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Abstract

In this paper we use the multivalent guiding functions method to study the bifurcation problem for dif-
ferential inclusions with convex-valued right-hand part satisfying the upper Carathéodory and the sublinear
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1. Introduction and preliminaries

The base of the method of guiding functions was laid by Krasnosel’skii and Perov (see [17–19]). The
method of multivalent guiding functions became one of the most important directions of its development in
the case of differential equations (see [28]).

It is well-known that the application of topological degree methods to the study of various problems of
the theory of differential inclusions is very effective (see [2–6]).

A number of works was devoted to the extension of the guiding functions method to the case of differential
inclusions and this approach demonstrated its effectiveness to the study of periodic problems. The classical
method of guiding potential was used by Borisovich et al. [2] and Górniewicz [5]. The method of integral
guiding functions and some of its versions were developed in [8, 9, 13, 16, 27] and the method of multivalent

∗Corresponding author
Email addresses: kornev vrn@rambler.ru (Sergey Kornev), simplex liou@hotmail.com (Yeong-Cheng Liou)

Received 2016-08-16



S. Kornev, Y.-C. Liou, J. Nonlinear Sci. Appl. 9 (2016), 5259–5270 5260

guiding functions was extended to differential inclusions in [7, 10, 12]. For some other applications of the
guiding functions method see, for example, [11, 14, 15, 25].

Notice that now the bifurcation phenomena in dynamical systems governed by the various classes of
differential inclusions were studied by not only the classical method of guiding functions [20], but also by
the method of integral guiding functions [21–24, 26, 27].

In the present paper, developing the abstract approach proposed in [20], the method of multivalent
guiding functions is used to investigate the bifurcation problem for some classes of differential inclusions.
More precisely, we consider the bifurcation problem for nonlinear systems governed by differential inclusions
with convex-valued right-hand parts satisfying T -periodicity condition in the first argument, the upper
Carathéodory and the sublinear growth conditions.

In what follows we will use some known notions and notations from the theory of multivalued maps
(multimaps) (see [2–6]). We recall some of them as follows.

Let (X, dX), (Y, dY ) and (Z, dZ) be metric spaces. By the symbols P (Y ) and K(Y ) we denote the
collections of all nonempty and, respectively, nonempty and compact subsets of the space Y. If Y is a
normed space, Kv(Y ) denotes the collection of all nonempty convex compact subsets of Y.

Definition 1.1. A multimap F : X → P (Y ) is called upper semicontinuous (u.s.c.) at the point x ∈ X if
for each open set V ⊂ Y such that F (x) ⊂ Y there exists δ > 0 such that dX(x, x′) < δ implies F (x′) ⊂ V.
A multimap F : X → P (Y ) is called u.s.c. if it is u.s.c. at each point x ∈ X.

Definition 1.2. A multimap F : X → P (Y ) is called closed if its graph

ΓF = {(x, y) | (x, y) ∈ X × Y, y ∈ F (x)}

is a closed subset of the space X × Y.

Definition 1.3. A multimap F : X → P (Y ) is called compact if its range F (X) is relatively compact in Y.

Remark 1.4. If multimap F : X → P (Y ) is closed and compact, then it is u.s.c..

A multimap will be called multifunction if it is defined on a subset of R. Let I be a closed subset of R
endowed with the Lebesgue measure.

Definition 1.5. A multifunction F : I → K(Y ) is called measurable if, for each open subset V ⊂ Y, its
pre-image

F−1(V ) = {t ∈ I : F (t) ⊂ V }

is the measurable subset of I.

Remark 1.6. Each measurable multifunction F : I → K(Y ) has a measurable selection, i.e., there exists
such measurable function f : I → Y, that f(t) ∈ F (t) for almost every (a.e.) t ∈ I.

Let ∆ be a compact subset of R.

Definition 1.7. A multimap F : I × Rn ×∆→ Kv(Rn) is called the upper Carathéodory multimap if

(i) for each x ∈ Rn, µ ∈ ∆, multifunction F (·, x, µ) : I → Kv(Rn) is measurable;

(ii) for µ-a.e. t ∈ I multimap F (t, ·, ·) : Rn ×∆→ Kv(Rn) is u.s.c..

