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Abstract

This report is aim to investigate the fixed points of two classes of Meir-Keeler-Khan set contractions
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1. Introduction and preliminaries

Let X and Y be two Hausdorff topological spaces, and let N(X) [respectively, CL(X), B(X),K(X),
CB(X)] denote the family of nonempty subsets [respectively, closed, bounded, compact, closed and bounded]
subsets of X. Let T : X → 2Y be a set-valued mapping (in short SVM). If the graph of T , that is,
GT = {(x, y) ∈ X × Y, y ∈ Tx} is closed, then T is closed. A mapping H : CB(X)× CB(X)→ [0,∞)

H(A,B) := max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
forms a metric (is called the Hausdorff metric) induced by the standard metric d (see e.g. [13]), where
d(x,B) := inf{d(x, b) : b ∈ B}, and A,B ∈ CB(X). A SVM T : X → CB(X) is called a contraction if

H(Tx, Ty) ≤ kd(x, y)

for all x, y ∈ X and k ∈ [0, 1).
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Let R+
0 be the set of all real non-negative numbers, and let N be the set of all natural numbers. Let

(M,d) be a metric space, X ⊂ M and γ > 0. Then we let BM (X, γ) = {x ∈ M : d(x,X) ≤ γ} and
NM (X, γ) = {x ∈M : d(x,X) < γ}, and we define the convex hull of X as follows:

co(X) =
⋂
{B ⊂M : B is a closed ball in M such that X ⊂ B}.

Recall that X is said to be subadmissible [7] if co(A) ⊂ X for each A ∈< X >. For the sake of
completeness, let us recall the notion of the set measure of noncompactness in the framework of metric
space.

Definition 1.1 ([14]). A mapping Φ : B(X)→ R+
0 is called a measure of noncompactness defined on (X, d),

if following properties are fulfilled:

1. Φ(D) = 0 if and only if D is precompact;

2. Φ(D) = Φ(D);

3. Φ(D1 ∪D2) = max{Φ(D1),Φ(D2)};
4. Φ(D) = Φ(co(D)).

On what follows, we state the concept of the σ-measure that is a well-known measure of noncompactness
in metric spaces.

Definition 1.2. Suppose that (X, d) is a standard metric space. A mapping σ : B(X)→ R+
0 , defined as,

σ(D) = inf{γ > 0 : D can be covered by finitely many sets with diameter ≤ γ}

for each D ∈ B(X), is called the Kuratowski measure of noncompactness (see, [5]).

In 1955, Darbo [10] used measure of noncompactness to generalize Schauder’s theorem to prove the
following theorem.

Theorem 1.3 ([10]). Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E and let
T : Ω→ Ω be a continuous mapping such that there exists a constant k ∈ (0, 1) with the property

σ(T (X)) ≤ kσ(X)

for any nonempty subset X of Ω. Then T has a fixed point in the set Ω.

The following theorem is an extension of Darbo’s fixed point theorem that was introduced by Banas and
Goebel [8].

Theorem 1.4 ([8]). Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E and let
T : Ω→ Ω be a continuous mapping such that there exists a constant k ∈ (0, 1) with the property

σ(T (X)) ≤ ψ(σ(X))

for any nonempty subset X of Ω, where ψ : R+ → R+ is a nondecreasing and upper semicontinuous function
such that ψ(t) < t for all t > 0. Then T has a fixed point in the set Ω.

In recent years, measures of noncompactness have developed rapidly on metric spaces which are inter-
esting for fixed point theory, see e.g. [1–6].

A function ξ : R+
0 → R+

0 is said to be a Meir-Keeler type, (in short, MKT [12]), if ξ fulfills

∀η > 0 ∃δ > 0 ∀t ∈ R+
0 (η ≤ t < η + δ ⇒ ξ(t) < η).

Remark 1.5. By the definition, MKT function ξ provides the following inequality:

ξ(t) < t, for all t ∈ R+
0 .
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A (c)-comparison function ψ is a nondecreasing self-mapping on R+
0 such that

∑∞
n=1 ψ

n(t) <∞ for each
t > 0, where ψn is the n-th iteration of ψ. It is clear that ψ(t) < t for all t > 0 and ψ(0) = 0. We denote Ψ
the family of all (c)-comparison functions.

