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Abstract

In this paper, we study a parabolic system with general singular terms and positive Dirichlet boundary
conditions. Some sufficient conditions for finite-time quenching and global existence of the solutions are
obtained, and the blow-up of time-derivatives at the quenching point is verified. Furthermore, under some
appropriate hypotheses, we prove that the quenching point is only origin and quenching of the system is
non-simultaneous. Moreover, the estimate of quenching rate of the corresponding solution is established in
this article. c©2016 all rights reserved.
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1. Introduction and main results

In the present work, we consider the following parabolic system coupled with general singular terms
subject to positive Dirichlet boundary conditions

ut(x, t) = ∆u− f(v(x, t)), (x, t) ∈ Ω× (0, T ),
vt(x, t) = ∆v − g(u(x, t)), (x, t) ∈ Ω× (0, T ),
u = v = 1, (x, t) ∈ ∂Ω× (0, T ),
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω̄,

(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary, and the initial data satisfying

u0, v0 ∈ C2(Ω) ∩ C1(Ω̄); u0, v0 = 1, x ∈ ∂Ω; 0 < u0, v0 ≤ 1, x ∈ Ω̄. (1.2)
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To begin our study better, we also assume that positive functions f(v) : (0, 1]→ (0,+∞) and g(u) : (0, 1]→
(0,+∞) verify the following conditions:

(H1) f(v) and g(u) are locally Lipschitz on (0, 1];

(H2) f ′(v) < 0 for v ∈ (0, 1] and g′(u) < 0 for u ∈ (0, 1];

(H3) lim
v→0+

f(v) = +∞ and lim
u→0+

g(u) = +∞;

(H4) f ′′(v) ≥ 0 for v ∈ (0, 1] and g′′(u) ≥ 0 for u ∈ (0, 1].

Because of the singular nonlinearity in the absorption terms of (1.1), the finite-time quenching phenom-
ena may occur for the model. We say the solution (u, v) of the problem (1.1) quenches, if (u, v) exists in the
classical sense and is positive for all 0 ≤ t < T , and also satisfies

inf
t→T

min
0≤x≤1

{u(x, t), v(x, t)} = 0.

If this happens, then T will be called as quenching time. Clearly at quenching time T , a singularity develops
in the absorption term, consequently the classical solution can no longer exist. Throughout this paper, the
notion here as usual, f ∼ g means that there exists finite positive constants c1, c2 such that c1g ≤ f ≤ c2g.

Since the study of quenching phenomena was begun in 1975 by Kawarada [7], a lot of works have been
contributed to this subject. For example, Zheng and Wang in [18] studied the coupled parabolic system

ut(x, t) = uxx − v−p, (x, t) ∈ Ω× (0, T ),
vt(x, t) = vxx − u−q, (x, t) ∈ Ω× (0, T ),
u = v = 1, (x, t) ∈ ∂Ω× (0, T ),
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω̄.

(1.3)

Their mainly results read as follows:

(1) If p, q ≥ 1, then any quenching in (1.3) is simultaneous; if p < 1 ≤ q, then any quenching in (1.3) is
non-simultaneous with u being strictly positive; and if p, q < 1, then there exists (u0, v0) such that
simultaneous quenching occurs.

(2) If quenching is non-simultaneous and, for instance v is the unique quenching component, then v(0, t) ∼
(T − t). Otherwise,

(a) u(0, t) ∼ (T − t)
(p−1)
(pq−1) , v(0, t) ∼ (T − t)

q−1
pq−1 if p, q > 1 or p, q < 1;

(b) u(0, t), v(0, t) ∼ (T − t)
1
2 if p = q = 1;

(c) u(0, t) ∼ | log(T − t)|
−1
q−1 , v(0, t) ∼ (T − t)| log(T − t)|

q
q−1 if q > p = 1.

Salin in [16] considered the semilinear parabolic equation
ut(x, t) = uxx + lg(αu), (x, t) ∈ (−l, l)× (0, T ),
u(±l, t) = 1, 0 ≤ t ≤ T,
u(x, 0) = u0(x), x ∈ [−l, l],

and derived that the quenching rate is lim
t→T

(1 + 1
T−t

∫ u(x,t)
0

ds
log(αs)) = 0.

