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Abstract

We study the existence and global asymptotic behavior of positive continuous solutions to the following
nonlinear fractional boundary value problem

(Pλ)

{
Dαu (t) = λf(t, u(t)), t ∈ (0, 1) ,
lim
t→0+

t2−αu(t) = µ, u(1) = ν,

where 1 < α ≤ 2, Dα is the Riemann-Liouville fractional derivative, and λ, µ and ν are nonnegative constants
such that µ+ ν > 0.

Our purpose is to give two existence results for the above problem, where f(t, s) is a nonnegative
continuous function on (0, 1)× [0,∞), nondecreasing with respect to the second variable and satisfying some
appropriate integrability condition. Some examples are given to illustrate our existence results. ©2016 All
rights reserved.
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1. Introduction

We aim at proving two existence results of positive continuous solutions to fractional boundary value
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problems of the form

(Pλ)

{
Dαu (t) = λf(t, u(t)), t ∈ (0, 1) ,
lim
t→0+

t2−αu(t) = µ, u(1) = ν,

where 1 < α ≤ 2, λ, µ and ν are nonnegative constants such that µ+ν > 0. Here Dα is the Riemann-Liouville
fractional derivative of order α defined by (see [16, 25, 26]),

Dαu(t) =

{
1

Γ(2−α)

(
d
dt

)2 ∫ t
0 (t− s)1−α u (s) ds, if 1 < α < 2,

u′′(t), if α = 2.

The function f(t, s) is required to be nonnegative continuous function on (0, 1)× [0,∞), nondecreasing
with respect to the second variable and satisfying some appropriate integrability condition.

It is known that fractional differential equations appear in various fields of science and engineering (see
for example [7, 8, 10, 13, 16, 19, 21, 25–29] and references therein). Many researchers have considered
various forms of fractional differential equations subject to different boundary conditions (see for instance
[1–6, 9, 11, 12, 14, 15, 17, 18, 20, 22–24, 30] and the references therein).

Mâagli et al [18] by exploiting Karamata regular variation theory, proved the existence and uniqueness
of a positive solution to the following sublinear singular fractional boundary value problem{

Dαu (t) = −p(t)uσ(t), t ∈ (0, 1) ,
lim
t→0+

t2−αu(t) = 0, u(1) = 0,

where σ ∈ (−1, 1) and p is a nonnegative continuous function satisfying some sharp estimates.
In the first part of this paper, we study the superlinear fractional boundary value problem{

Dαu (t) = u(t)ϕ(t, u(t)), t ∈ (0, 1) , 1 < α ≤ 2,
lim
t→0+

t2−αu(t) = µ, u(1) = ν, (1.1)

where µ, ν are nonnegative constants such that µ+ν > 0 and ϕ(t, s) is a nonnegative continuous function in
(0, 1)× [0,∞) satisfying some adequate conditions. Note that the condition µ+ ν > 0 is essential to obtain
positive solution. To simplify our statements, we denote by

(i) B+ ((0, 1)) the set of nonnegative measurable functions on (0, 1).

(ii) C(X) (resp. C+(X)) the set of continuous (resp. nonnegative continuous) functions on a metric space
X.

(iii) C2−α([0, 1]), (1 < α ≤ 2) the set of all functions g such that s→ s2−αg(s) is continuous on [0, 1].

Definition 1.1. Let 1 < α ≤ 2. We consider

Kα =

{
q ∈ B+((0, 1)) :

∫ 1

0
rα−1(1− r)α−1q(r)dr <∞

}
.

Throughout this paper, for α ∈ (1, 2] and t ∈ (0, 1], we let

h1(t) := tα−2(1− t), h2(t) := tα−1,

and h0(t) := µh1(t) + νh2(t), be the unique solution of the problem

(P0)

{
Dαu (t) = 0, t ∈ (0, 1) ,
lim
t→0+

t2−αu(t) = µ, u(1) = ν.
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Let G(t, s) be the Green’s function of the operator u → Dαu, with boundary conditions lim
t→0+

t2−αu(t) =

u(1) = 0. From [18, Lemma 8], we have

G (t, s) =
1

Γ (α)

{
tα−1 (1− s)α−1 − (t− s)α−1 , if 0 ≤ s ≤ t ≤ 1,

tα−1 (1− s)α−1 , if 0 ≤ t ≤ s ≤ 1,

=
1

Γ (α)

(
tα−1 (1− s)α−1 −

(
(t− s)+)α−1

)
,

(1.2)

where t+ = max(t, 0). For q ∈ B+((0, 1)), we put

αq := sup
t,s∈(0,1)

∫ 1

0

G(t, r)G(r, s)

G(t, s)
q(r)dr, (1.3)

and we will prove that if q ∈ Kα, then αq <∞.
Next, we require a combination of the following assumptions.

