$

From (2.15), we obtain

$$
\limsup _{j \rightarrow \infty} S_{5} \lesssim \limsup _{|\varphi(z)| \rightarrow 1} \frac{\left(1-|z|^{2}\right)\left|\varphi^{\prime}(z)\right|^{2}|u(z)|}{\left(1-|\varphi(z)|^{2}\right)^{2}}=G
$$

Similarly, we obtain $\lim \sup _{j \rightarrow \infty} S_{6} \lesssim G$. Therefore,

$$
\begin{equation*}
Q_{6} \lesssim G \tag{2.17}
\end{equation*}
$$

Hence, by (2.2)-(2.8), 2.10), 2.13) and 2.16) we get

$$
\begin{align*}
\limsup _{j \rightarrow \infty}\left\|u C_{\varphi}-u C_{\varphi} K_{r_{j}}\right\|_{H^{\infty} \rightarrow \mathcal{Z}} & =\limsup _{j \rightarrow \infty} \sup _{\|f\|_{\infty} \leq 1}\left\|\left(u C_{\varphi}-u C_{\varphi} K_{r_{j}}\right) f\right\|_{\mathcal{Z}} \\
& =\limsup _{j \rightarrow \infty} \sup _{\|f\|_{\infty \leq 1} \leq 1}\left\|u \cdot\left(f-f_{r_{j}}\right) \circ \varphi\right\|_{* *} \lesssim \max \{A, B, C\} . \tag{2.18}
\end{align*}
$$

Similarly, by $2.2-(2.8),(2.11),(2.14)$ and 2.17 we get

$$
\begin{equation*}
\limsup _{j \rightarrow \infty}\left\|u C_{\varphi}-u C_{\varphi} K_{r_{j}}\right\|_{H^{\infty} \rightarrow \mathcal{Z}} \lesssim \max \{E, F, G\} \tag{2.19}
\end{equation*}
$$

Therefore, by (2.1), (2.18) and (2.19), we obtain

$$
\left\|u C_{\varphi}\right\|_{e, H^{\infty} \rightarrow \mathcal{Z}} \lesssim \max \{A, B, C\} \text { and }\left\|u C_{\varphi}\right\|_{e, H^{\infty} \rightarrow \mathcal{Z}} \lesssim \max \{E, F, G\}
$$

This completes the proof of Theorem 2.2 .
Theorem 2.3. Let $u \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} such that $u C_{\varphi}: H^{\infty} \rightarrow \mathcal{Z}$ is bounded. Then

$$
\left\|u C_{\varphi}\right\|_{e, H^{\infty} \rightarrow \mathcal{Z}} \approx \limsup _{n \rightarrow \infty}\left\|u \varphi^{n}\right\|_{\mathcal{Z}}
$$

Proof. First, we prove that

$$
\left\|u C_{\varphi}\right\|_{e, H^{\infty} \rightarrow \mathcal{Z}} \geq \limsup _{n \rightarrow \infty}\left\|u \varphi^{n}\right\|_{\mathcal{Z}}
$$

Let n be any positive integer and $f_{n}(z)=z^{n}$. Then $\left\|f_{n}\right\|_{\infty}=1$ and f_{n} uniformly converges to zero on compact subsets of \mathbb{D}. By Lemma 2.1, we have $\lim _{n \rightarrow \infty}\left\|K f_{n}\right\|_{\mathcal{Z}}=0$. Hence,

$$
\left\|u C_{\varphi}-K\right\| \geq \limsup _{n \rightarrow \infty}\left\|\left(u C_{\varphi}-K\right) f_{n}\right\|_{\mathcal{Z}} \geq \limsup _{n \rightarrow \infty}\left\|u C_{\varphi} f_{n}\right\|_{\mathcal{Z}}
$$

