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Abstract

We show that some important fixed point theorems on complete metric spaces as Browder’s fixed point
theorem and Matkowski’s fixed point theorem can be easily generalized to the framework of bicomplete
quasi-metric spaces. From these generalizations we deduce quasi-metric versions of well-known fixed point
theorems due to Krasnoselskĭı and Stetsenko; Khan, Swalesh and Sessa; and Dutta and Choudhury, re-
spectively. In fact, our approach shows that many fixed point theorems for ϕ-contractions on bicomplete
quasi-metric spaces, and hence on complete G-metric spaces, are actually consequences of the corresponding
fixed point theorems for complete metric spaces. c©2016 All rights reserved.
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1. Introduction and preliminaries

The study of the fixed point theory in quasi-metric spaces has received an increasing attention in the
last years (see e.g. [1–4, 8, 10, 15, 20, 21, 27]) due, in great part, to the usefulness of these spaces and
other related structures, as the so-called partial metric spaces, to the theory of computation, the complexity
analysis of algorithm (see e.g. [5, 25, 26, 28]), as well as to the fixed point theory for G-metric spaces [1, 14].

The purpose of this paper is to show that some important fixed point theorems on complete metric
spaces as Browder’s fixed point theorem and Matkowski’s fixed point theorem can be easily generalized
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to the framework of bicomplete quasi-metric spaces. Then, and with the help of some useful equivalences
proved by Jachymski [13, Lemma 1], we deduce quasi-metric versions of well-known fixed point theorems
due to Krasnoselskĭı and Stetsenko [17], Khan et al. [16], and Dutta and Choudhury [11]. In fact, our
approach shows that many fixed point theorems for ϕ-contractions on bicomplete quasi-metric spaces, and
hence on complete G-metric spaces, are actually consequences of the corresponding fixed point theorems for
complete metric spaces. We also consider the problem of extending the famous Boyd and Wong fixed point
theorem [6] to this framework.

Next we recall some concepts and properties of the theory of quasi-metric spaces. (By R+ we shall
denote the set of all non-negative real numbers.)

Following the modern terminology (see [9]) by a quasi-metric on the set X we mean a function d :
X ×X → R+ such that for all x, y, z ∈ X :

(i) x = y ⇔ d(x, y) = d(y, x) = 0;

(ii) d(x, z) ≤ d(x, y) + d(y, z).

A quasi-metric space is a pair (X, d) such that X is a set and d is a quasi-metric on X.
Given a quasi-metric d on a set X the function ds defined on X ×X by ds(x, y) = max{d(x, y), d(y, x)}

for all x, y ∈ X, is a metric on X.
Each quasi-metric d on X induces a T0 topology τd onX which has as a base the family of open balls

{Bd(x, r) : x ∈ X, ε > 0}, where Bd(x, ε) = {y ∈ X : d(x, y) < ε} for all x ∈ X and ε > 0.
If τd is a T1 topology on X, we say that (X, d) is a T1 quasi-metric space.

There exist many different notions of quasi-metric completeness in the literature (see e.g. [9, 19, 23]).
For our purposes here we will consider the following one: A quasi-metric space (X, d) is said to be bicomplete
if the metric space (X, ds) is complete.

It is interesting to point out that bicompleteness is a very useful notion of quasi-metric completeness
in solving the problem of quasi-metric completion. Furthermore, a class of bicomplete quasi-metric spaces
(the so-called Smyth complete quasi-metric spaces) provides a suitable tool in constructing mathematical
models in theoretical computer science and complexity analysis of algorithms (see e.g. [24, 26, 28]).

2. The results

Given a quasi-metric space (X, d), a mapping T : X → X and functions ϕ, η, ψ : R+ → R+, consider the
following conditions:

(1) ϕ is non-decreasing, limn→∞ ϕ
n(t) = 0 for all t > 0, and

d(Tx, Ty) ≤ ϕ(d(x, y))

for all x, y ∈ X.
(2) ϕ is non-decreasing, right continuous, ϕ(t) < t for all t > 0, and

d(Tx, Ty) ≤ ϕ(d(x, y))

for all x, y ∈ X.
(3) η is continuous, 0 < η(t) < t for all t > 0, and

d(Tx, Ty) ≤ d(x, y)− η(d(x, y))

for all x, y ∈ X.
(4) ψ is non-decreasing, continuous, ψ−1(0) = {0}, and

ψ(d(Tx, Ty)) ≤ αψ(d(x, y))

for all x, y ∈ X and some α ∈ [0, 1).
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(5) η and ψ are non-decreasing, continuous, η−1(0) = ψ−1(0) = {0}, and

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− η(d(x, y))

for all x, y ∈ X.