(H1) ϕ ∈ C+((0, 1)× [0,∞)).

(H2) There exists a function q ∈ Kα∩C+((0, 1)) with αq ≤ 1
2 such that, for all t ∈ (0, 1), the function

s −→ s (q (t)− ϕ (t, sh0 (t))) is nondecreasing on [0, 1] .

(H3) For all t ∈ (0, 1), the function s→ sϕ (t, s) is nondecreasing on [0,∞).

Our approach is as follows: For a given function q ∈ Kα∩C+((0, 1)) with αq ≤ 1
2 , we will first prove that

the operator u → Dαu − q(t)u, with boundary conditions lim
t→0+

t2−αu(t) = u(1) = 0 has a positive Green

function G (t, s).
By exploiting properties of G (t, s) and using a perturbation argument, we prove the following result.

Theorem 1.2. Assume that hypotheses (H1)-(H2) are satisfied. Then problem (1.1) has a positive solution
u in C2−α([0, 1]) satisfying for all t ∈ (0, 1],

mh0(t) ≤ u (t) ≤ h0(t), (1.4)

where m ∈ (0, 1]. Moreover, if hypothesis (H3) is also satisfied, then this solution is unique.

Corollary 1.3. Let g : [0,∞) → [0,∞) be a C1-function such that the map s → θ(s) = sg(s) is nonde-
creasing on [0,∞). Let p ∈ C+((0, 1)) such that the function t → p̃(t) := p(t) max

0≤ξ≤h0(t)
θ′(ξ) ∈ Kα. Then for

λ ∈ [0, 1
2αp̃

), the following problem{
Dαu(t) = λp(t)u(t)g(u(t)), t ∈ (0, 1), 1 < α ≤ 2,
lim
t→0+

t2−αu(t) = µ, u(1) = ν,

has a unique positive solution u in C2−α([0, 1]) satisfying for all t ∈ (0, 1],

(1− λαp̃)h0(t) ≤ u (t) ≤ h0(t).

As typical example of nonlinearity satisfying (H1)-(H3), we quote ϕ (t, s) = λp(t)sσ for σ ≥ 0, p ∈
C+((0, 1)) such that ∫ 1

0
s(α−1)+(α−2)σ(1− s)α−1p(s)ds <∞,

and q(t) = λp̃(t) := λ(σ + 1)p(t) (h0(t))σ ∈ Kα, with λ ∈ [0, 1
2αp̃

).

In the second part of this paper, we study the fractional boundary value problem{
Dαu (t) = λf(t, u(t)), t ∈ (0, 1) , 1 < α ≤ 2,
lim
t→0+

t2−αu(t) = µ, u(1) = ν, (1.5)

where λ ≥ 0, µ, ν are positive constants and f(t, s) satisfies the following conditions:
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(H4) (t, s)→ f(t, s) ∈ C+((0, 1)× [0,∞)) which is nondecreasing with respect to the second variable.

(H5) The function t→ 1
h0(t)f (t, h0(t)) belongs to the class Kα.

Using the Schäuder fixed point theorem, we prove the following result.

Theorem 1.4. Assume that hypotheses (H4)-(H5) are satisfied. Then there exists a constant λ0 > 0, such
that for each λ ∈ [0, λ0), problem (1.5) has a positive solution u in C2−α([0, 1]) satisfying

(1− λ

λ0
)h0(t) ≤ u (t) ≤ h0(t), for all t ∈ (0, 1].

Our paper is organized as follows. In Section 2, we prove that for all t, r, s ∈ (0, 1),

G(t, r)G(r, s)

G(t, s)
≤ 1

(α− 1)Γ(α)
rα−1(1− r)α−1.

This implies that for each q ∈ Kα, αq < ∞. In Section 3, for a given function q ∈ Kα with αq ≤ 1
2 ,

we construct the Green’s function G (t, s) of the operator u → Dαu − q(t)u, with boundary conditions
lim
t→0+

t2−αu(t) = u(1) = 0 and we establish some of its properties including the following:

(1− αq)G (t, s) ≤ G (t, s) ≤ G (t, s) , for all (t, s) ∈ [0, 1]× [0, 1].