Afterwards, Mu et al. in [14] studied the following reaction-diffusion system with logarithmic singularity,
ut(x, t) = ∆u+ lg(αv), (x, t) ∈ Ω× (0, T ),
vt(x, t) = ∆v + lg(βu), (x, t) ∈ Ω× (0, T ),
u = v = 1, (x, t) ∈ ∂Ω× (0, T ),
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω̄,

(1.4)
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where 0 < α, β < 1. They proved that if u0(x) ≤ v0(x), α < β, then any quenching in (1.4) is non-
simultaneous with v being strictly positive; and if u0(x) ≥ v0(x), α > β, then any quenching in (1.4) is
non-simultaneous with u being strictly positive. Besides, if quenching is non-simultaneous and, for instance,
v is the quenching component, then when t → T−, v(0, t) ∼ (T − t). Furthermore, the blow-up of time-
derivatives at the quenching point is also proved. For more research on quenching phenomena for parabolic
system with Neumann boundary conditions, we refer readers to [3, 5, 15, 17, 19], and some advances in
quenching phenomena those days, we refer readers to [1, 2, 8–11] and references therein. In addition, for
some research on decay, see [6, 12, 13] and corresponding references therein.

Motivated by those papers and references therein, the main purpose of this paper is to study the quench-
ing phenomena of parabolic system (1.1) coupled with general singular terms under proper assumptions to
get some more general conclusions.

To state our results conveniently, we firstly introduce some notions.
Let ϕ be the first eigenfunction with the first eigenvalue λ1 of the problem{

∆ϕ+ λϕ = 0, x ∈ Ω,
ϕ = 0, x ∈ ∂Ω,

normalized by
∫

Ω ϕ(x)dx = 1, ϕ(x) > 0 in Ω.

Theorem 1.1. Solutions of (1.1) quenches in finite-time for any initial data provided that λ1 small enough.

As many authors who understand quenching, it is said that time-derivatives blow up while the solution
itself remains bounded (see [2, 7]). In the rest of this paper, without any special explanation, we always
assume that the initial data u0, v0 satisfy

∆u0 − f(v0) < 0,∆v0 − g(u0) < 0, x ∈ Ω. (1.5)

Then, we have the following results.

Theorem 1.2. If Ω is a convex domain, then the solution of (1.1) quenches in finite-time and (ut, vt) blow
up at this time.

Theorem 1.3. If Ω = BR = {x ∈ RN : |x| < R} and R ≥ min(
√

2N
f(1) ,

√
2N
g(1)), then the radial solution of

(1.1) quenches in finite time for any initial data.

Theorem 1.4. If the diameter of Ω is small enough and the initial data satisfies 0 < ε ≤ u0, v0 ≤ 1 on Ω̄,
then the solution of (1.1) does not quench in finite-time. For this case, we say that the solution (u, v) of
(1.1) exists globally.

Theorem 1.5. If Ω is a convex domain, then the quenching set of (1.1) is a compact subset of Ω. In
particular, if Ω is a ball centered at the origin with radius R, the radial initial data (u0, v0) satisfies both
(1.2) and

u′0(r), v′0(r) > 0 for r ∈ (0, R] with u′′0(0), v′′0(0) > 0,

then the origin is the only quenching point.

Theorem 1.6. For all initial data u0, if g(P ) is large enough, then there exists an open set (in the C2

topology) of the initial data v0 such that v quenches while u is strictly positive for all t ∈ [0, T ], where
P = max

x∈Ω̄
u0 ≤ 1. Furthermore, we have the quenching rate of v(0, t) as follows

v(0, t) ∼ (T − t).

Theorem 1.7. For all initial data v0, if f(Q) is large enough, then there exists an open set (in the C2

topology) of the initial data u0 such that u quenches while v is strictly positive for all t ∈ [0, T ], where
Q = max

x∈Ω̄
v0 ≤ 1. Furthermore, we have the quenching rate of u(0, t) as follows

u(0, t) ∼ (T − t).
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Remark 1.8. If f(v) = v−p or − log(αv) and g(u) = u−q or − log(βu) with p, q, α, β > 0, it is easy to see that
f(v), g(u) satisfy the conditions (H1)-(H4). Therefore, we extend the corresponding results of [14, 16, 18]
to a more general system (1.1) in this paper.