Definition 1.8. A multimap F : I ×Rn×∆→ Kv(Rn) satisfies the sublinear growth, if there is a positive
Lebesgue integrable function α(·) such that for all x ∈ Rn, µ ∈ ∆, at a.e. t ∈ I

‖F (t, x, µ)‖ := max
y∈F (t,x,µ)

‖y‖ ≤ α(t)(1 + ‖x‖).

In the sequel, we use some aspects of the bifurcation theory in the following situation (see [5, 20]).
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Let A ⊂ U ⊂ Rn, where A is compact and U is open in Rn. We identify the n-sphere Sn = {x ∈
Rn|‖x‖ = 1} with Rn ∪ {∞}. By Πk, k ≥ 0, we denote the k-th stable homotopy group of spheres, i.e.,

Πk := lim−−→
n≥0

πn+k(S
n).

Let A be a sheaf of Abelian groups over Y, f : X → Y be a closed surjection, the symbol Ay denotes
the fibre of a sheaf A over y ∈ Y. By A∗ we denote the inverse image of a sheaf A under a map f. For an
integer k ≥ 1, define

s0(f ;A) := {y ∈ Y |H0(f−1(y);A∗) 6= Ay},
sk(f ;A) := {y ∈ Y |Hk(f−1(y);A∗) 6= 0},

where H∗(·;A) denotes the Čhech cohomology groups with coefficients in the sheaf A and, for integers
N ≥ 1, let us define the Vietoris indices of f by

iN (f ;A) := inf{n ≥ 0 | max
0≤k≤N−1

{rdY (sk(f ;A)) + k}+ 1 < n},

where for A ⊂ Y, rdY (A) := sup{dimC | C is closed in Y, C ⊂ A} and dim denotes the topological
dimension of a set (see [1]).

We set i(f ;A) = supN≥0 i
N (f ;A). If a sheaf A is constant and equals Z, then i(f ;Z) is denoted by i(f).

Definition 1.9. Let ν : Z → X. We say that ν belongs to the class V (ν is a V-map) if

(i) ν is the perfect surjection, i.e., the surjection with compact fibres;

(ii) i(ν) <∞.
We say that ν : Z → X is a Ṽ-map if ν is a V-map and

(iii) dim ν := supx∈X dim ν−1(x) <∞.

Let (X,X ′), (Y, Y ′) be pairs of spaces and m ≥ 0. By Dm(X,X ′;Y, Y ′) (resp. D̃m(X,X ′;Y, Y ′)) we
denote the class of all cotriads

(X,X ′)
ν← (Z,Z ′)

χ→ (Y, Y ′),

where ν is a Vm-map (resp. Ṽm-map) and χ is a continuous map. Additionally, we put

D(X,X ′;Y, Y ′) :=
⋃
m≥0

Dm(X,X ′;Y, Y ′),

(D̃ =
⋃
m≥0 D̃m); hence D̃ ⊂ D.

Definition 1.10. We say that cotriads

(X,X ′)
νi← (Zi, Z

′
i)

χi→ (Y, Y ′), i = 1, 2

from D(X,X ′;Y, Y ′) (resp. D̃) are equivalent (written (ν1, χ1) ≈ (ν2, χ2)) if there exists a cotriad

(X,X ′)
ν← (Z,Z ′)

χ→ (Y, Y ′)

(resp. with finite-dimensional map ν) and V0-maps fi : (Z,Z ′) → (Zi, Z
′
i) such that νi ◦ fi = ν and

χi ◦ fi = χ, i = 1, 2.

Definition 1.11. Elements of the quotient

M(X,X ′;Y, Y ′) = D(X,X ′;Y, Y ′)/ ≈

or
M̃(X,X ′;Y, Y ′) = D̃(X,X ′;Y, Y ′)/ ≈

are called morphisms (resp. finite-dimensional morphisms).
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By Mm(X,X ′;Y, Y ′) (resp. M̃m(X,X ′;Y, Y ′), m ≥ 0, we denote the set of all morphisms from

M(X,X ′;Y, Y ′) (resp. M̃) which are represented by cotriads (ν, χ) ∈ D(X,X ′;Y, Y ′) (resp. D̃).
By C(m,n), m ≥ n, we denote the class of all pairs (f, U), where U is an open bounded subset of Rm

and f : (U, ∂U)→ (Rn,Rn \ {0}) is a continuous map.
We say that (f0, U), (f1, U) from C(m,n) are homotopic if there is a homotopy h : (U×[0, 1], ∂U×[0, 1])→

(Rn,Rn \ {0}) such that h(·, i) = fi, i = 0, 1.
Let Bm be a closed ball centered at zero of radius r = 1, (f, U) ∈ C(m,n) where n ≤ m < 2n − 2.