Recently, Redjel and Dehici [15] introduced the concept of (α,ψ)-Meir-Keeler-Khan mappings (in short,
(α,ψ)-MKK mappings), and they proposed two theorems for the existence of fixed points for such mappings.

Theorem 1.6 ([15]). Suppose that the self-mapping f over a complete metric space (X, d) is continuous,
α-admissible and (α,ψ)-MKK mapping, that is, there exist ψ ∈ Ψ and α : X ×X → R+

0 such that for every
η > 0, there exists δ(η) such that if

η ≤ ψ
(
d(x, fx)d(x, fy) + d(y, fy)d(y, fx)

d(x, fy) + d(y, fx)

)
< η + δ(η)

for all x, y ∈ X, then
α(x, y)d(fx, fy) ≤ η.

If there exists x0 ∈ X such that α(x0, y) > 1 for all y ∈ fx0, then f has a fixed point in X.

Definition 1.7 ([16]). Let (X, d) be a metric space, and let T : X → N(X) and α : X ×X → R+
0 be two

mappings on X. Then T is called an α-admissible SVM if for any x ∈ X and y ∈ Tx with α(x, y) ≥ 1, we
have

α(y, z) ≥ 1, for any z ∈ Ty.

Recently, Wang et al. [17] characterized the results of Redjel and Dehici [15] in the setting of set-valued
mappings.

Theorem 1.8 ([17]). Suppose that a set-valued mapping T : X → K(X) over a complete metric space (X, d)
is α-admissible, continuous and (α,ψ)-Meir-Keeler-Khan, that is, there exist ψ ∈ Ψ and α : X×X → (0,∞)
satisfying

(1) T is an SVM;
(2) for each x, y ∈ X,

H(Tx, Ty) 6= 0 =⇒ α(x, y)H(Tx, Ty) ≤ ψ(P(x, y)),

where

P(x, y) =
dist(x, Tx)dist(x, Ty) + dist(y, Ty)dist(y, Tx)

dist(x, Ty) + dist(y, Tx)
.

If there exists x0 ∈ X such that α(x0, y) > 1 for all y ∈ Tx0, then T has a fixed point in X.

2. Main results

We start with the following definition:

Definition 2.1. Let Y be a nonempty subset of a metric space (X, d). A set-valued mapping T : Y → 2Y is
called Meir-Keeler type contraction with respect to the measure σ (in short, MKTCσ) if, for each bounded
subset A of Y and for each η > 0 there exists δ > 0 (where δ depends on A and η) such that

η ≤ σ(A) < η + δ =⇒ σ(T (A)) < η,

where T (A) is bounded.

Remark 2.2. Note that if T is a MKTCσ, then we have

σ(T (A)) ≤ σ(A)

for all bounded subsets A of Y .
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At follows that we shall prove the existence of the fixed point of MKTCσ under the certain assumptions.

Theorem 2.3. Let Y be a nonempty bounded subadmissible subset of a metric space (X, d). Suppose
T : Y → 2Y is MKTCσ. Then Y contains a precompact subadmissible subset K with T (K) ⊂ K.

Proof. Take x0 ∈ Y . we define the sequence {Yn} of sets as follows:

Y0 = Y and Yn+1 = co(T (Yn) ∪ {x0}) for all n ∈ N ∪ {0}.

So, we have

(1) Yn is a subadmissible subset of Y ;

(2) Yn+1 ⊂ Yn;

(3) T (Yn) ⊂ Yn+1;

for all n ∈ N ∪ {0}.
From the argument above and by regarding the properties of the set measure σ together with Remark

2.2, we get that

σ(Y1) = σ(co(T (Y0) ∪ {x0}))
= σ(T (Y0))

≤ σ(Y0).

By iteration, we derive that

σ(Yn+1) = σ(co(T (Yn) ∪ {x0}))
= σ(T (Yn))

≤ σ(Yn)

for all n ∈ N ∪ {0}. Thus we deduce that the sequence {σ(Yn)} is both nonincreasing and bounded below.
So, it converges to η ≥ 0, that is,

lim
n→∞

σ(Yn) = η.