The plan of this paper is organized as follows. In the next section, we obtain the sufficient condition
for finite-time quenching and global existence. In Section 3, we obtain the quenching set. Moreover,
under appropriate hypotheses, we prove that the solution of the system is non-simultaneous quenching, and
estimate the quenching rate.

2. Finite-time quenching and global existence

In this section, we obtain the sufficient condition for finite-time quenching and quenching set, which
reads in Theorems 1.1 - 1.3, and global existence of solutions is solved in Theorem 1.4.

Proof of Theorem 1.1. Let (u, v) be the solution of (1.1) with the maximal existence time T . By the maxi-
mum principle we have 0 ≤ u, v ≤ 1 in Ω× (0, T ). Let

Fu(t) =

∫
Ω

(1− u)ϕdx, Fv(t) =

∫
Ω

(1− v)ϕdx, F (t) = Fu(t) + Fv(t), t ∈ [0, T ).

By the properties we assumed for functions f(v), g(u) with u, v ∈ (0, 1] and corresponding Taylor expansions,
we can obtain

f(v) ≥ δ(1− v) + c1, g(u) ≥ δ(1− u) + c2,

where δ, c1, c2 are positive constants determined by f(v), g(u).
By a straight-forward computation, we have

F ′u(t) = −
∫

Ω
∆uϕdx+

∫
Ω
f(v)ϕdx

=

∫
Ω

∆(1− u)ϕdx+

∫
Ω
f(v)ϕdx

≥ −λ1

∫
Ω

(1− u)ϕdx+ δ

∫
Ω

(1− v)ϕdx+ c1

= −λ1Fu(t) + δFv(t) + c1,

that is,
F ′u(t) ≥ −λ1Fu(t) + δFv(t) + c1.

Similarly, we have
F ′v(t) ≥ −λ1Fv(t) + δFu(t) + c2.

Consequently,
F ′(t) ≥ (δ − λ1)F (t) + C, C = c1 + c2.

Notice 0 < F (t) < 2 in Ω̄× (0, T ) and λ1 small enough, it is easy to obtain that (δ−λ1)F (t) +C > 0, hence

dF

(δ − λ1)F (t) + C
≥ dt, t ∈ [0, T ). (2.1)

Integrating (2.1) from 0 to t, we have the problem

t ≤


1

δ−λ1 ln (δ−λ1)F (t)+C
(δ−λ1)F (0)+C , δ 6= λ1,

1
C (F (t)− F (0)), δ = λ1.
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Now, letting t→ T−, combining lim
t→T−

F (t) ≤ 2, we obtain

T ≤


1

δ−λ1 ln 2(δ−λ1)+C
(δ−λ1)F (0)+C , δ 6= λ1,

1
C (2− F (0)), δ = λ1.

(2.2)

Clearly, the right-hand side of (2.2) is greater than zero, which shows finite-time quenching of the solutions
in the system (1.1). The proof of Theorem 1.1 is complete.

Next, we prove Theorem 1.2. We start with the following lemmas.

Lemma 2.1. Assume that the initial data satisfy (1.5), then ut, vt < 0 for (x, t) ∈ Ω× (0, T ). Furthermore,
we have for any η > 0, there exists c > 0 such that

ut, vt < −c, (x, t) ∈ Ωη × [η, T ),

where Ωη = {x ∈ Ω : dist(x, ∂Ω) > η}.

Proof. Let I(x, t) = ut(x, t), J(x, t) = vt(x, t). Differentiating the system (1.1) with respect to t, we have
It = ∆I − f ′(v)J, (x, t) ∈ Ω× (0, T ),
Jt = ∆J − g′(u)I, (x, t) ∈ Ω× (0, T ),
I = J = 0, (x, t) ∈ ∂Ω× (0, T ),
I(x, 0) < 0, J(x, 0) < 0, x ∈ Ω̄.

(2.3)

By the comparison principle, we have I(x, t) = ut(x, t) < 0, J(x, t) = vt(x, t) < 0. Therefore, (u, v) are
strictly decreasing in time.