Assume, without loss of generality, that U ⊂ Bm and that dim ∂U ≤ m−1. Consider the following sequence
of Abelian groups and homomorphisms

πn−1(∂U)
δ1→ πn(U, ∂U)

j]← πn(Bm, Bm\U)
i]→ πn(Bm, Sm−1)

δ2← πn−1(Sm−1)

in which δ1 denotes the coboundary homomorphism of the pair (U, ∂U), j : (U, ∂U) → (Bm, Bm\U),
i : (Bm, Sm−1) → (Bm, Bm\U) are the inclusions and δ2 is the coboundary homomorphism of the pair
(Bm, Sm−1). Clearly j] is the excision isomorphism and δ2 is an isomorphism in view of the contractibility
of Bm and the exactness of the cohomotopy sequence of the pair (Bm, Sm−1). Let

κ = δ−1
2 ◦ i

] ◦ (j])−1 ◦ δ1

and let η := [f |∂U ] ∈ πn−1(∂U), where [f |∂U ] denotes the homotopy class of f |∂U and πn−1(∂U) denotes
(n − 1)-th cohomotopy group of ∂U. Without loss of generality we have identified here [∂U ;Rn \ 0] with
πn−1(∂U).

Definition 1.12. The generalized degree of f on U is the element

deg(f, U) := κ(η) ∈ πn−1(Sm−1) ∼= Πm−n.

Let U be an open subset of Rm = Rn × Rk. Consider the problem of the bifurcation of solutions to the
inclusion

0 ∈ Φ(z, λ), (1.1)

where Φ : U ( Rn is a multifield corresponding to a multimap F : U ( Rn, i.e., Φ(z) = z − F (z).
Let us make the following assumptions:

(1) Φ ∈ M̃n(U ;Rn) is a morphism such that 0 ∈ Φ(0, λ) for all λ ∈ Λ := {λ ∈ Rk | (0, λ) ∈ U}.
We define the set of nontrivial solutions to (1.1) as

S := {(z, λ) ∈ U \ Λ× {0} | z 6= 0, 0 ∈ Φ(z, λ)},

and suppose that

(2) the set of bifurcation points

B(Φ) := {(0, λ) ∈ Λ× {0} | (0, λ) ∈ S}

is compact.

In order to define the bifurcation index of Φ we need some auxiliary objects. Let us consider an arbitrary
continuous function α : Λ→ [0,∞) such that, for (0, λ) /∈ B(Φ),

0 < α(λ) < d((0, λ), ∂U ∪ S)

and
α(λ) = 0
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for (λ, 0) ∈ B(Φ). For instance we may put

α(λ) = min

{
1,

1

2
d((0, λ), ∂U ∪ S)

}
.

Next we set

X := {(z, λ) ∈ Rm | λ ∈ Λ, ‖z‖ = α(λ)},
X+ := {(z, λ) ∈ Rm | λ ∈ Λ, ‖z‖ < α(λ)}.

Observe that X+ ∪X ⊂ U and put X− := U\X+
. It is easy to see that S ⊂ X− and B(Φ) ⊂ X.

Let f : U → R be a continuous function such that

f(z, λ) =


< 0 for (z, λ) ∈ X−,
= 0 for (z, λ) ∈ X ,
> 0 for (z, λ) ∈ X+.

Now we consider a morphism Ψ from M̃n(U ;Rn+1) such that, for all (z, λ) ∈ U, Ψ(z, λ) = Φ(z, λ)×{f(z, λ)}.
Since, by (ii), the set of zeros of Ψ is compact, there is an open bounded set U ′ such that U ′ ⊂ U and

0 /∈ Ψ(z, λ) for (z, λ) ∈ U \ U ′. Therefore (Ψ, U ′) ∈ M̃(m,n+ 1).

Definition 1.13. The bifurcation index Bi (Φ) of Φ is defined by the following formula

Bi (Φ) := deg(Ψ, U ′) ∈ Πk−1.