Therefore, by the definition of essential norm we get

$$
\begin{equation*}
\left\|u C_{\varphi}\right\|_{e, H^{\infty} \rightarrow \mathcal{Z}} \geq \limsup _{n \rightarrow \infty}\left\|u C_{\varphi} f_{n}\right\|_{\mathcal{Z}}=\limsup _{n \rightarrow \infty}\left\|u \varphi^{n}\right\|_{\mathcal{Z}} \tag{2.20}
\end{equation*}
$$

Next, we prove that

$$
\left\|u C_{\varphi}\right\|_{e, H^{\infty} \rightarrow \mathcal{Z}} \lesssim \limsup _{n \rightarrow \infty}\left\|u \varphi^{n}\right\|_{\mathcal{Z}}
$$

Since $u C_{\varphi}: H^{\infty} \rightarrow \mathcal{Z}$ is bounded, by Theorem 1 of [2] we see that

$$
P:=\sup _{k \geq 0}\left\|u \varphi^{k}\right\|_{\mathcal{Z}}<\infty
$$

Consider the Maclaurin expansion of f_{a}, where

$$
f_{a}(z)=\left(1-|a|^{2}\right) \sum_{k=0}^{\infty} \bar{a}^{k} z^{k}
$$

For any fix positive integer $n \geq 2$, it follows from the linearity of $u C_{\varphi}$ and the triangle inequality that

$$
\begin{aligned}
\left\|u C_{\varphi} f_{a}\right\|_{\mathcal{Z}} & \leq\left(1-|a|^{2}\right) \sum_{k=0}^{\infty}|a|^{k}\left\|u \varphi^{k}\right\|_{\mathcal{Z}} \\
& =\left(1-|a|^{2}\right) \sum_{k=0}^{n-1}|a|^{k}\left\|u \varphi^{k}\right\|_{\mathcal{Z}}+\left(1-|a|^{2}\right) \sum_{k=n}^{\infty}|a|^{k}\left\|u \varphi^{k}\right\|_{\mathcal{Z}} \\
& \leq \operatorname{Pn}\left(1-|a|^{2}\right)+\left(1-|a|^{2}\right) \sum_{k=n}^{\infty}|a|^{k}\left\|u \varphi^{k}\right\|_{\mathcal{Z}} \\
& \leq \operatorname{Pn}\left(1-|a|^{2}\right)+2 \sup _{k \geq n}\left\|u \varphi^{k}\right\|_{\mathcal{Z}}
\end{aligned}
$$

Letting $|a| \rightarrow 1$ in the above inequality leads to

$$
\limsup _{|a| \rightarrow 1}\left\|u C_{\varphi} f_{a}\right\|_{\mathcal{Z}} \leq 2 \sup _{k \geq n}\left\|u \varphi^{k}\right\|_{\mathcal{Z}}
$$

for any positive integer $n \geq 2$. Thus,

$$
\limsup _{|a| \rightarrow 1}\left\|u C_{\varphi} f_{a}\right\|_{\mathcal{Z}} \lesssim \limsup _{k \rightarrow \infty}\left\|u \varphi^{k}\right\|_{\mathcal{Z}}
$$

Similarly, we can prove that

$$
\limsup _{|a| \rightarrow 1}\left\|u C_{\varphi} g_{a}\right\|_{\mathcal{Z}} \lesssim \limsup _{n \rightarrow \infty}\left\|u \varphi^{n}\right\|_{\mathcal{Z}}, \quad \limsup _{|a| \rightarrow 1}\left\|u C_{\varphi} h_{a}\right\|_{\mathcal{Z}} \lesssim \limsup _{n \rightarrow \infty}\left\|u \varphi^{n}\right\|_{\mathcal{Z}}
$$

Hence,

$$
\max \{A, B, C\} \lesssim \limsup _{n \rightarrow \infty}\left\|u \varphi^{n}\right\|_{\mathcal{Z}}
$$

Therefore, by Theorem 2.2 we obtain

$$
\begin{equation*}
\left\|u C_{\varphi}\right\|_{e, H^{\infty} \rightarrow \mathcal{Z}} \lesssim \max \{A, B, C\} \lesssim \limsup _{n \rightarrow \infty}\left\|u \varphi^{n}\right\|_{\mathcal{Z}} \tag{2.21}
\end{equation*}
$$

By (2.20) and 2.21), we get the desired result. The proof is completed.