Consider the following auxiliary system
wt = ∆w − f(v0), (x, t) ∈ Ω× (0, T ),
zt = ∆z − g(u0), (x, t) ∈ Ω× (0, T ),
w = z = 1, (x, t) ∈ ∂Ω× (0, T ),
w(x, 0) = u0(x), z(x, 0) = v0(x), x ∈ Ω̄.

(2.4)

It is easy to see that (2.4) has a unique global solution, by (1.5) we have wt(x, t) < 0, zt(x, t) < 0, for
Ω× (0,+∞). Let Φ = u− w,Ψ = v − z. Therefore, we have

Φt = ut − wt ≤ 0, Ψt = vt − zt ≤ 0, (x, t) ∈ Ω× (0, T ).

If we choose c = min{ min
Ωη×[η,T )

|wt|, min
Ωη×[η,T )

|zt|}, then we have ut, vt < −c, (x, t) ∈ Ωη × [η, T ).

Lemma 2.2. Assume that Ω is a convex domain and (1.5) holds. Then for any η > 0, there exists ε > 0
such that

ut ≤ −εf(v), vt ≤ −εg(u), (x, t) ∈ Ωη × [η, T ).

Proof. Let ũ = ut + εf(v), ṽ = vt + εg(u), (x, t) ∈ Ωη × [η, T ). Then

ũt −∆ũ = utt + εf ′(v)vt −∆ut − εf ′′(v)|∇v|2 − εf ′(v)∆v

≤ −f ′(v)vt + εf ′(v)vt − εf ′(v)∆v

= −f ′(v)vt − εf ′(v)g(u)

= −f ′(v)ṽ.

Similarly, we have
ṽt −∆ṽ ≤ −g′(u)ũ.
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By Lemma 2.1, if η is small enough, then there exists c > 0 such that ut, vt < −c for (x, t) ∈ Ωη × [η, T ).
Furthermore, we can select an ε > 0 small enough such that{

ũ = ut + εf(v) ≤ 0, (x, t) ∈ ∂Ωη × [η, T ),
ṽ = vt + εg(u) ≤ 0, (x, t) ∈ ∂Ωη × [η, T ).

And initial data satisfy {
ũ(x, 0) = ∆u0(x)− f(v0(x)) + εf(v0(x)) ≤ 0,
ṽ(x, 0) = ∆v0(x)− g(u0(x)) + εg(u0(x)) ≤ 0.

By the comparison principle, we derive that ũ = ut + εf(v) < 0, ṽ = vt + εg(u) < 0, (x, t) ∈ Ωη × [η, T ).

Proof of Theorem 1.2. By Lemma 2.1, fixing η and integrating (2.4) from η to t, we get 0 < u(x, t) <
u(x, η)− c(t− η) < 1− c(t− η), namely, the quenching time T < 1

c + η, therefore, under the condition (1.5)
the solutions of (1.1) quench in finite-time. By Lemma 2.2, if v(x, t) → 0 (respectively, u(x, t) → 0) for
t→ T−, then vt → −∞ (respectively, ut → −∞). The proof of Theorem 1.2 is completed.

Next, we will prove Theorems 1.3 and 1.4. We first introduce the following lemma and consider the
radial solutions of (1.1) on Ω = BR = {x ∈ RN : |x| < R}.

Lemma 2.3. Let (u, v) be the global solution of (1.1) with (u0, v0) ≡ (1, 1), u, v ≥ b on B̄R×(0,∞) for some
b ∈ (0, 1). Then (u, v) approaches uniformly from above to a solution (U, V ) of the steady-state problem{

∆U = f(V ),∆V = g(U), x ∈ BR,
U = V = 1, x ∈ ∂BR.