We will need the following version of the global bifurcation result of Kryszewski (see [5, 20]).
In addition to above assumptions let us suppose that

(3) there is an open set U1 ⊃ U and a morphism Φ1 ∈ M̃n(U1;Rn) such that Φ1|U = Φ and 0 ∈ Φ1(0, λ)
for all (0, λ) ∈ {0} × U1 ∩ Rk. Let

S1 := {(z, λ) ∈ U1 | z 6= 0, 0 ∈ Φ1(z, λ)}.

Lemma 1.14. Let K be a compact subset of U1 such that B(Φ) ⊂ K and {0} × K ∩ (Rk\Λ) = ∅ (e.q.
K = B(Φ)). If Bi (Φ) 6= 0, then there is a nonempty connected set C ⊂ S1\K such that C ∩K 6= ∅ and at
least one of the followings occurs:

(i) C is unbounded;

(ii) C ∩ ∂U1 6= ∅;

(iii) there is a point λ∗ ∈ Rk\Λ such that (0, λ∗) ∈ U1 and (0, λ∗) ∈ C. Thus Φ1 has bifurcation points
outside U connected to K in S1.

2. Main result

We shall study the periodic problem for a family of differential inclusions of the following form:

z′(t) ∈ F (t, z(t), µ),

z(0) = z(T ),
(2.1)

under assumptions that

(H1) F : R × Rn × Λ → Kv(Rn) is a T -periodic multimap (T > 0), satisfying the upper Carathéodory
conditions and the sublinear growth condition;
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(H2) for each µ ∈ Λ problem (2.1) admits a solution z : [0, T ]→ Rn with z(0) = z(T ) = 0.

By a solution of problem (2.1) we mean a pair (z, µ), satisfying inclusion (2.1) a.e. on [0, T ], where
z ∈ C([0, T ];Rn) is a T -periodic absolutely continuous function, µ ∈ Λ. From (H2) it follows that (0, µ) is a
solution to problem (2.1) for each µ ∈ Λ. These solutions are called trivial. Let us denote by S the set of
all nontrivial solutions of problem (2.1).

Let Rn = Rn−2 × R2 be a metric space. Denote by q the operator of projection on R2 and p = i − q,
where i is the identity map. The elements of R2 and Rn−2 are denoted by ξ and ζ, respectively. Let ϕ, ρ be
polar coordinates in R2.

We consider the multivalent Riemann surface

Π = {(ϕ, ρ) : ϕ ∈ (−∞,∞), ρ ∈ (0,∞)} .

On Π×R we define a continuously differentiable in the first argument and continuous in the second argument
function W (ξ, µ) such that

∂W (ϕ, ρ, µ)

∂ϕ
> 0, (ϕ, ρ) ∈ Π, µ ∈ Λ, (2.2)

W (ϕ+ 2π, ρ, µ) = W (ϕ, ρ, µ) + 2π, (ϕ, ρ) ∈ Π, µ ∈ Λ. (2.3)

On Rn−2 × Λ let V (ζ, µ) be a continuously differentiable in the first argument and continuous in the

second argument function such that ∂V (0,µ)
∂ζ = 0 and the following coercivity condition

lim
‖ζ‖→∞

V (ζ, µ) = +∞ (2.4)

holds true.
For each µ ∈ Λ, choose ρ1 := ρ1(µ), ρ2 := ρ2(µ) such that 0 ≤ ρ1 < ρ2 and for ϑ0 := minV (ζ, µ), take

ϑ := ϑ(µ) such that ϑ > ϑ0. We define the following domain

Ωµ (ϑ, ρ1, ρ2) = {z ∈ Rn : V (pz, µ) < ϑ, ρ1 < ‖qz‖ < ρ2} .

We assume that on [0, T ] continuous functions α(t, µ), β(t, µ) are given such that, for each µ ∈ Λ and
a.e. t ∈ [0, T ] the following holds:

sup
z∈Ωµ(ϑ,ρ1,ρ2)

sup
y∈F (t,z,µ)

〈
∂W (qz, µ)

∂qz
, qy

〉
< α(t, µ), (2.5)

inf
z∈Ωµ(ϑ,ρ1,ρ2)

inf
y∈F (t,z,µ)

〈
∂W (qz, µ)

∂qz
, qy

〉
> β(t, µ). (2.6)

Let us give the following definition.