Also we establish the following resolvent equation

V ψ = Vqψ + Vq (qV ψ) = Vqψ + V (qVqψ) , for all ψ ∈ B+ ((0, 1)) ,

where V and Vq are defined on B+ ((0, 1)) by

V ψ (t) :=

∫ 1

0
G (t, s)ψ(s)ds and Vqψ (t) :=

∫ 1

0
G (t, s)ψ(s)ds, t ∈ [0, 1].

Using a perturbation argument, we establish Theorem 1.2. In Section 4, we prove Theorem 1.4 by means of
the Schäuder fixed point theorem.

2. Estimates on the Green function

The following properties on G (t, s) given by (1.2) are established in [18].

Proposition 2.1. Let 1 < α ≤ 2 and ψ ∈ B+((0, 1)). On (0, 1)× (0, 1), one has

(i)
(α− 1)H(t, s) ≤ Γ (α)G (t, s) ≤ H(t, s),

where H(t, s) := tα−2 (1− s)α−2 (t ∧ s) (1− t ∨ s) with t ∧ s = min(t, s) and t ∨ s = max(t, s).

(ii) (α− 1) tα−1(1− t)s (1− s)α−1 ≤ Γ (α)G (t, s) ≤ tα−2s (1− s)α−1 .

(iii) G (t, s) = G (1− s, 1− t) .

The next proposition is also established in [18].

Proposition 2.2. Let 1 < α ≤ 2 and ψ ∈ B+((0, 1)), then

(i) The function t→ V ψ(t) ∈ C2−α([0, 1])⇐⇒
∫ 1

0 r(1− r)
α−1ψ(r)dr <∞.
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(ii) If the function s → s(1 − s)α−1ψ(s) is continuous and integrable on (0, 1), then V ψ is the unique
solution in C2−α([0, 1]) of the following problem{

Dαu(t) = −ψ(t), t ∈ (0, 1),
lim
t→0+

t2−αu(t) = 0, u(1) = 0.

Proposition 2.3. For each t, r, s ∈ (0, 1), we have

G(t, r)G(r, s)

G(t, s)
≤ 1

(α− 1)Γ(α)
rα−1(1− r)α−1. (2.1)

Proof. Using Proposition 2.1 (i), for each t, r, s ∈ (0, 1), we have

G(t, r)G(r, s)

G(t, s)
≤ 1

(α− 1)Γ(α)
rα−2(1− r)α−2F (t, r, s),

where

F (t, r, s) :=
(t ∧ r)(1− t ∨ r)(r ∧ s)(1− r ∨ s)

(t ∧ s)(1− t ∨ s)
.

To prove (2.1), it is enough to show that

F (t, r, s) ≤ r(1− r).

By symmetry, we may assume that t ≤ s. Then we obtain

F (t, r, s) =
(t ∧ r)(1− t ∨ r)(r ∧ s)(1− r ∨ s)

t(1− s)
≤ (r ∧ s)(1− t ∨ r)
≤ r(1− r).

This proves our result.

Proposition 2.4. Let q be a function in Kα, then

(i)

αq ≤
1

(α− 1)Γ(α)

∫ 1

0
rα−1(1− r)α−1q(r)dr <∞, (2.2)

where αq is given by (1.3).

(ii) On (0, 1], one has ∫ 1

0
G(t, s)h1(s)q(s)ds ≤ αqh1(t). (2.3)

(iii) On (0, 1], one has ∫ 1

0
G(t, s)h2(s)q(s)ds ≤ αqh2(t). (2.4)

In particular, for all t ∈ (0, 1], we have∫ 1

0
G(t, s)h0(s)q(s)ds ≤ αqh0(t). (2.5)

Proof. Let q ∈ Kα.
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(i) The inequality in (2.2) follows from (1.3) and (2.1).

(ii) Since for each t, s ∈ (0, 1), we have lim
r→0

G(s, r)

G(t, r)
=
h1(s)

h1(t)
, then we deduce by Fatou’s lemma and (1.3),

that ∫ 1

0
G(t, s)

h1(s)

h1(t)
q(s)ds ≤ lim inf

r→0

∫ 1

0
G(t, s)

G(s, r)

G(t, r)
q(s)ds ≤ αq.