(2.5)

Proof. Since (1, 1) is a strict super-solution of the problem (1.1), by Lemma 2.1, we have ut, vt < 0 in
BR × (0,∞). Define

W (x, t) =

∫
BR

G(x, y)u(y, t)dy, Z(x, t) =

∫
BR

G(x, y)v(y, t)dy, (x, t) ∈ BR × (0,∞),

where G(x, y) is the Green’s function associated with the operator −∆ on BR under Dirichlet boundary
conditions. Hence

Wt =

∫
BR

G(x, y)ut(y, t)dy =

∫
BR

G(x, y)∆u(y, t)dy −
∫
BR

G(x, y)f(v(y, t))dy,

Zt =

∫
BR

G(x, y)vt(y, t)dy =

∫
BR

G(x, y)∆v(y, t)dy −
∫
BR

G(x, y)g(u(y, t))dy,

namely,

Wt = 1− u(x, t)−
∫
BR

G(x, y)f(v(y, t))dy,

Zt = 1− v(x, t)−
∫
BR

G(x, y)g(u(y, t))dy.

It follows from ut, vt < 0 that G(x, y)f(v(y, t)) and G(x, y)g(u(y, t)) are nondecreasing with respect to t.
Thus the monotone convergence theorem with

b ≤ U(x) = lim
t→∞

u(x, t), b ≤ V (x) = lim
t→∞

v(x, t),

which implies that

lim
t→∞

Wt = 1− U(x)−
∫
BR

G(x, y)f(V (y))dy,
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lim
t→∞

Zt = 1− V (x)−
∫
BR

G(x, y)g(U(y))dy.

On the other hand, since W and Z are bounded, and Wt, Zt ≤ 0 by ut, vt < 0, we have

lim
t→∞

Wt = 0, lim
t→∞

Zt = 0,

which yield

U(x) = 1−
∫
BR

G(x, y)f(V (y))dy, V (x) = 1−
∫
BR

G(x, y)g(U(y))dy.

Consequently, (U, V ) is a solution of the problem (2.5), and the uniform convergence is guaranteed by Dini’s
theorem. The proof of Lemma 2.3 is complete.

Proof of Theorem 1.3. Consider the auxiliary problem
ut(x, t) = ∆u− f(v(x, t)), (x, t) ∈ Ω× (0, T ),
vt(x, t) = ∆v − g(u(x, t)), (x, t) ∈ Ω× (0, T ),
u = v = ε, (x, t) ∈ ∂Ω× (0, T ),
u(x, 0) = v(x, 0) = ε, x ∈ Ω̄.

(2.6)

It is easy to see that the solution of (2.6) is a sub-solution of (1.1). By the comparison principle, we have
u ≤ u, v ≤ v, it suffices to prove that (u, v) is global. Let φ satisfy{

∆φ−K = 0, x ∈ BR,
φ = ε, x ∈ ∂BR,

where K > max{f(ε), g(ε)}, and BR is the ball centered at origin with radius R. So we have

φ(x) =
K(|x|2 −R2)

2N
+ ε with min

B̄R
φ(x) = ε− KR2

2N
,

and K ≥ max{f(φ), g(φ)} by taking R small enough. Therefore, (φ, φ) is a time-independent sub-solution
of (2.6) for Ω ⊂ BR. By Lemma 2.3, the global solutions of (1.1) exist provided that Ω small enough. The
proof of Theorem 1.3 is completed.

Proof of Theorem 1.4. Consider the auxiliary system
ūt(x, t) = ∆ū− f(v̄(x, t)), (x, t) ∈ Ω× (0, T ),
v̄t(x, t) = ∆v̄ − g(ū(x, t)), (x, t) ∈ Ω× (0, T ),
ū = v̄ = 1, (x, t) ∈ ∂Ω× (0, T ),
ū(x, 0) = v̄(x, 0) = 1, x ∈ Ω̄.

By the comparison principle, we have u ≤ ū, v ≤ v̄.
We first consider the following system

∆ū∗ = f(1), in BR,
∆v̄∗ = g(1), in BR,
ū∗ = v̄∗ = 1, on ∂BR.

By the Green’s function, the solution (ū∗, v̄∗) denotes as the following{
ū∗ = f(1)(|x|2−R2)

2N + 1,

v̄∗ = g(1)(|x|2−R2)
2N + 1,

and {
min ū∗ = −f(1)R2

2N + 1,

min v̄∗ = −g(1)R2

2N + 1.