Definition 2.1. A pair of functions {V (ζ, µ),W (ξ, µ)} with properties (2.2)-(2.6) is called the multivalent
guiding function (MGF) for inclusion (2.1) on Ωµ (ϑ, ρ1, ρ2) if the following conditions hold true:

sup
t∈[0,T ]

sup
y∈F (t,z,µ)

|〈qy, qz〉|
‖qz‖

<
ρ2 − ρ1

2T
, z ∈ Ωµ(ϑ, ρ1, ρ2), (2.7)〈

∂V (pz, µ)

∂pz
, py

〉
< 0, y ∈ F (t, z, µ), V (pz, µ) ≥ ϑ, ‖qz‖ ≤ ρ2, (2.8)

2π(Nµ − 1) <

T∫
0

α(τ, µ)dτ,

T∫
0

β(τ, µ)dτ < 2πNµ, (2.9)

where Nµ is an integer and α(t, µ), β(t, µ) are functions from (2.5), (2.6), respectively.
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For all µ ∈ Λ and ρ0(µ) = ρ0 = (ρ1 + ρ2)/2 we define

Gµ(ϑ, ρ0) = {z ∈ Rn : V (pz, µ) < ϑ, ‖qz‖ < ρ0} ,
∂Gµ(ϑ, ρ0) = ∂Gζ(ϑ)×Gξ(ρ0) ∪Gζ(ϑ)× ∂Gξ(ρ0).

Let us define the map ∇V : Rn−2 × Λ→ Rn−2 by

∇V (ζ, µ) =
∂V (ζ, µ)

∂ζ
.

We assume that for fixed r > η > 0, µ0 ∈ Λ the following condition is satisfied

∇V (pz, µ) 6= 0 (2.10)

for all z ∈ Gµ(ϑ, ρ0) and µ : r − η ≤ |µ− µ0| ≤ r + η.
Now we are in position to formulate the main result of this paper.

Theorem 2.2. Suppose that conditions (H1) and (H2) are satisfied. Let {V (ζ, µ),W (ξ, µ)} be MGF for
inclusion (2.1) on Ωµ (ϑ, ρ1, ρ2) for each µ : |µ− µ0| ≥ r.

Then one of the following cases occurs:

(i) there exists a sequence {(yn, µn)}∞n=1, µn → µ, |µ − µ0| = r, yn ∈ Rn, yn 6= ym for n 6= m, and a
sequence (zn) of solutions of problem (2.1) for µ = µn such that zn(0) = zn(T ) = yn → 0 and zn → z,
where z is a solution of problem (2.1) for µ = µ such that z(0) = z(T ) = 0;

(ii) there exists a connected set C of points (y, µ) with y 6= 0 such that

• (0, µ) ∈ C where |µ− µ0| < r,

• C is unbounded or C ∩ ∂U 6= ∅ or (0, µ̃) ∈ C for some µ̃ ∈ Λ : |µ̃− µ0| > r,

• each point (y, µ) ∈ C corresponds to a solution z : [0, T ] → Rn of inclusion (2.1) with z(0) =
z(T ) = y. In particular, there is a sequence (zn)∞n=1 of solutions to inclusion (2.1) for µ = µn,
zn(0) = zn(T ) = yn, where µn → µ in Λ with ‖µ−µ0‖ < r, converging to a solution z to inclusion
(2.1) for µ = µ, z(0) = z(T ) = 0.

Proof.

Claim 1. First of all we shall show that the trajectory z(t), starting at ∂Gµ(ϑ, ρ0), satisfies the following
estimate

z(t) ∈ Gµ(ϑ, ρ2) (2.11)

for t ∈ (0, T ]. We consider a component ζ(t) of the trajectory z(t). If ζ(0) is an interior point of Gζ(ϑ), then
there exists ε1 > 0, such that

ζ(t) ∈ Gζ(ϑ), t ∈ (0, ε1). (2.12)

Let us take ζ(0) ∈ ∂Gζ(ϑ), i.e., V (ζ(0), µ) = ϑ. Since ‖ξ(0)‖ ≤ ρ0 < ρ2, from (2.8) it follows that

〈∇V (ζ(0), µ), py〉 < 0 for all y ∈ F (0, ζ(0), ξ(0), µ).