Acknowledgment

This project is partially supported by NNSF of China (No. 11471143).

References

[1] B. R. Choe, H. Koo, W. Smith, Composition operators on small spaces, Integral Equations Operator Theory, 56 (2006), 357-380. 11
[2] F. Colonna, S. Li, Weighted composition operators from H^{∞} into the Zygmund spaces, Complex Anal. Oper. Theory, 7 (2013), 1495-1512. 1, 1.1, 2, 2
[3] P. L. Duren, Theory of H^{p} spaces, Pure and Applied Mathematics, Academic Press, New York-London, (1970). 1
[4] K. Esmaeili, M. Lindström, Weighted composition operators between Zygmund type spaces and their essential norms, Integral Equations Operator Theory, 75 (2013), 473-490. 1
[5] O. Hyvärinen, M. Lindström, Estimates of essential norms of weighted composition operators between Bloch-type spaces, J. Math. Anal. Appl., 393 (2012), 38-44. 1
[6] S. Li, S. Stević, Volterra-type operators on Zygmund spaces, J. Inequal. Appl., 2007 (2007), 10 pages. 1
[7] S. Li, S. Stević, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl., 338 (2008), 1282-1295.
[8] S. Li, S. Stević, Weighted composition operators from Zygmund spaces into Bloch spaces, Appl. Math. Comput., 206 (2008), 825-831.
[9] S. Li, S. Stević, Products of composition and differentiation operators from Zygmund spaces to Bloch spaces and Bers spaces, Appl. Math. Comput., 217 (2010), 3144-3154. 1
[10] B. D. MacCluer, R. Zhao, Essential norms of weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math., 33 (2003), 1437-1458. 1
[11] K. Madigan, A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc., $\mathbf{3 4 7}$ (1995), 2679-2687. 1
[12] A. Montes-Rodríguez, The essential norm of a composition operator on Bloch spaces, Pacific J. Math., 188 (1999), 339-351. 1
[13] S. Ohno, K. Stroethoff, R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math., 33 (2003), 191-215. 1
[14] S. Stević, Weighted differentiation composition operators from H^{∞} and Bloch spaces to nth weighted-type spaces on the unit disk, Appl. Math. Comput., 216 (2010), 3634-3641. 1. 1.1
[15] S. Stević, Weighted differentiation composition operators from the mixed-norm space to the nth weighted-type space on the unit disk, Abstr. Appl. Anal., 2010 (2010), 15 pages. 1
[16] M. Tjani, Compact composition operators on some Moebius invariant Banach spaces, Thesis (Ph.D.)-Michigan State University, ProQuest LLC, Ann Arbor, MI, (1996). 1. 2.1
[17] H. Wulan, D. Zheng, K. Zhu, Compact composition operators on BMOA and the Bloch space, Proc. Amer. Math. Soc., 137 (2009), 3861-3868. 1
[18] S. Ye, Q. Hu, Weighted composition operators on the Zygmund space, Abstr. Appl. Anal., 2012 (2012), 18 pages. 1
[19] Y. Yu, Y. Liu, Weighted differentiation composition operators from H^{∞} to Zygmund spaces, Integral Transforms Spec. Funct., 22 (2011), 507-520. 1, 1.1
[20] R. Zhao, Essential norms of composition operators between Bloch type spaces, Proc. Amer. Math. Soc., 138 (2010), 2537-2546. 1
[21] K. H. Zhu, Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, (1990). 1

[^0]: *Corresponding author
 Email addresses: hqhmath@sina.com (Qinghua Hu), jyuzxl@163.com (Xiangling Zhu)