Clearly, (ū∗, v̄∗) is a super-solution of (1.1). By Lemma 2.3, the solution (u, v) of (1.1) is global only if
ū∗, v̄∗ > 0. Thus, the proof of Theorem 1.4 is complete.
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3. Quenching set and non-simultaneous quenching

In this section, we firstly obtain the quenching set. Secondly, we prove the quenching is non-simultaneous
and establish the non-simultaneous quenching rates of corresponding solutions.

Proof of Theorem 1.5. We will employ a similar method as it in [4, 18] to prove this theorem. Without loss
of generality, assume

∂u0

∂n
,
∂v0

∂n
> 0, on ∂Ω, (3.1)

where n is the outward normal on ∂Ω; otherwise, we can work with the initial data (u, v)|t′=t−τ = 0 for any
small τ > 0.

Take y0 ∈ ∂Ω, and assume for simplicity y0 = 0 with the outward normal (1, 0, ..., 0) at y0. Define

Ω+
a = Ω ∩ {x1 > a}, Ω−a = {(x1, x

′)|(2a− x1, x
′) ∈ Ω+

a }

with a < 0, x′ = (x2, ..., xN ). Clearly, Ω−a is the reflection of Ω+
a with respect to the hyperplane x1 = a.

Consider the functions

Γ(x, t) = u(x1, x
′, t)− u(2a− x1, x

′, t), Υ(x, t) = v(x1, x
′, t)− v(2a− x1, x

′, t)

in Ω−a × (0, T ). Since f(v) and g(u) are locally Lipschitz on (0, 1], a simple computation yields

Γt −∆Γ = −[f(v(x1, x
′, t))− f(v(2a− x1, x

′, t))] = ρ1Γ,

Υt −∆Υ = −[g(u(x1, x
′, t))− g(u(2a− x1, x

′, t))] = ρ2Υ,

where ρ1, ρ2 are nonnegative and bounded in Ω−a × (0, t) for any fixed t ∈ (0, T ). In addition, Γ = Υ = 0
on x1 = a and Γ = u(x1, x

′, t) − 1 < 0,Υ = v(x1, x
′, t) − 1 < 0 on (∂Ω−a ∩ {x1 < a}) × (0, T ). Finally,

Γ(x, 0),Υ(x, 0) < 0 for x ∈ Ω−a provided |a| is small enough by (3.1). By the maximum principle, Γ,Υ < 0
in Ω−a × (0, T ) and 2 ∂u

∂x1
= ∂Γ

∂x1
> 0, 2 ∂v

∂x1
= ∂Υ

∂x1
> 0 on x1 = a. By the arbitrariness of a, it follows that

∂u

∂x1
,
∂v

∂x1
> 0, in Ω+

a0 × (0, T ), (3.2)

provided |a0| is small enough.
Now introduce the functions

χ = ux1 − ε(x1 − a0), ψ = vx1 − ε(x1 − a0)

in Ω+
a × (0, T ) with ε > 0 to be determined. We have

χt −∆χ+ f ′(v)ψ = −ε(x1 − a0)f ′(v) ≥ 0,

ψt −∆ψ + g′(u)χ = −ε(x1 − a0)g′(u) ≥ 0.

Additionally, χ, ψ > 0 on x1 = a0 by (3.2), and χ(x, 0), ψ(x, 0) > 0 by (3.1). Furthermore, we claim that
χ, ψ > 0 on (∂Ω+

a0 ∩ ∂Ω)× (0, T ). Indeed, let (ū, v̄) solve
ūt = ∆ū, v̄t = ∆v̄, (x, t) ∈ Ω× (0, T ),
ū = v̄ = 1, (x, t) ∈ ∂Ω× (0, T ),
ū(x, 0) = u0(x), v̄(x, 0) = v0(x), x ∈ Ω̄.