Then for small t > 0 we have V (ζ(t), µ) < ϑ. So for some ε1 > 0 estimate (2.12) holds true.
Considering the component ξ(t), obviously for some ε2 > 0 we obtain

ξ(t) ∈ Gξ(ρ2), t ∈ (0, ε2). (2.13)

From (2.12) and (2.13) it follows that z(t) ∈ Gµ(ϑ, ρ2), 0 < t < min{ε1, ε2}. It means that there exists
a positive number

t∗ = sup {t > 0 : z(t) ∈ Gµ(ϑ, ρ2)} .
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Notice that inclusion (2.11) is equivalent to the following estimate: t∗ > T.
Since z(t∗) ∈ ∂Gµ(ϑ, ρ2), we have V (ζ(t∗), µ) = ϑ or ‖ξ(t∗)‖ = ρ2. From (2.8) it follows that V (ζ(t∗), µ) <

ϑ. Therefore ‖ξ(t∗)‖ = ρ2 and from ‖ξ(0)‖ ≤ ρ0 we obtain

‖ξ(t∗)‖ − ‖ξ(0)‖ ≥ ρ2 − ρ0 = (ρ2 − ρ1)/2.

Let ϕ(t), ρ(t) be polar coordinates of ξ(t). Then

ρ(t∗)− ρ(0) ≥ (ρ2 − ρ1)/2.

Therefore,
max
t∈[0,t∗]

‖ρ′(t)‖ ≥ (ρ2 − ρ1)/2t∗. (2.14)

On the other hand, since

‖ρ′(t)‖ =
〈qy, ξ(t)〉
‖ξ(t)‖

, y ∈ F (t, ζ(t), ξ(t), µ),

and z(t) ∈ Gµ(ϑ, ρ2) for t ∈ (0, t∗), from (2.7) it follows the estimate

max
t∈[0,t∗]

‖ρ′(t)‖ < (ρ2 − ρ1)/2T . (2.15)

Comparing (2.14) and (2.15) we see that t∗ > T. Therefore, any trajectory z(·), starting at ∂Gµ (ϑ, ρ0)
for t ∈ (0, T ] , satisfies the estimate z(t) ∈ Gµ(ϑ, ρ2).

Claim 2. Let us take z(0) ∈ Gζ(ϑ)× ∂Gξ(ρ0) and

ρ(0) = ρ0 = (ρ1 + ρ2)/2.

Since z(t) ∈ Gµ (ϑ, ρ2) for t ∈ (0, T ] , we have the estimate

max
[0,t∗]
|ρ′(t)| < (ρ2 − ρ1)/2T.

Therefore,
ρ(t) > ρ(0)− (ρ2 − ρ1)t/2T, t ∈ (0, T ]

and we obtain
ρ(t) > ρ1, t ∈ (0, T ] .

Then
z(t) ∈ Ωµ(ϑ, ρ1, ρ2), t ∈ (0, T ] .

Let us denote ω(t, µ) = W (ξ(t), µ). The map ∇W : R2 × Λ→ R2 is defined as

∇W (ξ, µ) =
∂W (ξ, µ)

∂ξ
.

Then for each µ ∈ Λ
ω′(t, µ) = 〈∇W (ξ(t), µ), qy〉,

where y ∈ F (t, z, µ) and
β(t, µ) < ω′(t, µ) < α(t, µ).

Now by using the integral representation of the function ω(t, µ) we obtain

T∫
0

β(τ, µ)dτ < ω(T, µ)− ω(0, µ) <

T∫
0

α(τ, µ)dτ. (2.16)

From (2.9) it follows that
2π(Nµ − 1) < ω(T, µ)− ω(0, µ) < 2πNµ.

Then we have that ξ(T ) 6= ξ(0) for µ : r + ε/2 ≤ |µ− µ0| < r + ε, 1/2 < λ < 1 and z0 ∈ ∂Gµ(ϑ, ρ0).
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Claim 3. Let us define a map fV : Rn−2 × Λ→ Rn−2 by

fV (ζ, µ) =

{
∇V (ζ, µ), if ‖∇V (ζ, µ)‖ ≤ 1,
∇V (ζ,µ)
‖∇V (ζ,µ)‖ , if ‖∇V (ζ, µ)‖ > 1,

and a map P : [0, T ]× Rn−2 × Λ→ Rn−2 by the formula

P (t, ζ0, µ) = ζ(t)− ζ0,

where ζ : [0, T ] → Rn−2 is the unique solution to the problem ζ ′(t) = fV (ζ, µ), ζ(0) = ζ0. It is clearly a
well-defined single-valued (continuous) map since fV is bounded and it satisfies the Lipschitz condition with
respect to the second variable.