As in the metric case (see e.g. [13]), given a quasi-metric space (X, d), a mapping T : X → X and a
function ϕ : R+ → R+ such that ϕ(t) < t for all t > 0, we say that T is a ϕ-contraction if d(Tx, Ty) ≤
ϕ(d(x, y)), for all x, y ∈ X.

It is clear that every self-mapping T on a quasi-metric space (X, d) and ϕ : R+ → R+ is a function for
which condition (1) or condition (2) is satisfied, then T is a ϕ-contraction.

It is well-known that if (X, d) is a complete metric space, and some of the above conditions (1)-(5) is
satisfied, then T has a unique fixed point. In fact, Matkowski [22] and Browder [7], respectively proved the
following.

Theorem 2.1 ([22]). Let (X, d) be a complete metric space, T be a self-mapping of X and ϕ : R+ → R+ be
a function for which condition (1) above is satisfied. Then T has a unique fixed point.

Theorem 2.2 ([7]). Let (X, d) be a complete metric space, T be a self-mapping of X and ϕ : R+ → R+ be
a function for which condition (2) above is satisfied. Then T has a unique fixed point.

If T is a self-map of a complete metric space (X, d), Krasnoselskĭı and Stetsenko [17] (see also [18])
proved the existence of a unique fixed point for T whenever condition (3) is satisfied, whereas Khan et al.
[16], and Dutta and Choudhury [11], respectively, proved that T has a unique fixed point when condition
(4), respectively (5), is satisfied.

Next we easily generalize Theorems 2.1 and 2.2 to bicomplete quasi-metric spaces.

Theorem 2.3. Let (X, d) be a bicomplete quasi-metric space, T : X → X and ϕ : R+ → R+ be a non-
decreasing function such that limn→∞ ϕ

n(t) = 0, for all t > 0, and

d(Tx, Ty) ≤ ϕ(d(x, y))

for all x, y ∈ X. Then T has a unique fixed point.

Proof. Since (X, d) is bicomplete, (X, ds) is a complete metric space. Let x, y ∈ X, and suppose, without
loss of generality that ds(Tx, Ty) = d(Tx, Ty). Since d(x, y) ≤ ds(x, y) and ϕ is non-decreasing, we deduce

ds(Tx, Ty) = d(Tx, Ty) ≤ ϕ(d(x, y)) ≤ ϕ(ds(x, y)).

Consequently, we can apply Matkowki’s fixed point theorem (Theorem 2.1) to (X, ds), and thus T has a
unique fixed point.

Theorem 2.4. Let (X, d) be a bicomplete quasi-metric space, T : X → X and ϕ : R+ → R+ be a non-
decreasing and right continuous function such that ϕ(t) < t for all t > 0, and

d(Tx, Ty) ≤ ϕ(d(x, y))

for all x, y ∈ X. Then T has a unique fixed point.

Proof. It is well-known, and easy to check, that if ϕ is non-decreasing, right continuous, and satisfies ϕ(t) < t
for all t > 0, then limn→∞ ϕ

n(t) = 0. Hence T has a fixed point by Theorem 2.3.

Remark 2.5. Observe that similar to the proof of Theorems 2.3 and 2.4 can be also directly deduced from
Browder’s theorem (Theorem 2.2).
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Our next theorem allows us to deduce quasi-metric generalizations of the fixed point theorems in [11,
16, 18] mentioned above. To this end, the following result due to Jachymski [13] will be crucial.