This gives ∫ 1

0
G(t, s)h1(s)q(s)ds ≤ αqh1(t), for t ∈ (0, 1].

(iii) Since lim
r→1

G(s, r)

G(t, r)
=
h2(s)

h2(t)
, inequality (2.4) follows by similar arguments.

Finally, by combining (2.3), (2.4) we obtain (2.5).

3. First existence result

Let q ∈ Kα and G : [0, 1]× [0, 1]→ R, be defined by

G (t, s) =

∞∑
k=0

(−1)kGk(t, s),

provided that the series converges, where G0(t, s) = G(t, s) and

Gk(t, s) =

∫ 1

0
G(t, r)Gk−1(r, s)q(r)dr, k ≥ 1. (3.1)

The following properties on Gk(t, s) hold.

Lemma 3.1. Let q ∈ Kα with αq < 1. For each k ∈ N and all (t, s) ∈ [0, 1]× [0, 1], we have

(i) Gk(t, s) ≤ αkqG(t, s). So, G (t, s) is well-defined in [0, 1]× [0, 1].

(ii)
lkt

α−1 (1− t) s (1− s)α−1 ≤ Gk(t, s) ≤ rktα−2s (1− s)α−1 , (3.2)

where

lk =
(α− 1)k+1

(Γ(α))k+1
(

∫ 1

0
rα(1− r)αq(r)dr)k,

rk =
1

(Γ(α))k+1
(

∫ 1

0
rα−1(1− r)α−1q(r)dr)k.

(iii) Gk+1(t, s) =

∫ 1

0
Gk(t, r)G(r, s)q(r)dr for each k ∈ N.

(iv)

∫ 1

0
G (t, r)G(r, s)q(r)dr =

∫ 1

0
G (t, r)G(r, s)q(r)dr.

Proof.

(i) We proceed by the induction. The property is trivial for k = 0.
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Using (3.1) and (1.3), we obtain

Gk+1(t, s) ≤ αkq
∫ 1

0
G(t, r)G(r, s)q(r)dr ≤ αk+1

q G(t, s).

So, the inequality in (i) holds for all k ∈ N. Now, since Gk(t, s) ≤ αkqG(t, s), it follows that G (t, s) is
well-defined in [0, 1]× [0, 1].

(ii) The inequalities in (3.2) follow from Proposition 2.1 (ii), (3.1) and simple induction.

(iii) Assume that for a given integer k ≥ 1 and (t, s) ∈ [0, 1]× [0, 1], we have

Gk(t, s) =

∫ 1

0
Gk−1(t, r)G(r, s)q(r)dr.

Using (3.1) and Fubini-Tonelli theorem, we obtain

Gk+1(t, s) =

∫ 1

0
G(t, r)

(∫ 1

0
Gk−1(r, ξ)G(ξ, s)q(ξ)dξ

)
q(r)dr

=

∫ 1

0

(∫ 1

0
G(t, r)Gk−1(r, ξ)q(r)dr

)
G(ξ, s)q(ξ)dξ

=

∫ 1

0
Gk(t, ξ)G(ξ, s)q(ξ)dξ.

(iv) Let k ≥ 0 and t, r, s ∈ [0, 1]. By Lemma 3.1 (i) we have

0 ≤ Gk(t, r)G(r, s)q(r) ≤ αkqG(t, r)G(r, s)q(r).

Hence the series
∑
k≥0

∫ 1
0 Gk(t, r)G(r, s)q(r)dr converges.

So, we deduce by the dominated convergence theorem and Lemma 3.1 (iii) that∫ 1

0
G (t, r)G(r, s)q(r)dr =

∞∑
k=0

∫ 1

0
(−1)kGk(t, r)G(r, s)q(r)dr

=

∞∑
k=0

∫ 1

0
(−1)kG(t, r)Gk(r, s)q(r)dr

=

∫ 1

0
G (t, r)G(r, s)q(r)dr.

Proposition 3.2. Let q ∈ Kα with αq < 1. Then the function (t, s)→ G (t, s) is in C ([0, 1]× [0, 1]) .

Proof. Using Lemma 3.1 and Proposition 2.1, we have for all k ≥ 0, Gk ∈ C ([0, 1]× [0, 1]) and

Gk(t, s) ≤ αkqG(t, s) ≤ 1

Γ(α)
αkq .