Notice that η = inf{σ(Yn) : n ∈ N ∪ {0}}. We claim that η = 0. Suppose, on the the contrary, that
η > 0. Since T is MKTCη, there exist δ > 0 and a natural number k such that

η ≤ σ(Yk) < η + δ =⇒ σ(Yk+1) = σ(T (Yk)) < η.

It is a contradiction since η = inf{σ(Yn) : n ∈ N ∪ {0}}. Thus, we find

lim
n→∞

σ(Yn) = 0.

Let us take Y∞ = ∩n∈N∪{0}Yn. Then Y∞ is a nonempty precompact subadmissible subset of Y , and, by
(2), (3), we also have that T (X∞) ⊂ Y∞.

In Theorem 2.3, we call the set Y∞ a Meir-Keeler-inducing precompact subadmissible subset of Y .

Definition 2.4. Let (X, d) be a metric space, and let ψ : R+
0 → R+

0 be a Meir-Keeler mapping with

supt>0
ψ(t)
t < 1. A set-valued mapping T : X → N(X) is called a (ψ,L(x, y))-Meir-Keeler-Khan type

contraction with respect to the measure σ (in short, (ψ,L(x, y))−MKKTCσ) if

1. T is a MKT set contraction with respect to the measure σ;
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2. T fulfills
H(Tx, Ty) 6= 0 =⇒ H(Tx, Ty) ≤ ψ(L(x, y)),

where

L(x, y) =
dist(x, Tx)dist(x, Ty) + dist(y, Ty)dist(y, Tx)

dist(x, Ty) + dist(y, Tx)

for each x, y ∈ X.

We investigate an existence theorem for fixed points of (ψ,L(x, y))−MKKTCσ.

Theorem 2.5. Let Y be a nonempty bounded subadmissible subset of a complete metric space (X, d), let
T : Y → CL(Y ) be a(ψ,L(x, y))−MKKTCσ and T (Y ) ⊂ Y . Suppose that T is continuous. Then T has a
fixed point in Y .

Proof. By applying Theorem 2.3 and it follows from above argument, we get a Meir-Keeler-inducing pre-
compact subadmissible subset Y∞ of X. Since T (Y ) ⊂ Y and T (Yn+1) ⊂ T (Yn) ⊂ T (Y ), we have that
T (Yn+1) ⊂ T (Yn) ⊂ Y for each n ∈ N. Since limn→∞ σ(T (Yn)) = 0, we get that Y∞ is a nonempty compact
subset of X. Since Tx is closed, we also have that Tx is compact for each x ∈ Y∞.

Let x0 ∈ Y∞. If x0 ∈ Tx0, then x0 is a fixed point of T , and this proof is complete. Suppose that
x0 /∈ Tx0. Since Tx0 is a compact subset of Y∞, we have that dist(x0, Tx0) > 0. Let x1 ∈ Tx0. If x1 ∈ Tx1,
then x1 is a fixed point of T , and subsequently, this proof is complete. Suppose that x1 /∈ Tx1. Since Tx1
is a compact subset of Y∞, we have that dist(x1, Tx1) > 0. Since T is (ψ,L(x, y))−MKKTCσ, we have

H(Tx0, Tx1) ≤ ψ
(
dist(x0, Tx0)dist(x0, Tx1) + dist(x1, Tx1)dist(x1, Tx0)

dist(x0, Tx1) + dist(x1, Tx0)

)
= ψ(dist(x0, Tx0))

< dist(x0, Tx0),

and there exists η1 ∈ (0, γ], where γ = supt>0
ψ(t)
t , and obviously η1 depends on x0 and x1 such that

H(Tx0, Tx1) ≤ η1 · dist(x0, Tx0).

By the definition of the Hausdorff metric and above inequality, we obtain that

dist(x1, Tx1) ≤ H(Tx0, Tx1) ≤ η1 · dist(x0, Tx0).

Since Tx1 is a compact subset of Y∞, there exists x2 ∈ Tx1 such that

d(x1, x2) = dist(x1, Tx1).

Thus, we have
d(x1, x2) ≤ η1 · dist(x0, Tx0).