Then u ≤ ū, v ≤ v̄ by the comparison principle. Consequently

∂u

∂n
≥ ∂ū

∂n
≥ b0 > 0,

∂v

∂n
≥ ∂v̄

∂n
≥ c0 > 0, on ∂Ω× (0, T ).
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It follows that

χ ≥ b0 cos < n, x1 > −ε(x1 − a0) > 0, ψ ≥ c0 cos < n, x1 > −ε(x1 − a0) > 0

for x ∈ ∂Ω+
a0 ∩ ∂Ω with ε small enough. Therefore, by the maximum principle, we have χ, ψ > 0 in

Ω+
a0 × (0, T ). In particular,

ux1 ≥ ε(x1 − a0), vx1 ≥ ε(x1 − a0), for (x1, x
′, t) ∈ [a0, 0]× {x′ = 0} × (0, T ). (3.3)

Integrating (3.3) with respect to x1, we get

u(x1, 0, t) ≥ u(a0, 0, t) +
1

2
ε(x1 − a0)2,

v(x1, 0, t) ≥ v(a0, 0, t) +
1

2
ε(x1 − a0)2.

Thus, any point x = (x1, x
′) ∈ (a0, 0)× {x′ = 0} cannot be a quenching point. The above argument shows

that a0 can be chosen independent of the initial point y0 ∈ ∂Ω. By varying y0 along with ∂Ω, we conclude
that there is an Ω-neighborhood Ω′ of ∂Ω such that any point x ∈ Ω′ is not a quenching point.

Since Ω is a ball centered at the origin with radius R, the radial initial data (u0, v0) satisfies both (1.2)
and u′0(r), v′0(r) > 0 for r ∈ (0, R] with u′′0(0), v′′0(0) > 0, then we can follow the proof of Lemma 2.2 in [4]
to conclude that the origin is the only quenching point. The proof of Theorem 1.5 is complete.

Proof of Theorem 1.6. Consider the system (2.3) again with v0 = ξ < 1. Then
It = ∆I − f ′(v)J, (x, t) ∈ Ω× (0, T ),
Jt = ∆J − g′(u)I, (x, t) ∈ Ω× (0, T ),
I = J = 0, (x, t) ∈ ∂Ω× (0, T ),
I(x, 0) = ∆u0(x)− f(v0(x)) < 0, x ∈ Ω̄,
J(x, 0) = −g(u0(x)) < 0, x ∈ Ω̄.

Set P = max
x∈Ω̄

u0 ≤ 1. Therefore, taking ξ sufficient small, by the comparison principle, we have ut(x, t) ≤

−g(P ) and vt(x, t) ≤ −g(P ) for any (x, t) ∈ Ω× (0, T ). Therefore, v(x, t) ≥ g(P )(T − t). Then substituting
it into equation (1.1), we can obtain ut ≥ ∆u− f(A(T − t)), where A = g(P ).

Consider the following problem with the solution u(t),{
u′(t) = −f(A(T − t)), t ∈ (0, T ),
u(0) = min

x∈Ω̄
u0(x) = m, t ∈ (0, T ),

then we have

u(x, t) ≥ u(t) = m−
∫ t

0
f(A(T − s))ds. (3.4)

If ξ is small enough, by (3.4) we have

u(x, T ) ≥ m− lim
t→T

∫ t

0
f(A(T − s))ds > 0.

Something important that we have to remark here is above arguments are still working with any initial data
v0, which is close to v0 = ξ in the C2 topology, so the details are omitted. Thus we have proved that v
quenches while u is strictly positive for all t ∈ [0, T ].

Next, we will give the estimate for v(0, t). By the estimate of (2.2), we have

vt(0, t) ≤ −εg(u(0, t)) ≤ −εg(P ) < 0.
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Thus, there exists a positive constant c1 such that

v(0, T )− v(0, t) ≤ −c1(T − t),
that is

v(0, t) ≥ c1(T − t). (3.5)

On the other hand, from the condition (1.5), we have vx(x, t) ≥ 0, so ∆v(0, t) ≥ 0 and vt ≥ −g(u(0, t)).
Thus, vt(0, t) ≥ −g(c0) = −C1(C1 > 0), where c0 = inf

0≤t≤T
min
x∈Ω̄

u(x, t) > 0. Since c0 > 0, v(0, T ) = 0 and T is

quenching time, so
v(0, t) ≤ C1(T − t). (3.6)

Combining (3.5) and (3.6), we can get v(0, t) ∼ (T−t). To this end, the proof of Theorem 1.6 is complete.

Proof of Theorem 1.7. Since the process of proof is similar to that of Theorem 1.6, we omit it here.
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