Let Φ : [0, T ]× Rn × Λ ( Rn be given by

Φ(t, z, µ) = {z(t)− z0 | z′(s) ∈ F (s, z(s), µ) a.e. s ∈ [0, T ], z(0) = z0, pz(0) = ζ0}.

Assume that there is ε : 0 < ε ≤ η/2 such that, for all µ : r+ ε/2 ≤ |µ− µ0| < r+ ε and z0 ∈ Gµ(ϑ, ρ0)

0 /∈ Φ(T, z0, µ). (2.17)

If condition (2.17) is not satisfied, then there are sequences µn → µ ∈ Λ and yn → 0 in Rn such that
µn 6= µm, yn 6= ym for n 6= m, |µ− µ0| = r and

0 ∈ Φ(T, yn, µn).

Hence there is a sequence of solutions zn : [0, T ] → Rn to problem (2.1) for µ = µn such that zn(0) =
zn(T ) = zn. Notice that the Gronwall inequality implies zn → z in C([0, T ];Rn). Then z is the solution of
problem (2.1) for µ = µ such that z(0) = z(T ) = 0.

Claim 4. For each µ ∈ Λ : r + ε/2 ≤ |µ − µ0| < r + ε; z0 ∈ ∂Gζ(ϑ) × Gξ(ρ0) and t ∈ [0, T ], we shall show
that

0 6= P (t, ζ0, µ).

Indeed, take the solution ζ(t) to the problem ζ ′(t) = fV (ζ(t), µ), ζ(0) ∈ ∂Gζ(ϑ). Then

V (ζ(t), µ)− V (ζ(0), µ) =

∫ t

0
〈∇V (ζ(s), µ), ζ ′(s)〉ds

=

∫ t

0
〈∇V (ζ(s), µ), fV (ζ(s), µ)〉ds > 0.

Thus ζ(t) 6= ζ(0) = ζ0 and
0 6= P (t, ζ0, µ).

Claim 5. For t ∈ [0, T ], consider a map ht : Rn−2 × Λ× [0, 1]→ Rn−2,

ht(ζ0, µ, λ) = (1− λ)∇V (ζ0, µ) + λP (t, ζ0, µ).

We shall show that there is τ ∈ [0, T ] such that, for µ ∈ Λ : r + ε/2 ≤ |µ − µ0| < r + ε; ζ(0) ∈ ∂Gζ(ϑ)
and λ ∈ [0, 1],

0 6= hτ (ζ0, µ, λ).

Indeed, the continuity of fV , V , and (2.10) imply that there is τ > 0 such that for ζ(0) ∈ ∂Gζ(ϑ),
ζ ′0 ∈ Rn−2 such that |V (ζ0, µ)− V (ζ ′0, µ)| ≤ τ, we have

〈∇V (ζ0, µ), fV (ζ ′0, µ)〉 > 0.
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Now suppose that for µ ∈ Λ : r + ε/2 ≤ |µ− µ0| < r + ε; ζ(0) ∈ ∂Gζ(ϑ) and λ ∈ [0, 1]

hτ (ζ0, µ, λ) = 0.

Then from (2.10) and Claim 4 for each λ ∈ (0, 1) we obtain

ζ(τ)− ζ0 =
λ− 1

λ
∇V (ζ0, µ),

where ζ ′ = fV (ζ, µ) on [0, T ] and ζ(0) = ζ0. Since |fV | ≤ 1, it is clear that, for all θ ∈ [0, τ ], |V (ζ(θ), µ) −
V (ζ0, µ)| ≤ τ. Thus

0 > 〈ζ(τ)− ζ0,∇V (ζ0, µ)〉 =

∫ τ

0
〈fV (ζ(θ), µ),∇V (ζ0, µ)〉dθ > 0,

a contradiction.

Claim 6. Now let

k(λ) =

{
1, if λ ∈ [0, 1

2),
2− 2λ, if λ ∈ [1

2 , 1];

and

t(λ) =

{
2(T − τ)λ+ τ, if λ ∈ [0, 1

2),
T, if λ ∈ [1

2 , 1].