If x2 ∈ Tx2, then x2 is a fixed point of T , and this proof is complete. Suppose that x2 /∈ Tx2. Since T
is (ψ,L(x, y))−MKKTCσ, we have

H(Tx1, Tx2) ≤ ψ
(
dist(x1, Tx1)dist(x1, Tx2) + dist(x2, Tx2)dist(x2, Tx1)

dist(x1, Tx2) + dist(x2, Tx1)

)
= ψ(dist(x1, Tx1))

< dist(x1, Tx1),

and there exists η2 ∈ (0, γ], where γ = supt>0
ψ(t)
t , and obviously η2 depends on x1 and x2 such that

H(Tx1, Tx2) ≤ η2 · dist(x1, Tx1).
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By the definition of the Hausdorff metric, we obtain that

dist(x2, Tx2) ≤ H(Tx1, Tx2) ≤ η2 · dist(x1, Tx1).

Since Tx2 is a compact subset of X, there exists x3 ∈ Tx2 such that

d(x2, x3) = dist(x2, Tx2).

Thus, we also have

d(x2, x3) ≤ η2 · dist(x1, Tx1) ≤ η2η1 · d(x0, x1).

By the induction, we can obtain a sequence {xn} of X satisfying

xn+1 ∈ Txn, xn+1 /∈ Txn+1,

and for each n ∈ N,

H(Txn, Txn+1) ≤ ψ
(
dist(xn, Txn)dist(xn, Txn+1) + dist(xn+1, Txn+1)dist(xn+1, Txn)

dist(xn, Txn+1) + dist(xn+1, Txn)

)
= ψ(dist(xn, Txn))

< dist(xn, Txn),

and there exists ηn+1 ∈ (0, γ], where γ = supt>0
ψ(t)
t . It is clear that ηn+1 depends both on xn and xn+1

such that
H(Txn, Txn+1) ≤ ηn+1 · dist(xn, Txn).

By the definition of the Hausdorff metric with inequality above, we obtain

dist(xn+1, Txn+1) ≤ H(Txn, Txn+1) ≤ ηn+1 · dist(xn, Txn),

for each n ∈ N. Since Txn+1 is a compact subset of X, there exists xn+2 ∈ Txn+1 such that

d(xn+1, xn+2) = dist(xn+1, Txn+1).

Thus, we have

d(xn+1, xn+2) ≤ ηn+1 · dist(xn, Txn)

≤ ηn+1ηn · dist(xn−1, Txn−1)
...

≤ ηn+1ηn · · · η1 · dist(x0, Tx0)

for each n ∈ N. Put κn+1 = max{η1, η2, · · · , ηn+1} for all n ∈ N ∪ {0}. Then

d(xn+1, xn+2) ≤ κn+1
n+1 · dist(x0, Tx0).

Since ηn < 1 for all n ∈ N, we obtain that κn+1 < 1 for all n ∈ N ∪ {0}. Thus, there exists κ ∈ (0, 1)
such that

κn+1 ≤ κ < 1

for all n ∈ N ∪ {0}, and we also obtain that

d(xn+1, xn+2) ≤ κn+1 · dist(x0, Tx0).
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By letting n→∞, we find
lim
n→∞

d(xn, xn+1) = 0.

We will prove that the sequence {xn} is a Cauchy sequence. On account of the discussion above, we
have

d(xn, xn+m) = d(xn, xn+1) + d(xn+1, xn+m)

≤ d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+m)

...

≤
m∑
i=1

d(xn+i−1, xn+i)

≤
m∑
i=1

κn+i−1d(x0, x1)

≤ κn

1− κ
d(x0, x1).

By letting n→∞, we obtain that
lim
n→∞

d(xn, xn+m) = 0.

This yields that {xn} is a Cauchy sequence in (Y∞, d).
By the completeness of (X, d) together with the fact that Y∞ is closed, the subspace (Y∞, d) is complete.
Consequently, there exists p ∈ Y∞ such that d(xn, p) = 0 as n → ∞. Since T is continuous, we have

H(Txn, Tp) = 0 as n→∞. Therefore

dist(p, Tp) = lim
n→∞

dist(xn+1, Tp) ≤ lim
n→∞

H(Txn, Tp) = 0.

Due to the fact that Tp is a compact subset of Y∞, we conclude the desired result, that is, p ∈ Tp.

Definition 2.6 ([9]). A function ϕ : R+
0 → R+

0 is called a weaker Meir-Keeler (in short, wMKT ), if ϕ
satisfies the following condition:

∀η > 0 ∃δ > 0 ∀t ∈ R+
0 (η ≤ t < η + δ ⇒ ∃n0 ∈ N, ϕn0(t) < η).