Lemma 2.6 ([13, Lemma 1: (viii), (xii)]). Let D be a nonempty subset of R+×R+. The following statements
are equivalent:

(i) there exists a non-decreasing and continuous function ϕ : R+ → R+ such that ϕ(t) < t for all t > 0,
and D ⊆ Eϕ, where Eϕ = {(u, v) ∈ R+×R+ : v ≤ ϕ(u)};

(ii) there exist a non-decreasing and continuous function φ : R+ → R+ with φ−1(0) = {0} and lim
t→∞

φ(t) =

∞, and a lower semicontinuous function η : R+ → R+ with η−1(0) = {0}, such that D ⊆ Eφ,η, where
Eφ,η = {(u, v) ∈ R+×R+ : φ(v) ≤ φ(u)− η(u)}.

Theorem 2.7. Let (X, d) be a bicomplete quasi-metric space, T : X → X and η, ψ : R+ → R+ be functions
such that ψ is non-decreasing and continuous, η is lower semicontinuous, η−1(0) = ψ−1(0) = {0}, and

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− η(d(x, y))

for all x, y ∈ X. Then T has a unique fixed point.

Proof. We first observe that for each x, y ∈ X one has d(Tx, Ty) ≤ d(x, y).
Define a function φ : R+ → R+ as φ(t) = t+ψ(t) for all t ∈ R+. Then φ is non-decreasing and continuous

on R+ and satisfies φ−1(0) = {0} and limt→∞ φ(t) =∞.
Now define

D = {(d(x, y), d(Tx, Ty)) : x, y ∈ X},

and
Eφ,η = {(u, v) ∈ R+×R+ : φ(v) ≤ φ(u)− η(u)}.

We show that D ⊆ Eφ,η. Indeed, given x, y ∈ X we have

φ(d(Tx, Ty) = d(Tx, Ty) + ψ(d(Tx, Ty)) ≤ d(x, y) + ψ(d(x, y))− η(d(x, y))

= φ(d(x, y))− η(d(x, y)).

Therefore, D ⊆ Eφ,η. By Lemma 2.6, there exists a continuous and non-decreasing function ϕ : R+ → R+

such that ϕ(t) < t for all t > 0, and D ⊆ Eϕ, where Eϕ = {(u, v) ∈ R+×R+ : v ≤ ϕ(u)}. Hence

d(Tx, Ty) ≤ ϕ(d(x, y))

for all x, y ∈ X. By Theorem 2.4 we conclude that T has a unique fixed point.

Corollary 2.8. Let (X, d) be a bicomplete quasi-metric space, T : X → X and η : R+ → R+ be a lower
semicontinuous function such that η−1(0) = {0}, and

d(Tx, Ty) ≤ d(x, y)− η(d(x, y))

for all x, y ∈ X. Then T has a unique fixed point.

Proof. Apply Theorem 2.7 with ψ : R+ → R+ given by ψ(t) = t for all t ∈ R+.

Corollary 2.9. Let (X, d) a bicomplete quasi-metric space, T : X → X, ψ : R+ → R+ be a non-decreasing
and continuous function with ψ−1(0) = {0}, and α ∈ [0, 1) be a constant such that

ψ(d(Tx, Ty)) ≤ αψ(d(x, y))

for all x, y ∈ X. Then T has a unique fixed point.
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Proof. Apply Theorem 2.7 with η : R+ → R+ given by η(t) = (1− c)t for all t ∈ R+.

Corollary 2.10. Let (X, d) be a bicomplete quasi-metric space, T : X → X and α ∈ [0, 1) be a constant
such that

d(Tx, Ty) ≤ αd(x, y)

for all x, y ∈ X. Then T has a unique fixed point.

Remark 2.11. Jleli and Samet [14, Theorem 3.2] proved Corollary 2.8 for the case that (X, d) is a bicomplete
T1 quasi-metric space and η : R+ → R+ is continuous with η−1(0) = {0}. Corollary 2.10 is the well-known
bicomplete quasi-metric version of the Banach contraction principle. Obviously, it is also an immediate
consequence of Theorem 2.3 or Theorem 2.4.

The following two examples illustrate the preceding results.

Example 2.12. Denote by Σ a non-empty alphabet (i.e., a non-empty set) and by ΣF the set of all finite
words (or strings) on Σ. We assume that the empty word φ is an element of ΣF . Denote by v the prefix
order on ΣF and by `(x) the length of each x ∈ ΣF . In particular φ v x for all x ∈ ΣF , and `(φ) = 0.