Let us consider a multimap Ψ′ : Rn × Λ× [0, 1] ( Rn, given by

Ψ′(z0, µ, λ) = {z(t(λ))− z0 | z′(θ) ∈ k(λ)fV (pz(θ), µ) + (1− k(λ))F (θ, z(θ), µ)},

where z(0) = z0, pz(0) = ζ0. It is clear that

Ψ′(z0, µ, λ) =

{
hτ (ζ0, µ, 1) = P (τ, ζ0, µ), if λ = 0,
Φ(T, z0, µ) := ΦT , if λ = 1.

In view of condition (2.17) and Claim 5, if µ : r + ε/2 ≤ |µ− µ0| < r + ε and z0 ∈ Gµ(ϑ, ρ0), then

0 /∈ Ψ′(z0, µ, λ), λ = 0, 1.

Now we show that also for z0 ∈ ∂Gµ(ϑ, ρ0)

0 /∈ Ψ′(z0, µ, λ) for all λ ∈ (0, 1),

i.e., each ψ′ ∈ Ψ′(z0, µ, λ) is non-zero. By the definition of Ψ′,

ψ′ = z(t(λ))− z0,

where the function z : [0, T ]→ Rn is such that z(0) = z0, pz(0) = ζ0 and

z′(θ) ∈ k(λ)fV (pz(θ), µ) + (1− k(λ))F (θ, z(θ), µ),

i.e., z′(θ) = k(λ)fV (pz(θ), µ) + (1 − k(λ))y(θ), where y(θ) ∈ F (θ, z(θ), µ). Then, for 0 < λ ≤ 1/2 by Claim
4 we obtain

ψ′ = P (t(λ), ζ0, µ) 6= 0.

If 1/2 < λ < 1, then

V (p(ψ′ + z0), µ)− V (pz0, µ) ≥ k(λ)

∫ T

0
〈∇V (pz(θ), µ), fV (pz(θ), µ)〉dθ > 0
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for z0 ∈ ∂Gζ(ϑ)×Gξ(ρ0). Hence pψ′ 6= 0.

Now we shall show that for z0 ∈ Gζ(ϑ)× ∂Gξ(ρ0) and µ : r + ε/2 ≤ |µ− µ0| < r + ε, 1/2 < λ < 1,

qψ′ 6= 0.

We have

ω(T, µ)− ω(0, µ) =

∫ T

0
ω′(τ, µ)dτ =

∫ T

0
〈∇W (ξ(τ), µ), qỹ〉dτ = (1− k(λ))

∫ T

0
〈∇W (ξ(τ), µ), qy〉dτ,

where ỹ ∈ k(λ)fV (pz(τ), µ) + (1− k(λ))F (τ, z(τ), µ)), y ∈ F (τ, z(τ), µ). Then by (2.16) we have

(1− k(λ))2π(Nµ − 1) < ω(T, µ)− ω(0, µ) < (1− k(λ))2πNµ.

It follows that ξ(T ) 6= ξ(0), i.e., qψ′ 6= 0 µ : r+ε/2 ≤ |µ−µ0| < r+ε, 1/2 < λ < 1 and z0 ∈ Gζ(ϑ)×∂Gξ(ρ0).

Claim 7. Finally, we consider a multimap Ψ : Rn × Λ× [0, 1] ( Rn given by

Ψ(z0, µ, λ) =

{
hτ (pz0, µ, 2λ), if λ ∈ [0, 1/2],
Ψ′(z0, µ, 2λ− 1), if λ ∈ (1/2, 1].

In view of assumptions (2.10), (2.17), and Claims 5 and 6 for µ : r + ε/2 ≤ |µ − µ0| < r + ε and
z0 ∈ Gµ(ϑ, ρ0) we obtain

0 /∈ Ψ(z0, µ, λ), λ = 0, 1.

For µ : r + ε/2 ≤ |µ− µ0| < r + ε and z0 ∈ ∂Gµ(ϑ, ρ0) we also have

0 /∈ Ψ(z0, µ, λ), λ ∈ [0, 1].

Then
Bi (ΦT ) = Bi (∇V ) 6= 0.

The assertion follows from Lemma 1.14.
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[12] S. V. Kornev, V. V. Obukhovskĭı, On nonsmooth multivalent guiding functions, (Russian) Differ. Uravn., 39
(2003), 1497–1502, translation in Differ. Equ., 39 (2003), 1578–1584. 1
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[24] N. V. Loi, V. V. Obukhovskĭı, J.-C. Yao, A multiparameter global bifurcation theorem with application to a
feedback control system, Fixed Point Theory, 16 (2015), 353–370. 1
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