Therefore, the function (t, s)→ G (t, s) belongs to C ([0, 1]× [0, 1]) .

Lemma 3.3. Let q ∈ Kα with αq ≤ 1
2 . Then for all (t, s) ∈ [0, 1]× [0, 1], we have

(1− αq)G (t, s) ≤ G (t, s) ≤ G (t, s) . (3.3)
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Proof. Since αq ≤ 1
2 , we deduce from Lemma 3.1 (i), that

|G (t, s)| ≤
∞∑
k=0

(αq)
kG (t, s) =

1

1− αq
G (t, s) . (3.4)

Now, from the expression of G, we have

G (t, s) = G (t, s)−
∞∑
k=0

(−1)kGk+1(t, s). (3.5)

Since the series
∑
k≥0

∫ 1
0 G(t, r)Gk(r, s)q(r)dr is convergent, we deduce by (3.5) and (3.1) that

G (t, s) = G (t, s)−
∞∑
k=0

(−1)k
∫ 1

0
G(t, r)Gk(r, s)q(r)dr

= G (t, s)−
∫ 1

0
G(t, r)(

∞∑
k=0

(−1)kGk(r, s))q(r)dr;

that is,
G (t, s) = G (t, s)− V (qG (., s)) (t) . (3.6)

Using (3.4) and Lemma 3.1 (i) (with k = 1), we obtain

V (qG (., s)) (t) ≤ 1

1− αq
V (qG (., s)) (t) =

1

1− αq
G1(t, s) ≤ αq

1− αq
G (t, s) .

This implies by (3.6) that

G (t, s) ≥ G (t, s)− αq
1− αq

G (t, s) =
1− 2αq
1− αq

G (t, s) ≥ 0.

Hence G (t, s) ≤ G (t, s) and by (3.6) and Lemma 3.1 (i) (with k = 1), we have

G (t, s) ≥ G (t, s)− V (qG (., s)) (t) ≥ (1− αq)G (t, s) .

Corollary 3.4. Let q ∈ Kα with αq ≤ 1
2 and ψ ∈ B+ ((0, 1)) . Then

Vqψ ∈ C2−α ([0, 1])⇐⇒
∫ 1

0
s (1− s)α−1 ψ (s) ds <∞.

Lemma 3.5. Let q ∈ Kα with αq ≤ 1
2 and ψ ∈ B+ ((0, 1)) . Then for all t ∈ [0, 1]

V ψ(t) = Vqψ(t) + Vq (qV ψ) (t) = Vqψ(t) + V (qVqψ) (t). (3.7)

In particular, if V (qψ) <∞, we have

(I − Vq (q.))(I + V (q.))ψ = (I + V (q.))(I − Vq (q.))ψ = ψ, (3.8)

where V (q.)ψ := V (qψ) .

Proof. Using (3.6), we have

G (t, s) = G (t, s) + V (qG (., s)) (t) , for all (t, s) ∈ [0, 1]× [0, 1].
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Hence for ψ ∈ B+ ((0, 1)) , we obtain

V ψ(t) =

∫ 1

0
(G (t, s) + V (qG (., s)) (t))ψ(s)ds

= Vqψ(t) + V (qVqψ) (t).

Using Lemma 3.1 (iv) and Fubini-Tonelli theorem, we obtain for ψ ∈ B+ ((0, 1)) and t ∈ [0, 1]∫ 1

0

∫ 1

0
G (t, r)G(r, s)q(r)ψ(s)drds =

∫ 1

0

∫ 1

0
G (t, r)G(r, s)q(r)ψ(s)drds;

that is,
Vq (qV ψ) (t) = V (qVqψ) (t).

So we obtain
V ψ(t) = Vqψ(t) + V (qVqψ) (t) = Vqψ(t) + Vq (qV ψ) (t).