Definition 2.7 ([9]). Let Y be a nonempty subset of a metric space (X, d) and let ϕ : R+
0 → R+

0 be a
wMKT . A set-valued mapping T : Y → 2Y is called a ϕ-weaker Meir-Keeler Type set contraction with
respect to the measure σ (in short, ϕ − wMKKCσ) if for each A ⊂ Y with A is bounded and T (A) is
bounded, and for each η > 0 there exists γ > 0 such that

η ≤ ϕ(σ(A)) < η + γ =⇒ σ(T (A)) < η.

Remark 2.8 ([9]). Note that if T is ϕ− wMKKCσ, then we have that for any bounded subset A of Y

σ(T (A)) ≤ ϕ(σ(A)).

Theorem 2.9 ([9]). Let Y be a nonempty bounded subadmissible subset of a metric space (X, d), and let
T : Y → 2Y be ϕ − wMKKCσ. If the sequence {ϕn(t)}n∈N is decreasing for all t ∈ R+

0 , then X contains
a precompact subadmissible subset Y∞ = ∩n∈N∪{0}Yn with T (Y∞) ⊂ Y∞, where x0 ∈ Y , Y = Y0 and
Yn+1 = co(T (Yn) ∪ {x0}) for all n ∈ N.

Remark 2.10 ([9]). In the process of the proof of Theorem 2.9, we call the set Y∞, a wMKT precompact-
inducing subadmissible subset of Y .



C.-M. Chen, E. Karapınar, G.-T. Chen, J. Nonlinear Sci. Appl. 9 (2016), 5271–5280 5278

In this sequel, we let Ω be the class of all nondecreasing functions ϕ : R+
0 → R+

0 satisfying the following
conditions:

(ϕ1) ϕ is a wMKT ;

(ϕ2) for all t ∈ (0,∞), {ϕn(t)}n∈N is decreasing;

(ϕ3) ϕ(t) > 0 for t > 0 and ϕ(0) = 0;

(ϕ4) for t > 0, if limn→∞ ϕ
n(t) = 0, then limn→∞

∑m
i=n ϕ

i(t) = 0, where m > n.

Definition 2.11. Let (X, d) be a metric space, Y be a nonempty bounded subadmissible subset of X,
and ϕ ∈ Ω. A set-valued mapping T : Y → N(Y ) is called a (ϕ,L(x, y))-weaker Meir-Keeler-Khan type
contraction with respect to the measure σ (in short, (ϕ,L(x, y))− wMKKTCσ ) if

1. T is ϕ− wMKKCσ;

2. T fulfills
H(Tx, Ty) 6= 0 =⇒ α(x, y)H(Tx, Ty) ≤ ϕ(L(x, y)), (2.1)

where

L(x, y) =
dist(x, Tx)dist(x, Ty) + dist(y, Ty)dist(y, Tx)

dist(x, Ty) + dist(y, Tx)
.

Theorem 2.12. Let (X, d) be a complete metric space and let Y be a nonempty bounded subadmissible
subset of (X, d). If T : Y → CL(Y ) is continuous and (ϕ,L(x, y)) − wMKKTCσand T (Y ) ⊂ Y , then T
has a fixed point in X.

Proof. By taking Theorem 2.9 and Remark 2.10 into account, we get a weaker Meir-Keeler-inducing pre-
compact subadmissible subset Y∞ of Y . By regarding T (Y ) ⊂ Y and T (Yn+1) ⊂ T (Yn) ⊂ T (Y ), we have
that T (Yn+1) ⊂ T (Yn) ⊂ Y for each n ∈ N. Since limn→∞ σ(T (Yn)) = 0, we get that Y∞ is a nonempty
compact subset of X. By owing to the fact that Tx is closed, we derive that Tx is compact for each x ∈ Y∞.