Now let d be the quasi-metric on ΣF defined as d(x, y) = 0 if x v y, and d(x, y) = `(x) otherwise. Since
for each x, y ∈ ΣF we have ds(x, y) = max{`(x), `(y)} it immediately follows that every Cauchy sequence
in the metric space (X, ds) is eventually constant, and thus (X, d) is obviously a bicomplete quasi-metric
space.

Define T : ΣF → ΣF as follows: Tφ = φ, and for each x ∈ ΣF \{φ}, Tx is the element of ΣF obtained by
deleting the last letter of x, i.e., if x := x1x2...xn, with xk ∈ Σ for all k = 1, ..., n, then Tx = x1x2...xn−1.
In particular Tx = φ whenever `(x) = 1. Observe also that `(Tx) = `(x) − 1 whenever x ∈ ΣF \{φ}. Now
consider the function η : R+ → R+ given by η(0) = 0 and η(t) = 1 for all t > 0. Clearly, η is lower
semicontinuous on R+. Finally, let x, y ∈ ΣF . If Tx is a prefix of Ty we have d(Tx, Ty) = 0. Otherwise, it
follows that x is not a prefix of y, so d(Tx, Ty) = `(Tx) = `(x)− 1 = d(x, y)− η(`(x)) = d(x, y)− η(d(x, y)).

We have shown that all conditions of Corollary 2.8 are satisfied, so T has a unique fixed point. In fact
φ is that unique fixed point.

Example 2.13. Let X = [0, 1/3] and let d be the quasi-metric on X defined as d(x, y) = y − x, if x ≤ y,
and d(x, y) = x otherwise. Clearly, (X, d) is a bicomplete T1 quasi-metric space (note that if (xn)n is a
non-eventually constant Cauchy sequence in (X, ds), then xn → 0 with respect to the usual topology and
thus ds(0, xn)→ 0, as n→∞).

Define T : X → X as Tx = x2 for all x ∈ X, ψ : R+ → R+ as ψ(t) =
√
t for all t ∈ R+, and let

α =
√

2/3. If x ≤ y, we obtain

ψ(d(Tx, Ty)) = ψ(y2 − x2) =
√
y2 − x2 =

√
y + x

√
y − x

≤
√

2/3
√
y − x = αψ(d(x, y)).

If x > y, we obtain

ψ(d(Tx, Ty)) = ψ(x2) = x ≤
√

1/3
√
x < αψ(x) = αψ(d(x, y)).

We have shown that all conditions of Corollary 2.9 are satisfied, so T has a unique fixed point. In fact
0 is that unique fixed point.

We conclude the paper with some remarks on the question of extending the famous Boyd and Wong fixed
point theorem [6] to bicomplete quasi-metric spaces. This theorem, that provides a substantial improvement
of Browder’s fixed point theorem and is independent from Matkowski’s fixed point theorem (see [12]) estab-
lishes that if T is a ϕ-contraction on a complete metric space (X, d) such that the function ϕ : R+ → R+ is
right upper semicontinuous, then T has a unique fixed point.

In contrast to the Boyd and Wong theorem, we give an easy example of a ϕ-contraction T on a bicomplete
quasi-metric such that ϕ is right upper semicontinuous but T has no fixed points.
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Example 2.14. Let X = {0, 1} and let d be the quasi-metric on X defined as d(0, 0) = d(1, 1) = d(0, 1) = 0,
and d(1, 0) = 1. Since ds is the discrete metric on X it follows that (X, d) is a bicomplete quasi-metric space.
Now define T : X → X as T0 = 1 and T1 = 0. Finally, we show that T is a ϕ-contraction, where
ϕ : R+ → R+ is the (right) upper semicontinuous function given by ϕ(0) = 1 and ϕ(t) = t/2 for all t > 0.

Indeed, we have ϕ(t) < t for all t > 0, and d(T1, T0) = d(0, 1) = 0, and d(T0, T1) = d(1, 0) = 1 =
ϕ(0) = ϕ(d(0, 1)).

The above example suggests that a possible extension of the Boyd and Wong fixed point theorem to
bicomplete quasi-metric spaces requires some additional condition. This question will be discussed elsewhere.
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Basel AG, Basel, (2013). 1
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