Proposition 3.6. Let q ∈ Kα∩C+((0, 1)) with αq ≤ 1
2 and ψ ∈ B+ ((0, 1)) such that s→ s(1− s)α−1ψ(s) ∈

C((0, 1))∩L1((0, 1)). Then Vqψ is the unique nonnegative solution in C2−α([0, 1]) of{
Dαu(t)− q(t)u(t) = −ψ(t), t ∈ (0, 1) , 1 < α ≤ 2,
lim
t→0+

t2−αu(t) = 0, u(1) = 0, (3.9)

satisfying
(1− αq)V ψ ≤ u ≤ V ψ. (3.10)

Proof. By Corollary 3.4 we deduce that the function t→ q(t)Vqψ (t) ∈ C+((0, 1)). Using (3.7) and Proposi-
tion 2.1 (ii), we obtain

Vqψ(t) ≤ V ψ(t) ≤ 1

Γ(α)

∫ 1

0
tα−2s(1− s)α−1ψ(s)ds = Mtα−2. (3.11)

This implies that ∫ 1

0
s(1− s)α−1q(s)Vqψ(s)ds ≤M

∫ 1

0
sα−1(1− s)α−1q(s)ds <∞.

Therefore, by Proposition 2.2 (ii), the function u = Vqψ = V ψ − V (qVqψ) satisfies the equation{
Dαu(t) = −ψ(t) + q(t)u(t), t ∈ (0, 1),
lim
t→0+

t2−αu(t) = 0, u(1) = 0.

By integration of inequalities (3.3), we obtain (3.10).
Next, we prove the uniqueness. Assume that v ∈ C2−α([0, 1]) is another solution of problem (3.9)

satisfying (3.10). Put ṽ := v + V (qv). Since the function s→ s(1− s)α−1q(s)v(s) ∈ C((0, 1))∩L1((0, 1)), by
Proposition 2.2 (ii) we deduce that {

Dαṽ(t) = −ψ(t), t ∈ (0, 1),
lim
t→0+

t2−αṽ(t) = 0, ṽ(1) = 0.

Again from Proposition 2.2 (ii), we conclude that

ṽ := v + V (qv) = V ψ.
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So
(I + V (q.))((v − u)+) = (I + V (q.))((v − u)−),

where (v − u)+ = max(v − u, 0) and (v − u)− = max(u− v, 0).
By using (3.10), (3.11) and Proposition 2.4, we have

V (q |v − u|) ≤ 2MV (q[h1 + h2]) ≤ 2Mαq(h1 + h2) <∞.

Therefore, by applying (3.8), we obtain u = v.

Proof of Theorem 1.2. Let µ ≥ 0 and ν ≥ 0 with µ+ ν > 0 and recall that

h0(t) := µh1(t) + νh2(t).

Let q ∈ Kα∩C+((0, 1)) as in (H2). Consider

Λ :=
{
u ∈ B+ ((0, 1)) : (1− αq)h0 ≤ u ≤ h0

}
,

and define the operator T on Λ by

Tu = h0 − Vq (qh0) + Vq((q − ϕ (., u))u).

Using (3.7) and (2.5) we have
Vq(qh0) ≤ V (qh0) ≤ αqh0 ≤ h0. (3.12)

Hence by (H2), we get
0 ≤ ϕ(., u) ≤ q for all u ∈ Λ. (3.13)

Next we prove that TΛ ⊆ Λ. Using (3.13) and (3.12), we obtain for all u ∈ Λ that

Tu ≤ h0 − Vq (qh0) + Vq(qu) ≤ h0,

Tu ≥ h0 − Vq (qh0) ≥ (1− αq)h0.

On the other hand, from (H2), we deduce that the operator T is nondecreasing on Λ.
Now, let {uk} be the sequence defined by u0 = (1− αq)h0 and uk+1 = Tuk for k ∈ N. Since T is

nondecreasing on Λ and TΛ ⊆ Λ, we obtain

(1− αq)h0 = u0 ≤ u1 ≤ ... ≤ uk ≤ uk+1 ≤ h0.

Hence by dominated convergence theorem and (H1) - (H2) , the sequence {uk} converges to a function u ∈ Λ
satisfying

u = (I − Vq (q.))h0 + Vq((q − ϕ (., u))u);

that is,
(I − Vq (q.))u = (I − Vq (q.))h0 − Vq (uϕ (., u)) . (3.14)

Applying the operator (I + V (q.)) on the both sides of (3.14) and using (3.7) and (3.8), we obtain

u = h0 − V (uϕ (., u)) . (3.15)

Let us prove that u is a solution. Using (3.13), there exists a constant c > 0 such that

s(1− s)α−1u(s)ϕ (s, u(s)) ≤ s(1− s)α−1h0(s)q(s) ≤ csα−1(1− s)α−1q(s). (3.16)

So by Proposition 2.2 (i) the function t → V (uϕ (., u)) (t) is in Cα−2([0, 1]) and by (3.15), u belongs to
Cα−2([0, 1]).
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Since by (H1) and (3.16), the function s → s(1 − s)α−1u(s)ϕ (s, u(s)) ∈ C((0, 1))∩L1((0, 1)), then by
Proposition 2.2 (ii) u is a solution of problem (1.1).