Take x0 ∈ Y∞. If x0 ∈ Tx0, then x0 is a fixed point of T , and this proof is complete. Suppose that
x0 /∈ Tx0. Since Tx0 is a compact subset of Y∞, we have that dist(x0, Tx0) > 0. Let x1 ∈ Tx0. If x1 ∈ Tx1,
then x1 is a fixed point of T , and subsequently, this proof is complete. Suppose that x1 /∈ Tx1. Since Tx1
is a compact subset of Y∞, we have that dist(x1, Tx1) > 0. Since T is (ϕ,L(x, y)) − wMKKTCσ, we also
have

H(Tx0, Tx1) ≤ ϕ
(
dist(x0, Tx0)dist(x0, Tx1) + dist(x1, Tx1)dist(x1, Tx0)

dist(x0, Tx1) + dist(x1, Tx0)

)
= ϕ(dist(x0, Tx0)).

By the definition of the Hausdorff metric and above inequality, we obtain that

dist(x1, Tx1) ≤ H(Tx0, Tx1) ≤ ϕ(dist(x0, Tx0)).

Since Tx1 is a compact subset of Y∞, there exists x2 ∈ Tx1 such that

d(x1, x2) = dist(x1, Tx1).

Thus, we have
d(x1, x2) ≤ ϕ(dist(x0, Tx0)).

If x2 ∈ Tx2, then x2 is a fixed point of T , and this proof is complete. Suppose that x2 /∈ Tx2. Since T
is (ϕ,L(x, y))− wMKKTCσ, by taking x = x1 and y = x2 in (2.1), we have

H(Tx1, Tx2) ≤ ϕ
(
dist(x1, Tx1)dist(x1, Tx2) + dist(x2, Tx2)dist(x2, Tx1)

dist(x1, Tx2) + dist(x2, Tx1)

)
= ϕ(dist(x1, Tx1)),
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and by the definition of the Hausdorff metric, we obtain that

dist(x2, Tx2) ≤ H(Tx1, Tx2) ≤ ϕ(dist(x1, Tx1)).

Since Tx2 is a compact subset of X, there exists x3 ∈ Tx2 such that

d(x2, x3) = dist(x2, Tx2).

Thus, we also have

d(x2, x3) ≤ ϕ(dist(x1, Tx1))

≤ ϕ2(dist(x0, Tx0)).

By the induction, we can obtain a sequence {xn} of Y∞ satisfying

xn+1 ∈ Txn, xn+1 /∈ Txn+1, α(xn, xn+1) ≥ 1,

and for each n ∈ N,
d(xn, xn+1) ≤ ϕn(dist(x0, Tx0)).

By (ϕ2) and since {ϕn(dist(x0, Tx0))}n∈N is decreasing, it converges to η ≥ 0. We claim that η = 0.
On the contrary, assume that η > 0. Then by the definition of the wMKT , there exists δ > 0 such that
for x0 ∈ X with η ≤ dist(x0, Tx0) < δ + η and ϕn0(dist(x0, Tx0)) < η, for some n0 ∈ N. Due to the limit
limn→∞ ϕ

n(dist(x0, Tx0)) = η, there exists m0 ∈ N such that η ≤ ϕm(d(x0, x1)) < δ + η, for all m ≥ m0.
As a result, we have ϕm0+n0(dist(x0, Tx0)) < η, a contradiction. Hence, we find

lim
n→∞

ϕn(dist(x0, Tx0)) = 0,

that is,
lim
n→∞

d(xn, xn+1) = 0.

We shall prove that the sequence {xn} is a Cauchy sequence. By regarding the discussion above, we
have

d(xn, xn+m) ≤ d(xn, xn+1) + d(xn+1, xn+m)

≤ d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+m)

...

≤
m∑
i=1

d(xn+i−1, xn+i)

≤
m∑
i=1

ϕn+i−1d(x0, x1).

On account of the condition (ϕ4), by letting n→∞, we derive that

lim
n→∞

d(xn, xn+m) = 0.

This yields that {xn} is a Cauchy sequence in (Y∞, d).
By regarding that (X, d) is complete and Y∞ is closed, we conclude that the subspace (Y∞, d) is complete.
Consequently, there exists p ∈ Y∞ such that d(xn, p) = 0 as n → ∞. Since T is continuous, we have

H(Txn, Tp) = 0 as n→∞. So, we find

dist(p, Tp) = lim
n→∞

dist(xn+1, Tp) ≤ lim
n→∞

H(Txn, Tp) = 0.

Since Tp is a compact subset of Y∞, we conclude that p ∈ Tp.
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