Finally, we prove the uniqueness. To this end, let v ∈ Cα−2([0, 1]) be another solution to problem (1.1)
satisfying (1.4). Since v ≤ h0, we deduce by (3.16) that

0 ≤ v(s)ϕ (s, v(s)) ≤ h0(s)q(s) ≤ csα−2q(s).

So the function s → s(1 − s)α−1v(s)ϕ (s, v(s)) ∈ C((0, 1))∩L1((0, 1)). Put ṽ := v + V (vϕ (., v)) , then by
Proposition 2.2 (ii), we have {

Dαṽ(t) = 0, t ∈ (0, 1),
lim
t→0+

t2−αṽ(t) = µ, ṽ(1) = ν.

Hence
v = h0 − V (vϕ (., v)) . (3.17)

Let h : (0, 1)→ R, be defined by

h(t) =


v(t)ϕ(t,v(t))−u(t)ϕ(t,u(t))

v(t)−u(t) if v(t) 6= u(t),

0 if v(t) = u(t).

From (H3) we have h ∈ B+ ((0, 1)) and by (3.15) and (3.17), we obtain

(I + V (h.))((v − u)+) = (I + V (h.))((v − u)−),

where (v − u)+ = max(v − u, 0) and (v − u)− = max(u− v, 0). Using (H2), we have h ≤ q and by (2.5) we
deduce that

V (h |v − u|) ≤ 2V (qh0) ≤ 2αqh0 <∞.

So u = v by (3.8).

Proof of Corollary 1.3. We obtain the results by applying Theorem 1.2 with ϕ (t, s) = λp(t)g(s) and q(t) :=
λp̃(t).

Example 3.7. Let 1 < α ≤ 2 and µ ≥ 0, ν ≥ 0 with µ + ν > 0. Let σ ≥ 0, γ ≥ 0 and p ∈ C+((0, 1) such
that ∫ 1

0
s(α−1)+(α−2)(σ+γ)(1− s)α−1p(s)ds <∞.

Let θ(s) = sσ+1 log(1 + sγ) and p̃(s) := p(s) max
0≤ξ≤h0(s)

θ′(ξ). Since p̃ ∈ Kα, then for λ ∈ [0, 1
2αp̃

), the problem


Dαu(t) = λp(t)uσ+1(t) log(1 + uγ(t)), t ∈ (0, 1),

lim
t→0+

t2−αu(t) = µ, u(1) = ν,

has a unique positive solution u in C2−α([0, 1]) satisfying

(1− λαp̃)h0(t) ≤ u (t) ≤ h0(t), for all t ∈ (0, 1].

4. Second existence result

Assume that hypotheses (H4)-(H5) are satisfied. Let µ, ν > 0 and recall that h0(t) := µtα−2(1−t)+νtα−1,
for t ∈ (0, 1]. Observe that for t ∈ (0, 1],

min(µ, ν)tα−2 ≤ h0(t) ≤ max(µ, ν)tα−2. (4.1)

The next lemma will be used in the proof of Theorem 1.4.
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Lemma 4.1. Let q be a function in Kα, then the family of functions

Λq = { 1

h0(t)

∫ 1

0
G(t, s)h0(s)ρ(s)ds, |ρ| ≤ q}

is uniformly bounded and equicontinuous in [0, 1]. Consequently, Λq is relatively compact in C([0, 1]).

Proof. From Proposition 2.4, we deduce that for ρ such that |ρ| ≤ q and t ∈ (0, 1], we have∣∣∣∣ 1

h0(t)

∫ 1

0
G(t, s)h0(s)ρ(s)ds

∣∣∣∣ ≤ 1

h0(t)

∫ 1

0
G(t, s)h0(s)q(s)ds ≤ αq <∞.

So the family Λq is uniformly bounded.
On the other hand, by Proposition 2.1 (ii) and (4.1), for (t, s) ∈ (0, 1]× [0, 1], we have∣∣∣∣G(t, s)

h0(t)
h0(s)q(s)

∣∣∣∣ ≤ max(µ, ν)

min(µ, ν)Γ(α)
sα−1(1− s)α−1q(s). (4.2)

Since the function (t, s) → G(t, s)

h0(t)
∈ C ([0, 1]× [0, 1]) and q ∈ Kα, we deduce by (4.2) and the dominated

convergence theorem that the family Λq is equicontinuous in [0, 1]. Therefore, by Ascoli’s theorem, the family
Λq becomes relatively compact in C([0, 1]).

Proof of Theorem 1.4. Assume that hypotheses (H4)-(H5) are satisfied. So by (H5) the function s→ q(s) :=
1

h0(s)f(s, h0(s)) ∈ Kα. Put

λ0 := inf
t∈(0,1)

h0(t)

V (f (., h0))(t)
. (4.3)

From (2.5) we have
V (f (., h0)) = V (h0q) ≤ αqh0.

Therefore, λ0 ≥ 1
αq
> 0.

Let λ ∈ [0, λ0) and S be the nonempty closed bounded convex set given by

S = {v ∈ C([0, 1]) : (1− λ

λ0
) ≤ v ≤ 1}.

We define the operator L on S by

Lv(t) = 1− λ

h0(t)

∫ 1

0
G(t, s)f (s, v(s)h0(s)) ds. (4.4)

Using (H4), (H5) and Lemma 4.1, we deduce that the family

{ 1

h0(t)

∫ 1

0
G(t, s)f (s, v(s)h0(s)) ds, v ∈ S},

is relatively compact in C([0, 1]) and therefore L(S) becomes relatively compact in C([0, 1]).
On the other hand, since f is a nonnegative function, it is clear from (4.4), (H4) and (4.3) that L(S) ⊆ S.

Next, we prove the continuity of the operator L in S in the supremum norm. Let {vk} be a sequence in
S which converges uniformly to a function v in S. Then we have

|Lvk(t)− Lv(t)| ≤ λ
∫ 1

0

G(t, s)

h0(t)
|f (s, v(s)h0(s))− f (s, vk(s)h0(s))| ds.
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From the monotonicity of f, we have

|f (s, v(s)h0(s))− f (s, vk(s)h0(s))| ≤ 2h0(s)q(s).

So we conclude by the continuity of f, (4.2) and the dominated convergence theorem, that

∀t ∈ [0, 1], Lvk(t)→ Lv(t) as k →∞.

Since L(S) is relatively compact in C([0, 1]), we obtain the uniform convergence, namely

‖Lvk − Lv‖∞ → 0 as k →∞.

Thus we have proved that L is a compact operator mapping from S to itself. Hence by the Schäuder’s fixed
point theorem, there exists v ∈ S such that

v(t) = 1− λ

h0(t)

∫ 1

0
G(t, s)f (s, v(s)h0(s)) ds.

Let u(t) = v(t)h0(t). Then u is a positive function in C2−α([0, 1]), satisfying for each t ∈ (0, 1)

u(t) = h0(t)− λ
∫ 1

0
G(t, s)f (s, u(s)) ds. (4.5)

Finally, since by (H4) and (H5) the map s → s(1 − s)α−1f (s, u(s)) ∈ C((0, 1))∩L1((0, 1)), we deduce by
(4.5) and Proposition 2.2 (ii) that u is a required solution.

Example 4.2. Let 1 < α ≤ 2, σ ≥ 0 and p ∈ C+((0, 1) such that∫ 1

0
s(α−1)+(α−2)(σ−1)(1− s)α−1p(s)ds <∞.

Let µ, ν > 0. Then by Theorem 1.4, there exists a constant λ0 > 0 such that for each λ ∈ [0, λ0), problem{
Dαu (t) = λp(t)uσ, t ∈ (0, 1) ,
lim
t→0+

t2−αu(t) = µ, u(1) = ν,

has a positive solution u in C2−α([0, 1]) satisfying

(1− λ

λ0
)h0(t) ≤ u (t) ≤ h0(t) for all t ∈ (0, 1].
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[24] G. Molica Bisci, D. Repovš, Higher nonlocal problems with bounded potential, J. Math. Anal. Appl., 420 (2014),
167–176. 1

[25] I. Podlubny, Fractional differential equations, An introduction to fractional derivatives, fractional differential
equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering,
Academic Press, Inc., San Diego, CA, (1999). 1

[26] S. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Theory and applications, Edited and
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